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Experiments on confined two-phase flow systems, involving air and a dense suspension, have
revealed a diverse set of flow morphologies. As the air displaces the suspension, the beads that
make up the suspension can accumulate along the interface. The dynamics can generate “frictional
fingers” of air coated by densely packed grains. We present here a simplified model for the dynamics
together with a new numerical strategy for simulating the frictional finger behavior. The model is
based on a yield stress criterion of the interface. The discretization scheme allows for simulating
a larger range of structures than previous approaches. We further make theoretical predictions for
the characteristic width associated to the frictional fingers, based on the yield stress criterion, and
compare these to experimental results. The agreement between theory and experiments validates
our model and allows us to estimate the unknown parameter in the yield stress criterion, which we

use in the simulations.

I. INTRODUCTION

Petroleum reservoirs, aquifers and geological forma-
tions are often highly fractured. Flow of gas, oil, ground-
water and magma tend to concentrate in the confined
spaces of these fractures as they have much larger per-
meability than the porous matrix they are embedded in
[1]. The permeable pathways can be of benefit to en-
gineered processes; artificial stimulation of reservoirs by
hydraulic fracturing is increasingly common as a means of
increasing the production rate of low permeability hydro-
carbon reservoirs [2, 3]. In other cases, high permeability
fractures pose a problem as they contribute to increased
groundwater contamination transport, leakage of buried
radioactive wastes [1, 4, 5], and the escape of sequestered
carbon dioxide from geologic storage sites [6, 7].

Flows in fractures and fractured media are difficult
to characterize and predict, and this is especially so for
multiphase flows where interactions at interfaces between
gas, liquid or granular phases contribute to the fluid dy-
namics. Typically, when one fluid displaces another in
a confined space, fluid instabilities and inherent disorder
in the confining geometry result in an emerging pattern-
ing of the flow and a non-trivial mixing of the two flu-
ids. Many of these flow phenomena, with applications
to flow in fracture planes, have been studied in the ide-
alized geometry of a Hele-Shaw cell. Examples includes
viscous fingering in porous media [8-10] arising from the
Saffman-Taylor instability [11, 12], destabilized viscous
fingers in suspensions [13], capillary fingering in a porous
matrix [14-17] and the transition to fracturing [18, 19].
Similar phenomena have also been observed with a sin-
gle fluid displacing deformable porous media media in
Hele-Shaw cells [20-24].

We investigate here a two-phase flow phenomenon in
a Hele-Shaw cell, where granular particles are suspended
in the receding liquid phase. This system is known to
display a rich set of flow morphologies as an immiscible

fluid displaces the liquid granular mixture [25], for ex-
ample labyrinth patterns [26, 27] and bubble structures
[19, 28]. In particular, we study the frictional finger for-
mation, which develops as a layer of granular material
accumulates at the fluid interface.

These finger structures are distinct from viscous fingers
in several ways. First, the fingers are a result of static
frictional forces in a local accumulated region of grains
adjacent to the interface, rather than the global viscous
pressure properties of the fluid phases. The frictional
fingers develop in the quasi static limit, where we can
neglect the viscous forces. Second, unlike viscous fingers
in porous media which is known to display a fractal inter-
face geometry [8, 9, 29, 30], we can for frictional fingers
identify a characteristic length, the finger width. While
crossover behavior from frictional to viscous fingers have
been observed as the driving rate is increased [19], we
will focus here on the quasi static limit where the static
frictional forces dominate.

We present a new numerical scheme to simulate the
frictional finger structures. This scheme builds on
the strategy for simulating the labyrinth structures in
[26, 27], and contains crucial improvements for simulat-
ing fingers when the width of the accumulated layer of
beads is comparable to the radius of curvature of the in-
terface. We also present experimental results together
with a theoretical model for the dynamics, and predic-
tions for how the characteristic finger width varies with
the parameters. The theoretical comparison to experi-
mental results validates our understanding, and fixes a
parameter used in the simulation.

