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Methods for estimating extreme loads are used in design as well as risk assessment. Regression using maximum
likelihood or least squares estimation is widely used in a univariate analysis but these methods favour solutions
that fit observations in an average sense. Here we describe a new technique for estimating extremes using a
quantile function model. A quantile of a distribution is most commonly termed a ‘return level’ in flood risk anal-
ysis. The quantile function of a random variable is the inverse function of its distribution function. Quantile func-
tionmodels are different from the conventional regression models, because a quantile functionmodel estimates
the quantiles of a variable conditional on some other variables, while a regression model studies the conditional
mean of a variable. So quantile functionmodels allow us to study the whole conditional distribution of a variable
via its quantile function, whereas conventional regressionmodels represent the average behaviour of a variable.
Little work can be found in the literature about prediction from a quantile functionmodel. This paper proposes a
prediction method for quantile function models. We also compare different types of statistical models using sea
level observations from Venice. Our study shows that quantile function models can be used to estimate directly
the relationships between sea condition variables, and also to predict critical quantiles of a sea condition variable
conditional on others. Our results show that the proposed quantile functionmodel and the developed prediction
method have the potential to be very useful in practice.

© 2013 Elsevier B.V.

1. Introduction

River and coastal flooding is an acknowledged natural hazard. There
are many national examples that can be quoted and that are described
in the academic andwider engineering literature. Sea level rise, changes
in local climate and development in flood plains have altered the hazard
and generally increased the consequences of flooding, and thereby the
overall risk. An improved ability to predict, quantify and manage flood
probabilities is essential to protecting the public, property and infra-
structure, and to maintaining a sustainable economy. More accurate
predictions of extreme conditions will improve the assessment, mitiga-
tion and management of flood risk.

Flood risk may be measured by the combination of the failure prob-
ability of a system such as a sea defence system and a measure of the
consequences of the resulting floods. This is commonly represented as
the probability of occurrence of an extreme event (or ‘hazard’) multi-
plied by the cost of the ensuing damage and hence ‘risk’ is measured
as a rate of expenditure. There are several commonly used approaches
to studying the probability of the functional failure of flood defences.
That is, the situation inwhich the natural conditions exceed the severity
for which a structure was designed to withstand; leading to the
unwanted transmission of water across the line of the defence whilst

not necessarily resulting in damage to the structure itself. One of these
approaches is based on the concept of a structure variable, which is a
known function of flood risk variables, such as sea condition variables.
In particular, the structure variablemethod reduces amultivariate prob-
lem to a univariate one by using a formula relating to the structural
performance, (for example, the wave overtopping rate), to combine po-
tentially correlated variables such as water level, wave height and wave
direction into a single variable which may then be analysed using uni-
variate techniques. The occurrence of failure is then defined in terms
of the structure variable exceeding a specified threshold rather than
the probability of occurrence of particular combinations of the primary
variables. See for example, the studies of Coles and Tawn (1994) and
Reeve (1998). Another approach is known as the joint probabilitymeth-
od and provides a procedure for estimating the probability that a struc-
ture variable exceeds a critical level based on the joint analysis of all
flood risk variables. Many papers and reports on the application of
thesemethods can be found in the literature. See, for example, the stud-
ies of Owen et al. (1997), Hawkes et al. (2002, 2004) and Meadowcroft
et al. (2004).

However, in using the standard methods of fitting distributions to
observations, the above two approaches are mainly influenced by ob-
servations in the bulk of the distributionwhichmay have little influence
on the formof the tail, themost important part of the distribution for es-
timating failure, and hence may provide poor fits. Methods based on
scaled error norms, (e.g., Li et al., 2008; Reeve, 1996), address this to
some degree but can be difficult to ‘tune’ precisely. A further approach
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is to estimate probability distributions by using only extreme values of
the flood risk variables, see for example, the studies of Coles (2001),
Coles et al. (1999), Tawn (1990, 1992) and Thompson et al. (2009).
Such an approach can seemwasteful of data, particularly to those mak-
ing the observations. Partly in response to this concern,modifications to
traditional approaches that use more observations have been devel-
oped, (e.g., Smith, 1986).

A common feature of the above approaches is that once a probabil-
ity model is established for a sea condition variable, the value of the
variable corresponding to a failure probability, i.e., the quantile or
the return level, needs to be calculated by inverting the estimated con-
ditional distribution function. If the estimated conditional distribution
is not a commonly used distribution, then it can be difficult to invert
the distribution exactly, and hence adding another layer of inaccuracy
to prediction.

Recently, there has been a surge in interest in quantile methods.
These methods allow us to directly estimate the conditional quantile,
i.e., the value that a sea condition variable takes with a required prob-
ability. Hence these models focus on the quantiles at a level of interest
(i.e., return levels) instead of the average value of a sea condition var-
iable, because of which, the quantile approaches to statistical model-
ling have been used in many areas including economics, finance and
medical research. See, for example, the studies of Koenker (2005)
and Gilchrist (2000).

Generally speaking, there are two types of quantile approaches:
one is semi-parametric (see, for example, Koenker, 2005) and another
is parametric (see for example, Gilchrist (2000)). Although somework
can be found in the literature on prediction with semi-parametric
quantile regression models, see, for example, those of Taylor (2005),
Cai (2010c) and Cai et al. (2012) and references therein, to the au-
thors' knowledge, little work on prediction with parametric quantile
function models can be found in the literature. Therefore, the main
contributions of this paper are: (a) to develop a method for extreme
value prediction via a parametric quantile function model, and (b) to
show, via a real data set, the differences between various statistical
models commonly used in extreme value prediction. The advantages
of the quantile approach are that it makes full use of all available
data including both extreme and non-extreme observations, it allows
us to use many non-standard distributions that may provide an im-
proved fit to observations leading to better predictions, and it provides
a natural way of dealing with multivariate problems so that predic-
tions on a flood risk variable conditional on a set of other variables
can be made. At this point it is perhaps worth emphasising that here
we use the words ‘model’, ‘estimation’ to mean ‘a statistical distribu-
tion used to model observations’ and ‘determining the best fit values
of the distribution parameters’ respectively.

In Section 2 we first give an outline of the two types of quantile ap-
proaches.We then introduce a special type of quantile function model
and present the new forecasting method in Section 3. The application
to the Venice sea-level data and comparisons with other commonly
used models are presented in Section 4. Finally, Section 5 provides
some further comments and conclusions.

2. An outline of the quantile approaches

2.1. Semi-parametric quantile regression model

Let Y be a continuous flood risk random variable, such as wave
overtopping rate or run-up level, and x = (x1,…,xp) be a vector of p
covariates. Given a set of observations {yi,x1i,…,xpi} (i = 1,…,n), a
semi-parametric quantile regression model (Koenker (2005)) for the
τth conditional quantile of Y, denoted by qY|X

τ is given by

qτY jX ¼ h ητ ; x1;…; xp
� �

; ð1Þ

where h is a known function of the covariate x and model parameter
ητ which depends on τ (0 ≤ τ ≤ 1). So, for example, if τ = 0.95,
model (1) gives a 95% conditional quantile of Y. Therefore, for a se-
quence of τ values, model (1) defines a sequence of conditional
quantiles of Y. These quantiles provide an estimate of the conditional
quantile function of Y. Note that model (1) does not contain an error
term, hence, the whole model is semi-parametric. A simple example
of (1) is the linear quantile regression model given by qY|X

τ = a0
τ + a1-

τx1 +⋯+ ap
τxp with ητ = (a0τ,…,apτ).

The model parameters can be estimated by using various
methods including the method based on solving the minimization
problem minητ∑n

i¼1ρτ uið Þ; where ρτ uið Þ ¼ ui τ−I uib0½ �
� �

, in which I[⋅]
is an indicator function and ui = yi − h(ητ,x1i,…,xpi), see for exam-
ple, those of Koenker and D'Orey (1987, 1994) and Koenker
(2005). The model parameters can also be estimated by using a
Bayesian method. For example, Yu and Moyeed (2001) proposed a
Bayesian approach to quantile regression with independent data;
Thompson et al. (2010) proposed a Bayesian non-parametric
quantile regression method with applications to sea condition
variables in coastal engineering; Cai and Stander (2008) studied a
Bayesian approach to a nonlinear quantile time series model.
Lancaster and Jun (2010) investigated the application of Bayesian
exponentially tilted empirical likelihood to inference about quantile
regressions. This semi-parametric approach has been used widely.
However, it can suffer from some problems. For example, the esti-
mated conditional quantile curves may cross over, leading to a fail-
ure of the method. Different methods have been proposed to solve
the crossing-over problem. See, for example, the approaches of
Bondell et al. (2010) and references therein.