In order to set the stage for the numerical scheme, we
will in Section II first describe the details of the experi-
mental system that we want to simulate. We present our
theoretical model in Section III, and we describe the nu-
merical scheme in detail in Section IV. In section V, we
present a derivation for the characteristic finger width,
and compare this both to the experimental and the nu-



merical results. We finally sum up our findings in Section
VI

II. THE EXPERIMENT
A. Setup

Consider a Hele-Shaw cell, constructed as a rectan-
gular channel, 20 cm wide, 30 cm long and with a gap
of h = 0.5 mm (Fig. 1 a and b), filled with a suspen-
sion composed of a fluid mixture of glycerol and water,
and glass beads (Fig. 1 ¢). The Hele-Shaw cell is fixed
horizontally. The viscous fluid is a water-glycerol solu-
tion, 50% by volume. The viscosity of the liquid en-
sures that the beads are suspended during the filling of
the cell, such that the beads are almost uniformly dis-
tributed in the cell plane. The beads are polydisperse
with a mean diameter of 75 um (Fig. 2 a), and are char-
acterized by low granular friction (Fig. 2 b) due to the
almost spherical shape of the grains (Fig. 2 ¢). The den-
sity of the glass beads and the liquid, are respectively
pg = 2.4 g/cm® and p; = 1.13 g/cm3. The density con-
trast, Ap = p, — p; = 1.27 g/cm?, makes the beads sedi-
ment out of the liquid mixture and form a layer of gran-
ular material on the bottom plate of the Hele-Shaw cell,
with a packing fraction which corresponds to a random
loose packing fraction of spheres. The average thickness
of this layer, relative to the gap of the cell, will be referred
to as the normalized filling fraction ¢. The Hele-Shaw
cell is sealed along the long sides, and one of the short
sides. The other short side is open to air at the ambient
pressure.

The system is driven in one of two different ways, which
leads to the same dynamics in the range of parameters
we consider. Either, air is injected into the cell through
an inlet nozzle located at the sealed short side, or liquid
is sucked out from the same nozzle, and the air is enter-
ing the cell from the open short side. A syringe pump
(Aladdin WPTI) is used in both cases. The driving rate
is varying in the range 0.01-0.03 ml/min. In the case
of air injection, the syringe pump contains an air reser-
voir of 15 ml at atmospheric pressure, at the start of the
experiment.

B. Experimental Results

As the air phase displaces the mixture, the interface
bulldozes up the beads from the sedimented region, such
that the beads accumulate along the air-liquid interface,
and fill the whole cell gap in a region adjacent to the in-
terface. We will refer to the region of accumulated beads
as the front (see Fig. 1 ¢). After a short transient initial
period, the entire interface develops a well defined front.
In the subsequent evolution, only a small section of the
interface moves at any given time. The motion consists
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FIG. 1. (Color online) Experimental setup. a) Hele-Shaw cell
dimensions. b) The system is fixed horizontally, and is filled
with a fluid and sedimented beads, and driven either by air
injection, or withdrawal of the liquid, through a syringe pump
connected at nozzle at the sealed short side channel. ¢) The
advancing gas phase accumulates a front of grains.
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FIG. 2. (Color online) a) Bead size distribution. b) Cone of
granular material poured through a funnel, angle of repose
~ 27°, ¢) Microscopy images of beads (Malvern, Morphology
G3) shows the approximate spherical shape of the beads.

of stick-slip like increments as the air phase fills an ever-
increasing volume of the cell. The motion is always di-
rected towards the liquid phase. A moving section of the
interface tends to continue its motion over many consec-
utive stick-slip events, before it eventually stops and the
motion continues at another section of the interface.
The friction from the accumulating front renders the
advancing interface unstable, and the air phase develops
finger-like structures. The fingers have a characteristic
width which emerges as a result of a balance between in-
terfacial tension and the friction of the front [19, 26, 27].
We refer to the pattern forming process as “frictional
fingering”, to highlight the frictional component which
distinguish the patterning from viscous fingers resulting
from the Saffman-Taylor instability [11]. Fig. 3 shows a
series of images taken at 2 hour time intervals illustrat-
ing the pattern formation. The fingers branch out and



FIG. 3. The pattern formation process is documented over a
10 hour period, with 2 hour intervals between the individual
images. Air is injected through the inlet at the bottom side.
The cell is 20 by 30 cm.

FIG. 4. (Color online) Close up of frictional finger pattern
where the compacted front is visible as a dark band surround-
ing the air fingers. The inset shows the front thickness L, and
the radius of curvature R, which are local parameters along
the interface. The scale bar is 20 mm long.

grow in an isotropic, random fashion. Where two fingers
meet or grow side by side, their fronts combine, and the
motion of the interfaces stagnates. The fingers are pre-
vented from merging by the beads in the front, and the
gas phase thus constitutes a loop-less, simply-connected
cluster, as does the residual granular-fluid phase. In the
case of air injection, the evolution continues until a finger
breaks through the outer boundary. In the case of lig-
uid drainage, the evolution continues until the air phase
reaches the inlet of the syringe pump. The final pattern
of branching fingers is open with pockets of undisturbed
settled granular suspension of varying sizes left behind.
Fig. 4 shows a close up showing the air fingers surrounded
by a dark front of accumulated grains.