2.2. Parametric quantile function model

Compared with the above semi-parametric approach, much less
work can be found in the literature about parametric approaches.
Gilchrist (2000) gave an excellent introduction to this parametric ap-
proach. A general parametric quantile function model is given by

QY τjξ;xð Þ ¼ h1 η1; x1;…; xp
� �

þ h2 η2; x1;…; xp
� �

Q τ;γð Þ; ð2Þ

where ξ = (η1,η2,γ) is the model parameter vector; hi (i = 1, 2) are
known functions of x and ηi, h2(η2,x1,…,xp) > 0 and Q(τ,γ) are the
quantile functions of the error term with explicit mathematical ex-
pression. A special case of model (2) is the linear quantile function
model given by QY(τ|ξ,x) = a0 + a1x1 +⋯+ apxp + Q(τ,γ) with
h1(η1,x1,…,xp) = a0 + a1x1 +⋯+ apxp, h2(η2,x1,…,xp) = 1 and η1 =
(a0,…,ap).

It is seen that in the parametric approach, the number of parameters
has been significantly decreased as themodel parameters do not depend
on τ, and the monotonicity of the conditional quantile function of Y can
be guaranteed due to the fact that QY(τ|ξ,x) is a well defined conditional
quantile function. Gilchrist (2000) discussed various methods for esti-
mating ξ. Cai (2009, 2010a, 2010b) proposed Bayesian approaches to
estimating parameters of different types ofmodel (2), including polyno-
mial, multivariate and time series quantile function models.

In this paper we focus on a special type of quantile functionmodels
with details given in the next section.

3. The prediction method

3.1. Polynomial quantile function model

As mentioned above, different choices of h1, h2 and Q in model (2)
lead to different quantile function models. If there is only one covar-
iate x, then the dependence between Y and x may be modelled by a
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polynomial quantile function model studied by Cai (2010b), and is
given by:

QY τjβ;xð Þ ¼ a0 þ a1xþ ⋯þ ak1x
k1

� �

þ b0 þ b1xþ ⋯þ bk2x
k2

� �
Q τ;γð Þ; ð3Þ

where ai, bj and γ are model parameters. For model (3) to be fully de-
fined,we need to assign a quantile function forQ(τ,γ). It is worthmen-
tioning that different Q(τ,γ) can be used. So in fact model (3) also
defines a class of quantile function models.

Since we will use the model to study the Venice sea-level data,
since the measurement of the sea levels is positive, and since we are
interested in the extreme behaviour of the sea levels, we propose to
use the power-Pareto quantile function defined by

Q τ;γð Þ ¼ τγ1 1−τð Þ−γ2 ; γ1 > 0; γ2 > 0:

The choice of quantile function is to some extent arbitrary. Howev-
er, although this distribution is rarely used in the literature because
the corresponding distribution or density function does not have an
explicit mathematical form, and hence it is not easy to use the com-
monly used maximum likelihood estimation method for parameter
estimation, this distribution is very flexible and can deal with different
shapes and extremes of a sea condition variable. Fig. 1 shows the den-
sity function plots of the power-Pareto distribution for four different
pairs of γ1 and γ2 values.

Combined with the power-Pareto distribution, the model we will
consider further in this paper is defined by

QY τjβ;xð Þ ¼ a0 þ a1xþ ⋯þ ak1x
k1

� �
þ b0 þ b1xþ ⋯þ bk2x

k2
� �

τγ1 1−τð Þ−γ2 : ð4Þ

For any particular application we are faced with the problem of
defining suitable values of a0; a1;…; ak1 , b0; b1;…; bk2 , γ1 and γ2.
Cai (2010b) proposed a Bayesian method for estimating the parame-
ters of model (4). The basic idea of the Bayesian method is given
below. First note that the likelihood function of the observed data
can be written as

Lðy1;…; yn β;xj Þ ¼ ∏
n

i¼1

τ1−γ1
i 1−τið Þ1þγ2

γ1 1−τið Þ þ γ2τi
;

where τi satisfy

yi− a0 þ a1xi þ ⋯þ ak1x
k1
i

� �

b0 þ b1xi þ ⋯þ bk2x
k2
i

¼ τγ1
i 1−τið Þ−γ2 :

So the likelihood function is not an explicit function of the ob-
served data directly, but it is an explicit function of τi. In fact, this is
why it is difficult to use the conventionalmaximum likelihoodmethod
for the parameter estimation. However, by using a Bayesian method,
we can deal with the difficulties easily. Specifically, we need to assign
a prior distribution to the model parameters. We let the prior
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distribution of the parameters be given by π(β) = π(η1)π(η2)π(γ),
where η1 ¼ a0;…; ak1

� �
, η2 ¼ b0;…; bk2

� �
, γ = (γ1,γ2) and

π η1
� � ¼ ∏

k1

j1¼0
π aj1

� �
¼ ∏

k1

j1¼0

1ffiffiffiffiffiffi
2π

p
σ j1

e
−

a2j1
2σ2

j1 ;

π η2
� � ¼ ∏

k2

j2¼0
π bj2

� �
¼ ∏

k2

j2¼0

1ffiffiffiffiffiffi
2π

p
σ j2

e
−

b2j2
2σ2

j2 ;

ð5Þ

and

π γð Þ ¼ ∏
2

ℓ¼1
π γℓð Þ ¼ ∏

2

ℓ¼1

λℓ

γ2
ℓ

e−λℓ=γℓ : ð6Þ

Then it can be shown that the posterior distribution of the param-
eters is given by

πðβ x; yj Þ∝∏
n

i¼1

τ1−γ1
i 1−τið Þ1þγ2

∑k2
j¼0bjx

j
i

� �
γ1 1−τið Þ þ γ2τi½ �

�∏
k1

j1¼0

1ffiffiffiffiffiffi
2π

p
σ j1

e
−a2j1

2σ2
j1 ∏

k2

j2¼0

1ffiffiffiffiffiffi
2π

p
σ j2

e
−b2j2

2σ2
j2 ∏

2

ℓ¼1

λℓ

γ2
ℓ
e−λℓ=γℓ

and is well defined on (η1,η2,γ) ∈ Ω1 × Ω2 × Ω3, where

Ω1 ¼ f a0;…; ak1

� �
a0 þ a1xi þ ⋯þ ak1x

k1
i byi; i ¼ 1;…;n

���
o
;

Ω2 ¼ b0;…; bk2

� �
b0 þ b1xi þ ⋯þ bk2x

k2
i > 0; i ¼ 1;…;n

���
o
;

n

Ω3 = (0,M] × (0,∞), where M are any fixed positive real numbers.
It is worth mentioning that normal priors (5) can be very useful in

practice. These priors say that the values of the model parameters can
be positive or negative. The values of σjs measure the strength of our
prior knowledge on the model parameters: large values of them rep-
resent that we have little prior knowledge about the model parame-
ters. In this paper we take σ j1 ¼ σ j2 ¼ 3 for all possible values of j1
and j2.

The prior (6) is the product of two inverse gamma-distributions.
This prior distribution uses the information that γ1 > 0 and γ2 > 0.
In this paper we letλl ¼ 1, leading to a very flat and right-skewed dis-
tribution, which implies the fact that little prior information on these
parameters is available in practice.

Once the posterior density function of the parameters is available,
wemay use theMarkov chainMonte Carlo (MCMC)method proposed
by Cai (2010b) to estimate themodel parameters. It can be shown that
the equilibrium distribution of the Markov chain produced by the
MCMC method is the posterior distribution of the parameters. There-
fore, after a burn-in period,we can collect a posterior sample of the pa-
rameters; the average of the samples is the Bayesian estimate of the
parameters, denoted by β̂ .

3.2. Forecasting

Now suppose that the parameters of model (4) have been estimat-
ed from data. Then conditional on an x value of interest, we want to
forecast the τth quantile of Y with an associated prediction interval.
Our prediction method consists of the following several steps.