As we increase ¢, we observe a gradual decrease in the

FIG. 5. Finger formation for increasing values of the filling
fraction ¢. Liquid is drained from the bottom side. The cell
is 20 by 30 cm.

characteristic finger width, as shown in Fig. 5.

III. THEORETICAL MODEL
A. Stresses at the Interface

It is instructive to make an order of magnitude esti-
mate of the capillary number for the system, Ca = pV/~,
where p is the viscosity, V' is the typical velocity and
is the surface tension. The typical velocity of the fin-
ger growth, when averaged over many stick-slip cycles,
can be estimated from the compression rate, ¢ = 0.1-
0.3 ml/min. Assuming that the width, w, of a moving
section is w =~ 1 ¢cm, we have V = ¢/(hw) ~ 10~* m/s.
For the water-glycerol mixture we have that y ~ 6mPas,
and v = 60 mN/m, which makes Ca ~ 107°. The small
capillary number, tells us that we can neglect the vis-
cous pressure drop in the fluids, the relevant physics is
confined at the interface.

The front can be characterized by a thickness, L, at
any point along the mobile parts of the interface, i.e. the
parts of interface which have not yet stagnated due to
the presence of a neighboring finger. This thickness is
defined as the shortest distance from the air-liquid inter-
face, through the accumulated beads, to a point where
the beads no longer fill the whole cell gap (Fig. 1 c).

The beads are wetting and the interface consists of con-
cave menisci between the layer of beads closest to the air
phase at the length scale of a bead diameter, as sketched
in Fig. 6. The large scale interface along the air side of the
front region appears, however, smooth and we can assign
a signed, in-plane curvature (k) to every point along the
interface, averaged over a number of neighboring beads.
We define the curvature to be positive when the radius
of curvature, R = 1/|x|, can be drawn into the air phase
(Fig. 4). The out-of-plane curvature component of the
smoothed interface (k) is constant along the interface.

We neglect the hydrostatic pressure difference over the
height of the cell gap, and we approximate both the air
pressure, p,, and the liquid pressure, p;, as uniform in
their respective phases. The capillary pressure over the
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FIG. 6. (Color online) Sketch of the menisci around the beads
at the air-liquid interface. The beads are wetting, resulting
in concave menisci in the interspace between the beads.

menisci between the beads is,
Ap = pa —pi- (1)

In the sticking state, the capillary pressure is steadily
growing. In the case of air injection, the air pressure
increases due to the compression. In the case of fluid
withdrawal, the liquid pressure decreases. We assign a
capillary pressure threshold to every point along the in-
terface, above which the nearby front gets mobilized and
advances a small step towards the liquid, i.e. a slip event
occurs.

This threshold depends on two different effects. First,
as the capillary pressure increases, the air-liquid menisci
advances a small distance into the interspace between the
beads, and the pull on the beads in the direction perpen-
dicular to the smooth, large scale interface is increased.
This induces an effective stress, o., on the bead pack-
ing normal to the averaged interface. Once this solid
stress grows above the yield threshold of the bead pack-
ing, 0. > oy, the static packing breaks and the corre-
sponding section of the front slides. This yield threshold
is a local property of the mobile parts of the front, and
we will in the subsequent discussion approximate it by a
linearly increasing function of the front thickness, L.

Second, when the front slips and moves a small step
towards the fluid phase, the interface deforms and the
surface energy changes. We assume that the changes
in the total air-liquid surface, as the menisci advances
into the interspace between the beads during the stick-
ing state, is negligible. The total surface energy of the
air-liquid interface is, under this assumption, insensitive
to the fluctuations in the capillary pressure during the in-
termittent dynamics of the interface. The surface energy
scales with the number of menisci along the interface,
and therefore with the apparent area of the smoothed in-
terface. We assign an effective surface tension, -, to the
smoothed interface, and the effective force which opposes
an increase of surface area can be expressed according to
Young’s law as y(k+ ). Note that the effective surface
tension may deviate from the value of the surface ten-
sion of the liquid mixture. We will, however, not need its
numerical value in the simulations described in the next
Section.

The threshold criterion for a slip of a section of the

interface, is given by,
Ap >y(k+ k1) +oy(L). (2)

The next moving section of the interface is identified by
having local parameters x and L, which minimize the
right hand side of Eq. (2). Note that x, is constant along
the interface, and plays no role in the identification.