Step 1. Simulate ti ∼ U(0,1), i = 1,…,m. That is ti is a random sample
from a uniform distribution between 0 and 1.

Step 2. Calculate yi:

yi ¼ â0 þ â1xþ ⋯þ âk1
xk1

� �
þ b̂0 þ b̂1xþ ⋯þ b̂k2

xk2
� �

tγ̂ 1
i 1−tið Þ−γ̂ 2 :

Then {yi,i = 1,…,m} forms a random sample of the conditional
distribution of Y.

Step 3. Use the sample obtained in Step 2 to estimate the τth quantile
of Y, denoted by qτ.

Step 4. Repeat the above three steps M times, we have M τth condi-
tional quantiles of Y: qτ(j), j = 1,…,M.

Step 5. Construct the distribution of the τth quantile of Y using qτ
(j),

j = 1,…,M.
Step 6. Use the median and the lower and upper 2.5% quantiles of the

distribution obtained in Step 5 as the point forecast of the τth
conditional quantile of Y and the associated 95% prediction in-
terval respectively.

It is worth noting that the above prediction method allows us to
obtain the whole predictive distribution of a sea condition variable.
So themethod enables us to forecast any predictive quantities of inter-
est about the sea condition variable.

4. Venice sea-level data

To demonstrate the method we have chosen Venice sea-level
data. The application is intended to be illustrative and is unusual
in an important respect. That is, the Venice sea-level data set con-
sists of the two highest recorded sea-levels each year in “Venice
for the period 1931–1981. The sea level in Venice is conventionally
measured relative to the local datum of Punta Salute. The mean sea
level is +0.52 m relative to this datum. Sea levels higher than
+0.80 m above the datum are termed “acqua alta”, and are associ-
ated with travel and transport disruption in the lowest parts of the
city (including St. Mark's Square). When the water level is above
+1.0 m approximately 5% of public land is liable to be flooded;
when the water level reaches +1.10 m about 12% of the city is af-
fected by flooding; this rises to approximately 60% if the water
level is +1.40 m. In this application we consider the sea levels
relative to the mean sea level. Although no other information is
available on the data, for example, how the observations have
been de-trended etc., for illustration purposes, we just treated the
observations to be the two highest records over all recorded levels
each year. The developed method will be used to predict the annual
maximum water level conditioned by knowledge of the second
highest water level. The methodology can be applied to other
data sets with more than one covariate as well.

Let y be the observed highest sea level and x the observed second
highest sea level. Fig. 2 shows the scatter plots of x, y and y against x re-
spectively. Clearly, both the second highest and the highest sea-levels
increase with time, and there is a positive correlation between x and
y. Furthermore, the variation of y also increases as x increases and
some extreme sea-levels can also be seen.

Although the upward trend of the sea-levels may be estimated as a
function of time by using the highest sea-level data only, we feel that
the sea-level may also depend on some other covariates. In this applica-
tion, a relationship between x and y cannot only reveal the upward
trend and non-homogeneous feature of the variations, but also provide
us a means of obtaining conditional forecasts on future sea-levels. For
example, suppose x0 is the highest sea level that has been observed in
the first six months of a year. Then a well established relationship be-
tween x and y will allow us to predict the corresponding y value that
may occur in the next six months with a required probability. Hence
somenecessary proceduresmay be taken to preventflooding in the sec-
ond half of the year.

Note that as (x,y) was collected once a year, it is reasonable to as-
sume that the collected data are independent as we usually do in ex-
treme value analysis (see, for example, Coles (2001)).

It is worthmentioning that a conventional regressionmodel is not ap-
propriate for modelling the relationship between x and y because of the
non-homogeneous feature of the data. Fig. 2(c) suggests that model (4)
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with k1 = k2 = 1 could be a good candidate for the data, as the strong
linearity between the variables is evident. Hence, we applied our method
to the model

QY τ β;xj Þ ¼ a0 þ a1xð Þ þ b0 þ b1xð Þτγ1 1−τð Þ−γ2 :
� ð7Þ

Note that model (7) does not include time as a covariate although
it is possible to do so. However, x is an implicit function of the time.
Hence the long term trend of Y is reflected by the term a0 + a1x. Sim-
ilarly, the non-stationarity of Y can also be seen from the two terms
a0 + a1x and b0 + b1x as both the level and the spread of the distribu-
tion of Y depend on x and hence on t implicitly. Also it was noted that
τγ1 1−τð Þ−γ2 is used to deal with the extremes.