During a slip, new beads from the sedimented region
accumulate at the front. The interface deforms, which
alters the curvature k. The interface may increase or de-
crease depending on the curvature, and the combined ef-
fect of deformation of the interface and the accumulation
of new beads will change the local value of L. The menisci
between the beads will retract, and the solid stress re-
laxes. A new static configuration of beads is formed and
the motion stops. The interface evolves in a series of such
stick-slip events.

Note that the capillary pressure over the menisci, Ap,
at mobile regions of the interface remains well below the
capillary pressure threshold for the interface to penetrate
into the bead packing. The interface drags the beads
along.

B. Approximating the Yield Stress

The effective stress, o, is carried from frictional con-
tacts along the Hele-Shaw cell boundaries to the inter-
face, predominantly via force chains in the bead packing.
The exact yield threshold, oy, of a section of the interface
depends on the bead configuration in the front region as-
sociated with the interface section. We approximate the
yield stress as the sum of a discrete set of consecutive
force bearing arc chains, in the direction perpendicular
to the interface, each contributing with an average tan-
gential stress along each boundary plate, o¢/2. The total
force per unit area opposing the motion and transmitted
from the two boundaries is therefore o¢. These chains
have an associated length, £, in the direction through
the front, and the number of them corresponds to L/€.
We have,

oy = o¢L/¢. (3)

The yield stress is thereby approximated as an increasing
function of the front thickness.

Note that the linear L-dependence of the yield stress,
can also be viewed as a linear approximation of a more
complicated oy (L). Previous papers [26, 27, 31, 32], have
modeled oy (L) by use of the Janssen effect [33], i.e. that
the shear stress at the plate boundaries is proportional to
the normal stress in the direction perpendicular to the in-
terface, which results in a yield stress which grows expo-
nentially with L. Ref. [31] also discuss how the curvature
of the interface affects the bead stress. These models do,
however, include extra unknown parameters which are
hard to measure experimentally. We will estimate the
only unknown parameter for the simulations, i.e. v&/o,



by experimental comparison to theoretical predictions in
Section V. We will further show that the linear approx-
imation is in agreement with the experiments for the
ranges of parameters considered here.

By combining Eqgs. (2) and (3), we can write the slip
criterion as,

Ap >k +ocL/¢, (4)

where we ignore the constant contribution of x| .

IV. SIMULATION
A. Numerical Representation

We reproduce the behavior observed in the exper-
iments by numerical simulations. The numerical ap-
proach is to represent the interface by a chain of nodes.
Each node, 7, contains information about its coordinates
(z4,v:), and its nearest neighbors, ¢ = 1. The beads
are represented by a two-dimensional bead concentration
field, f, discretized into grid cells, fy . The front is
identified as all the grid cells of the bead concentration
field with unit value, f,,, = 1. The grid cells in the
region which represents the sedimented layer of beads,
take the value of the initial filling fraction, f, ,», = ¢. All
the grid cells in the interior regions of the chain, i.e. the
region corresponding to the air phase, are ignored. The
discretization is illustrated in Fig. 7.

We need to identify a front thickness, L;, to every mo-
bile node. We do this by identifying a link to a cell in the
bead concentration field with cell value less than one, i.e.
the cells which represent the sedimented region. This link
is defined by the cell which has the minimum distance
from the cell center to the node coordinates. The link
thereby establishes a connection between the node index
i, and the field indices m and n, at the outer boundary of
the front, and the length between the node and the cell
center of the link cell, defines L;. Note that the direction
towards the link cell which defines the front thickness
may deviate from the direction perpendicular to the in-
terface.

We also need to define a reasonable criterion for decid-
ing when a node is stagnant. We do this by identifying
a set of candidate cells to every node. These candidate
cells are limited by a circle sector centered around the
node position, spanned symmetrically by an angle of S,
around the direction perpendicular to the interface (see
the green region in Fig. 7 b). The radius of the circle sec-
tor, Limax, serves as a cutoff length, and needs to be set
to a value much greater than the expected front thickness
of a moving segment, but less than the finger width. We
will in the following use the experimentally observed fin-
ger half width, Lyax = A (see Fig. 11), and g = 90°. If
a link cannot be established within these candidate cells,
i.e. all the candidate cells take unit values or are in the
interior of the chain, the node is considered stagnant.

air suspension

interface

front length: [

FIG. 7. (Color online) Discretization procedure. (a) The
Hele-Shaw cell seen from above. The air phase on the left
hand side. Adjacent to the air interface is the front, which
is an accumulated region of beads. We can assign a front
thickness, L, every mobile point along the interface. (b) The
interface is discretized as a chain of nodes. The beads are
discretized into a two-dimensional concentration field, which
takes the value 1 in the front, and the initial filling fraction
¢ in the regions of not yet accumulated/sedimented beads.
The size of the grid cells, and the node spacing is exaggerated
for the purpose of the illustration. L; is the shortest distance
from node ¢ through the accumulated regions, to a point in
the bead field below 1. The grid cell candidates are limited to
the shaded circle section of 90°, centered around the direction
perpendicular to the interface.



It is convenient to define a ideal node separation length
0, and we can use this length scale as a basis unit
for the other length scales in the simulation. We will
set this length to § = 0.4 mm (i.e. a chain corre-
sponding to an interface which spans the width of the
Hele-Shaw cell is composed of approximately 500 nodes).
Note that this length scale is slightly smaller than the
Hele-Shaw cell gap, which is 0.5 mm. The grid cell
spacing of the bead concentration field, dgiq, is set to
Jeria = 2/3 x § = 0.2 mm. Note that these lengths (¢
and 0giq) are both larger than the size of an individual
grain (Fig. 2). The grid spacing of the bead concentra-
tion field will naturally limit the resolution of the front
thickness. To mask the direction of the underlying grid
structure, we need to modify the front thickness by an
additional random number uniformly distributed in the
interval (—0grid, Ogria), which corresponding to the res-
olution of the grid. The front thickness is, however, ill-
defined on this length scale; the random modification will
not alter the large scale behavior.

The curvature, k;, is estimated by calculating deriva-
tives of a spline approximation of the interface. We use
a two dimensional B-spline [34], which is parameterized
by the piece wise linear approximation to the arc-length
parameter. The first derivative of the spline at the po-
sition of the central node, gives the unit tangent vec-
tor. The second derivative gives the curvature vector
which points in the direction perpendicular to the inter-
face. The FITPACK library [34], is used to efficiently
calculate the spline, and its derivatives.

The curvature and the front thickness of the theoret-
ical model relevant for the simulation, are local to the
interface, and we can assign a threshold value, Ap%., to
every node. By discretizing Eq. (4), we have that this
threshold value is given by,

Aph = s + L2 ~ i+ L, (5)
£  o¢

where ~ indicates proportionality, i.e. equal up to a
multiplicative constant. The node corresponding to the
minimal value of the right hand side will be insensi-
tive to such a constant. We use the numerical value of
&y/oe = 0.0361 cm?. This value comes from the esti-
mated by experimental observations of the characteris-
tic length A, which we will discuss in the next Section
(Fig. 11).

Before we go on describing the dynamics in the next
subsection, we will spend a couple of paragraphs justify-
ing the discretization scheme we have described. Using a
chain of nodes, i.e. Lagrangian tracer particles to repre-
sent a moving interface, rather than e.g. countors of an
indicator field, has certain problematic aspects [35]. The
accuracy, and the stability of this chain representation
are dependent on the node spacing, which will vary as
some nodes moves together, while others separate. Re-
distribution and interpolation of nodes is therefore nec-
essary to faithfully represent the interface, and we will
describe this in detail in the following subsection. We

also have to make sure that the topology of the interface
remains simple, in the sense that a node is not allowed to
move in-between others and thereby move into the inte-
rior of the interface. These are issues which are absent if
the interface is represented as a contour. For our specific
problem, however, the chain representation has a num-
ber of advantages, which outweighs the above-mentioned
problems.

Only a small section of the total interface will move
at any given time. Computation is therefore limited to
a subset of easily identifiable active nodes. The chain
representation permits us also to sort nodes by a lower
bound for the threshold, which enables an efficient iden-
tification of the next moving node. The stress threshold
of an inactive node, j, may change. This can happen
if the displacement of active nodes adds mass to the re-
gion near the inactive node, such that L; increases, or by
the displacement of neighbouring nodes which alters the
curvature ~;. The stress threshold of an inactive node,
separated from the active nodes by at least the number
of neighbors used to estimate the curvature, can, how-
ever, never decrease. We can, therefore, store a lower
threshold bound for these nodes.

The chain representation of the nodes is also conve-
nient for calculating the area enclosed by the chain, as
we can easily triangulate the enclosed domain.

B. Dynamics

We model the motion of the interface, by iteratively
moving a small segment of the chain. Moving multiple
nodes, rather than a single one, is necessary to keep the
interface, and its curvature, smooth. A time-step con-
stitutes the motion of a set of neighboring nodes, in the
direction towards the suspension. As the air flux is con-
stant, we can infer the true time from the displaced area.