To estimate the parameters of model (7), a Markov chain of length
250,000 was run. A time series plot, (not shown to save space), of the
Markov chain output shows that a burn-in of the first 75,000 values
would be appropriate. After the burn-in period, we save the parameter
values once every 50 steps. Fig. 3 shows the histograms of the collect-
ed samples, where the vertical lines correspond to the estimated pa-
rameter values which are the sample means of the posterior samples.

So the fitted model is given by

QY τ β̂ ; x
���

�
¼ −3:1794þ 1:0327xþ 3:9599þ 0:0992xð Þτ1:4231 1−τð Þ−0:3589

:
�

ð8Þ

If the fitted model is fine, then we should expect that the stan-
dardized residuals

ûi ¼
yi− −3:1794þ 1:0327xið Þ

3:9599þ 0:0992xi
; i ¼ 1;…;n

are an independent sample from the distribution defined by

Q τ;γð Þ ¼ τ1:4231 1−τð Þ−0:3589
:

The last panel of Fig. 3 provides the plot of the sample quantiles of
ûi (i = 1,…,n) against the quantiles of Q(τ,γ), which shows no major
concerns on the fitted model.

In order to compare our approach with the semi-parametric ap-
proach,we also used the statistical software R tofit a sequence of quantile
regression models

qτY jx ¼ aτ0 þ aτ1x ð9Þ

to the data for τ = 0.05, 0.25, 0.5, 0.75, 0.95, 0.99, 0.995 and 0.999. The
estimated parameter values are given in Table 1. Note that estimated
parameter values in the last three columns are the same, suggesting
that we were not able to estimate extreme quantiles when τ > 0.99 for
this data set.
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Fig. 2. Scatter plots of Venice sea-level data (relative to Punta Salute datum).
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The estimated quantiles can be used to compute conditional quantile
functions. Fig. 4 shows the quantile functions conditional on four chosen
values: x = 70, 100, 120 and 150, where 70 and 150 are outside the
range of the observed data. It is seen that the performances of the para-
metric and the semi-parametric approaches are very similar at lower
quantile levels for this data set, but at high quantile levels, the semi-
parametric model experiences some difficulties.

Nowwe consider prediction. Let Lα be the sea level that is expected
to be exceeded on average once every 1/α years, where 0 b α b 1.
Then Lα is the 1/α-year return level. A typical value of α in design
might be α = 0.01, corresponding to the 100-year return level. It is
noted that the 1/α-year return level may depend on some covariates.
Furthermore, it is clear that the 1/α-year return level corresponds to
the (1 − α)th quantile. So for the 100-year return level, we have
τ = 1 − α = 0.99. Our task is to predict the conditional 100-year re-
turn level. Note that values for other return levels can be obtained
similarly.

Therefore, for our example, if we choose the second highest annual
water level to be x = 194, (which coincidentally is the maximum ob-
served sea level during the observational period and therefore outside
the range of the observed second highest annual maxima), then the
distribution of the 100-year return level conditional on x = 194 cm

is shown in Fig. 5(a), where the darker continuous vertical line corre-
sponds to the median of the 100-year return level, while the two
dashed lines form a 95% prediction interval of the 100-year return
level. Note that, as we have the whole predicted distribution of the
100-year return level, we could forecast any predictive quantities of
this distribution. For example, we may also be interested in obtaining
the forecast of the average 100-year return level, which could be easily
calculated and is also shown in Fig. 5(a) by the grey vertical line.

Similarly, conditional on x = 108.51 cm, which is the average of
the observed x values, the distribution of the 100-year return level
is shown in Fig. 5(b). To quantify the forecasts, Table 2 shows the pre-
dicted 100-year return levels (median and mean) with the associated
95% prediction intervals. Note that the predicted mean is larger than
the predicted median for this data set because the predictive distribu-
tion is skewed to the right.