In the following, we need to make some arbitrary
choices regarding the number of moving nodes, etc. The
numerical results seems to be insensitive to the specific
rules, as long as the size of the displacement of the nodes
at every time-step is sufficiently small, and that the cur-
vature at the boundary nodes and its neighbours (see
Fig. 8) varies sufficiently smooth.

The moving segment is limited to three neighbors on
each side (7 nodes in total), and all of them need to
be mobile. The center node, ¢, of the moving segment
is, at every time-step, identified by the minimum of the
pressure threshold, Eq. (5),

i = argmin; Ap. (6)

The new positions of the interface is approximated by cal-
culating a spline function, as shown in Fig. 8. This spline
is calculated on the basis of the two non-moving next
neighboring nodes on each side of the 7 moving nodes,
and the point lying a distance dpove = 0.16 from the
previous coordinates of the central node, in the perpen-
dicular direction outwards from the chain. To calculate
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FIG. 8. (Color online) Schematic of the moving segment. 7
nodes are moving. Old configuration is marked by circles on a
stapled line, new configureation is marked by pentagons on a
solid line. The spline which determines the updated positions
are based on the two neighboring nodes on each side of the
interval (hexagons), and the center node moved a distance
Omove in the direction normal to the chain. The positions
of the new nodes, are distributed along the spline function.
Dimensions in the figure are exaggerated.

the spline, we also need the arc-length parameter for the
interface after the movement. To estimate this, we use
the arc-length of segment before it moves, and modify
it with a factor, s, corresponding to the stretch, or con-
traction, in accordance with the mean curvature along
the moving segment. If a circle, with radius R expands,
such that R — R + dmove, the circumference, C, is mod-
ified by a factor, C — C(1 4 dmove/R). By analogy, we
approximate the expansion by,

s =1+ R4, (7)

where K is the average curvature of the all the mov-
ing nodes. The positions of the new nodes are set by
equidistantly distributing the moving node coordinates
along this new spline. Note that the width of the moving
section is fixed: 7 nodes moves at each time step. This
width is smaller than the typical width of a slipping sec-
tion event in the experiments, which can correspond to
the finger width. When we iterate many time-steps, we
recover behavior of the experiments.

At every time-step, we also need to accumulate beads
in the concentration field, to ensure mass conservation.
We can easily triangulate the displaced area, by consid-
ering the coordinates of the moving nodes, before and
after the displacement. By calculating the area of the
triangulation, we can associate an amount of displaced
beads to every moving node. The beads corresponding
to this area, will be added to its link grid cell. If the to-
tal of the new beads, and the existing bead mass at the
closest grid cell exceeds 1, the grid cell value is set to 1
and the residual mass is added to the next link grid cell.
This is repeated until either all the mass is displaced, or
no link is found among the node’s candidate grid cells, in
which case the node is considered stagnant for the rest of
the simulation. When two front segments merge together
their nodes will naturally turn stagnant. It is therefore
not necessary to control for overlapping segments.

Before we start a new time-step, we use the spline to

interpolate the chain. We calculate the total arc-length,
S, of the moving segment in between the first non-moving
boundary nodes on both sides of the moving interval. We
get the ideal number of nodes, Nyoqes, to fill in between
the boundary nodes, by Npodes = round(S/6) — 1. If this
number differs from 7 (the original number of moving
nodes), we equidistantly redistribute Nyodes nodes along
the spline, between the boundary nodes.

We can sum up the algorithm, by the following proce-
dure. At each time-step we:

1. Identify the next moving node by Eq. (6), and its
neighbors.

2. Estimate the spline function for the new configura-
tion.

3. Iteratively move each node, accumulate to the bead
concentration field according to the displaced area
for every moved node.

4. Add or subtract and redistribute nodes if necessary.

To induce some random behavior which results in the
fingering pattern, we add a random perturbation to the
bead concentration field. This random perturbation is
limited by +5%, and is correlated over ~ 50 grid point,
corresponding to the width of ~ 1 cm. We generate this
distribution by a bicubic interpolation of a field of un-
correlated variables, with 50 interpolated points between
each uncorrelated value. This noise is needed to trigger
the branching of the fingers.

A series of frames for the evolution of the finger struc-
tures generated by this numerical scheme is shown in
Fig. 9.

This numerical scheme differs from the one used in
[27], to simulate labyrinth patterns in a similar system,
in two important ways. First, a set of neighboring nodes,
rather than a single one, is moved at every time-step.
This is done to assure that the curvature remains rea-
sonably smooth, and allows us to use several neighboring
nodes (more than 3) to approximate the derivatives of
the path of the interface, which in turn is used to define
the curvature and the perpendicular direction.