We also used the semi-parametric model (9) to estimate the con-
ditional 100-year return level when x = 108.51 cm, a00.99 = −90.24
and a1

0.99 = 2.24. We found that the return level is 152.82 cm.
If we consider the annual maximum sea-levels only, then the ex-

treme value theory says that the generalized extremevalue (GEV) distri-
butionmaybe used tomodel thedistribution of these data. Note that the
log-normal distribution is also right skewed and canbeused to dealwith
the tail behaviour of a distribution. Also note that from a pure mathe-
matical point of view, the log-normal distribution can provide an excel-
lent approximation to the GEV. Hence we also fitted a log-normal
distribution to the annual maximum sea-levels. Fig. 6 shows the proba-
bility density function plots of the estimated GEV (dashed curve) and
log-normal distribution (continuous curve), obtained by using the sta-
tistical software R. It is seen that they are indeed very similar. We
found that the 100-year return levels are 178 cm and 172 cm corre-
sponding to the GEV model and the log-normal model respectively.
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Fig. 3. The histograms of the posterior samples of model parameters and the QQ-plot of the fitted model for Venice sea-level data.

Table 1
The estimated parameter values of model (9).

τ 0.05 0.25 0.5 0.75 0.95 0.99 0.995 0.999
a0
τ −2.00 −6.50 −13.8 −20.67 −96.00 −90.24 −90.24 −90.24

a1
τ 1.03 1.08 1.2 1.33 2.23 2.24 2.24 2.24
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Both estimated return levels are closer to that obtained from our model
when x = 108.51 cm. The reason for this similarity can be seen from
Fig. 7.

Fig. 7 shows the conditional quantile function plots from the above
fitted models, where the continuous curve is the quantile function of Y
conditional on x = 108.51 cm obtained from our model, the dot–
dashed curve corresponds to that obtained from the semi-parametric
model, the dotted and dashed curves correspond to the unconditional
quantile functions of Y obtained from the GEV and log-normal models
respectively, and the points (circles) are the sample quantiles at equally
spaced quantile levels. In fact the last circle in Fig. 7 corresponds to the
sample quantile at the 0.9999 level, while the black square symbol cor-
responds to the sample quantile at the 0.99 level, indicated by the grey
vertical line. It is seen that our model, GEV and log-normal models be-
have similarly in predicting 100-year return levels conditional on the
average value of x.

5. Comments and conclusions

In this paperwe have developed a predictionmethod based onMar-
kov chain simulations for quantile function models. The method allows
us to obtain distributional forecasts, and hence enables us to obtain any
predictive quantities of a sea condition variable.

We showed that a quantile functionmodel can provide a practical al-
ternative technique for estimating extreme levels, as it allows us to
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Table 2
The predicted conditional 100-year return levels for the Venice sea-level data.

x Median level Mean level Lower bound Upper bound

x = 194 cm 294.58 302.35 258.77 382.62
x = 108.51 cm 170.68 175.61 147.96 226.52
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construct a proper statisticalmodel by usingmany distributions that are
non-standard and that are defined only through their quantile functions
instead of the probability density functions. Hence, such models can
deal with many complicated data structures that may not be dealt
with easily by conventional models. The quantile function approach
also makes full use of the available data and provides a means of incor-
porating covariates. It is worth mentioning that quantile function
models cannot only be estimated by using our method but also by
other methods based on optimization techniques, (see Gilchrist, 2000).

We have also demonstrated the usefulness of the power-Pareto dis-
tribution via a polynomial quantile function model and the Venice
sea-level data. For extreme or ‘tail’ probabilities, a parametric model
would always give finer results, but only under the condition that it is
a proper model. Our results show that it is possible to build up a proper
model for a data set by using a quantile function modelling approach.

Our results also show that different models yield a range of perfor-
mance on the same data set. Our experience also suggests that the per-
formance of a particular model may vary from data set to data set.
Therefore, a general recommendation is that in any practical application
several different approaches are to be used whenever possible in order
to achieve the best model for a given data set.
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Fig. 6. Probability density function plots of the estimated GEV (dashed curve) and
log-normal distribution (continuous curve).
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