Second, the granular field is numerically represented
as a two-dimensional field, rather than a local quantity
which moves with the nodes of the interface. In the
scheme presented in [27], each node contains a thick-
ness vector in the direction perpendicular to the inter-
face, which length equals the front thickness. Each pair
of neighboring nodes span out a trapezoid, such that the
corners correspond to the nodes’ positions, and the posi-
tions of the thickness vectors. The front is thereby effec-
tively represented as a chain of trapezoids (see Fig. 7 in
[27]). This scheme works fine as long as the node separa-
tion, i.e. the resolution, needed to simulate the structures
is approximately equal to the front thickness. If the node
separation is small compared to the length of the thick-
ness vectors, small deformations of the chain could lead to
large displacements of the thickness vectors, which again
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FIG. 9. Examples of the evolution of the numerical scheme with a central, circular injection point. The size of the geometry
is 10 x 10 cm. Each row represents a time series of the evolution. Top row is ¢ = 0.1, middle row ¢ = 0.3 and bottom row
¢ = 0.5. There is an additional noise field in the initial bead configuration, limited to ¢ — ¢ + 0.05.

leads to large errors in the mass conservation of the front.
Moreover, neighboring thickness vectors could cross, and
the front representation would be completely unphysical.
A small node separation compared to the front thickness
is indeed needed in order to faithfully discretize the sys-
tem at ¢ > 0.35, i.e. beyond the results for labyrinth
structures presented in Ref. [27]. This is needed for the
application of simulation aligned fingers in a tilted Hele-
Shaw cell [36].

V. THE CHARACTERISTIC LENGTH

Consider a steadily growing finger as shown in Fig. 10.
The curvature at the sides of the finger is 0, and 1/R
at the finger tip. Let L; and Lg be the front thickness
at the tip and at the side of the finger respectively. In
the quasi static approximation, we have that the pressure
threshold over front at the side of the fingers equals that
of the finger tip. By Eq. (4), we have,

05 Y 0’5
—Ly=—+4+ —=14.
T + 3 t (8)

The frictional fingers can be characterized by a width,
and we will let A denote half this finger width as shown
in Fig. 10. As the cell gap, h, is constant, we have that
the air volume in the Hele-Shaw scell, scales with the ap-
parent area of the air phase as seen from above, A,;., and
that the surface area of the interface scales with the ap-
parent circumference, C, of the air-liquid interface. The
ratio between the enclosed area and the circumference of
the air phase, A = A,;,/C, will on average correspond to
half of the finger width and serves as a natural definition
of a characteristic length.

Consider now a single finger which moves into the sus-
pension. An increment of the displacing air volume,
hé Aair, where 0 A, is the increased area of the air phase,

will be accompanied by an increased volume of the front
héAtront, due to the accumulation of new beads. Mass
conservation gives that,

6Afront = L5Aair~ (9)

1-¢

The curvature (k) varies smoothly along the interface,
and will take its maximum value at the fingertip. We
can approximate a small section around the fingertip by
a circular shape, with a radius, R, equal to the recip-
rocal of the maximum curvature. We assume that the
finger moves in a steady state, such that the fingertip
retains its shape during the evolution. The area element
of the front of the fingertip, can be approximated by a
section of an annulus (Fig. 10). The area of this section
is Apont = 0((R + L;)? — R?) where 6 is a small angle
which bounds the section on both sides of the fingertip.
A small variation of this element, with respect to 8 and
L;, is given by,

8 Afront = 20(R + L;)0L; + (2RL; + L?)56. (10)

When the tip of the finger moves forward by an infinitesi-
mal distance, dx, the air volume associated with the front
element increases by §A,i; = 20Réx + O(6x?). Note that
the interface at 6, moves a distance dx cos @ in the direc-
tion normal to the interface (along the longest cathetus of
the white triangle in Fig. 10), to retain the circular shape.
This perpendicular displacement stretches the original
section of the interface. The projection of the displace-
ment onto the circular interface gives R0f = drsinf ~
dzf (along the shortest cathetus of the white triangle
in Fig. 10), where the last approximation is valid when
0 < 1. When we combine this with Eq. (9) and Eq. (10),

we get,
L\ oLy ¢ Ly Ly
<1+R> v 1-¢ rR\!T2g) W
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FIG. 10. (Color online) Schematic snapshot of a steadily
growing finger. A is half the finger width, L, is the front
thickness at the sides of the finger, and L; is the front thick-
ness of the fingertip. The annulus section at the finger tip
identifies a small region of the front at the fingertip, bounded
by an angle #. The maximum curvature of the fingertip is
k=1/R.

In a steady state, we have dL;/éx = 0, which leads to
the following condition at the fingertip,

Ly 1+¢
7=\ Tt (12)
Note that this expression provides a correction to
Eq. (22) in Ref. [27]. We can rewrite the right hand
side of the above equation as (1 + 2¢/(1 — ¢))*/? — 1.
In the limit where ¢/(1 — ¢) is small, we get that
Li/R ~ ¢/(1 — ¢) to first order, which agrees with the

expression in Ref. [27].

We assume that a steadily growing finger will grow in
a way which minimizes the threshold pressure. When
we use Eq. (12), to eliminate x = 1/R in the pressure
threshold for the fingertip (Eq. (4) evaluated at equality),
1+e_ 1) + %L, (13)

we get
Y
Ap =
! Lt< 19 3

Minimizing the right hand side with respect to L; gives,

N N O e
L = Ug( =4 1) (14)

Mass conservation dictates that Ls/A = ¢/(1 — ).
Using this with Eqgs. (8), (12) and (14), gives

7§
(75 X (15)

A=2

where we have introduced,
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FIG. 11. (Color online) The characteristic length A is the

ratio between the area of the finger structures and the fin-
ger structure circumference. FError bars correspond to one
standard deviation, data points without error bars corre-
spond to single observations. The stapled line corresponds
to the best fit of the theoretical prediction in Eq. (15). The
slope of 0.38 cm corresponds to the numerical value prefactor
24/ &/o¢, which is used to infer the numerical value of /0.

to simplify the notation.

This relationship is clearly seen when we plot the ex-
perimentally observed A versus x (Fig. 11). We use
the linear coefficient to estimate v¢/o¢ = (0.38/2)? =
0.0361 cm?, in the simulation, which again gives con-
sistent results for A calculated for the resulting pat-
terns of the simulations (Fig. 11), although the results
of the simulations overpredicts A slightly for low values
of x, i.e. high values of ¢. Note that if we expand x in
¢/(1—¢), we have that x ~ /(1 — ¢)/¢ to leading order.

A similar prediction for A can be made when a yield
stress of the bead packing (oy (L)) grows exponentially
with L [27]. The good agreement between experiments,
simulations and theory (Fig. 11), validates the linear ap-
proximation (Eq. (3)) for the ranges of parameters we
consider here.

VI. CONCLUSION

In conclusion, we have presented a new numerical
scheme for simulating frictional fingers. The scheme dis-
cretizes the interface as a chain of nodes, which is coupled
to a two-dimensional mass field, needed to calculate the
accumulated layer of beads along the interface. This nu-
merical representation improves an earlier scheme [27],
and enables us to simulate structures where the front
thickness is large compared to the length scale at the
details of the interface.

The dynamics is generated by a simplified threshold
model, based on the effective surface tension of the inter-
face and the bead stress in the front (Eq. (4)). The only



free parameters in the model is inferred from the compar-
ison of the experimentally observed finger width, to the
theoretically predicted value (Fig. 11). We successfully
reproduce experimentally observed patterns (Figs. 9, 11).

The branching behavior of the finger growth is trig-
gered by noise in the system. In the experimental setup
there are multiple sources of noise, e.g. fluctuations in
the force chains through the front which results in the
static friction, variations in the static friction properties
between the beads and the bounding glass plates, and
variations in the height between the glass plates. The
dominating source of noise in the simulation is the im-
posed fluctuations in the bead field. In addition, noise in
the simulation arises from the discretization of the chain
and the noise imposed on L;, which is needed to mask
the underlying grid. While the noise in the simulation
is sufficient to generate patterns which share the same
qualitative structures as the experimental result (com-
pare Figs. 3, 5 and 9), exactly how the correlation in the
different sources of noises affect the branching behavior
remains an open question. This question lies outside the
scope of this article, but we note that this might be stud-
ied by considering how the branching geometry is affected
by the imposed correlation structure in the initial bead
field.

Another line of future research is to use the discretiza-
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tion procedure to simulate bubble structures seen in the
same experimental setup [19, 28]. As discussed in Sub-
section IV B, the discretization scheme does not rely on
a small front thickness relative to the radius of curva-
ture, as previous approaches did [27]. The numerical
representation described here can in principle represent
the highly curved front segments along the interface of a
bubble. Such a simulation would, however, need a more
sophisticated dynamical rule than Eq. 4 to account for
the bubble expansion.
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