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Abstract

An explicit sufficient condition on the hypercontractivity is derived for the Markov
semigroup associated with a class of functional stochastic differential equations. Con-
sequently, the semigroup Pt converges exponentially to its unique invariant probability
measure µ in both L2(µ) and the totally variational norm ‖ · ‖var, and it is compact
in L2(µ) for sufficiently large t > 0. This provides a natural class of non-symmetric
Markov semigroups which are compact for large time but non-compact for small time.
A semi-linear model which may not satisfy this sufficient condition is also investigated.
As the associated Dirichlet form does not satisfy the log-Sobolev inequality, the stan-
dard argument using functional inequalities does not work.

AMS subject Classification: 65G17, 65G60
Keywords: Hypercontractivity, compactness, exponential ergodicity, functional stochas-
tic differential equation, Harnack inequality.

1 Introduction

The hypercontractivity, first found by Nelson [17] for the Ornstein-Ulenbeck semigroup, has
been investigated intensively for various models of Markov semigroups, see, for instance, [3, 7,
11, 21, 23, 24] and references within. However, so far there is no any result on this property
for the semigroup associated with functional stochastic differential equations (FSDEs, or
SDEs with memory).

∗Supported in part by Lab. Math. Com. Sys. and NNSFs of China (Nos. 11131003, 11401592).
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It is well known by Gross (see [11]) that the log-Sobolev inequality implies the hyper-
contractivity. However, for SDEs with delay the log-Sobolev inequality for the associated
Dirichlet form does not hold. Indeed, according to [21, Theorem 3.3.6], the super Poincaré
inequality (and hence the log-Sobolev inequality) implies the uniform integrability of the
associated Markov semigroup Pt for all t > 0, which is not the case for the Markov semi-
group associated with SDEs with delay, since in this case Pt is not uniformly integrable for
t smaller than the length of time delay, see Remark 1.1(2) for more details.

On the other hand, the dimension-free Harnack inequality introduced in [20] and further
developed in numerous papers is a powerful tool in the study of the hypercontractivity,
which works well even for non-linear SPDEs (see, e.g., [16, 22]). Recently, this type Harnack
inequalities have been investigated in [25] for FSDEs. To derive the hypercontractivity and
exponential ergodicity from the dimension-free Harnack inequality, the key point is to prove
the Gauss-type concentration property of the unique invariant probability measure with
respect to the uniform norm on the state space, which is, however, not easy for FSDEs. We
will see that our proof of the exponential integrability is tricky (see the proof of Lemma 2.1).

Let r0 > 0 be fixed, and let C = C([−r0, 0]; Rd) be equipped with the uniform norm
‖ · ‖∞. Let Bb(C ) be the set of all bounded measurable functions from C to R. Let
{B(t)}t≥0 be a d-dimensional Brownian motion defined on a complete filtered probability
space (Ω,F , {Ft}t≥0,P). Let σ be an invertible d×d-matrix, a ∈ C(Rd; Rd) and b : C → Rd

be Lipschitz continuous. Consider the following FSDE on (Rd, 〈·, ·〉, | · |):

(1.1) dX(t) =
{
a(X(t)) + b(Xt)

}
dt+ σdB(t), t > 0, X0 = ξ ∈ C .

Herein, for each t ≥ 0, Xt ∈ C is fixed by Xt(θ) := X(t + θ), θ ∈ [−r0, 0], and is called the
segment process of X(t).

Assume that

(1.2) 2〈a(ξ(0))−a(η(0))+b(ξ)−b(η), ξ(0)−η(0)〉 ≤ λ2‖ξ−η‖2∞−λ1|ξ(0)−η(0)|2, ξ, η ∈ C

holds for some constants λ1, λ2 ≥ 0. Then, the equation (1.1) has a unique non-explosive
strong solution denoted by {Xξ(t)}t≥−r0 with the initial segment X0 = ξ (see, e.g., [19,
Theorem 2.3]). The segment process is denoted by {Xξ

t }t≥0. Let Pt be the Markov semigroup
corresponding to the segment (functional) solution {Xξ

t }t≥0, i.e.

Ptf(ξ) = Ef(Xξ
t ), t ≥ 0, f ∈ Bb(C ), ξ ∈ C .

To study the hypercontractivity, it is essential to know the existence and uniqueness of
invariant probability measures of {Xξ

t }t≥0. For existence of invariant probability measures for
FSDEs, we refer to Es-Sarhir et al. [8] and Kinnally–Williams [14] by adopting the Arzelá–
Ascoli tightness characterization, and Reiβ et al. [18] by considering the semi-martingale
characteristics; With regards to uniqueness of invariant probability measures for FSDEs, we
refer to Hairer et al. [13] by using asymptotic coupling approach.

The following is the first main result of the paper.
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Theorem 1.1. If λ := sups∈[0,λ1]

(
s−λ2e

r0s
)
> 0, then Pt has a unique invariant probability

measure µ, and the following assertions hold.

(1) Pt is hypercontractive, i.e., ‖Pt‖2→4 ≤ 1 holds for large enough t > 0, where ‖ · ‖2→4 is
the operator norm from L2(µ) to L4(µ).

(2) Pt is compact on L2(µ) for large enough t > 0.

(3) There exists a constant C > 0 such that

‖Pt − µ‖22 := sup
µ(f2)≤1

µ
(
(Ptf − µ(f))2

)
≤ Ce−λt, t ≥ 0,

where µ(f) :=
∫

C
f(ξ)µ(dξ), f ∈ Bb(C ).

(4) There exist two constants t0, C > 0 such that

‖P ξ
t − P η

t ‖2var ≤ C‖ξ − η‖2∞e−λt, t ≥ t0,

where ‖ · ‖var is the total variational norm and P ξ
t stands for the distribution of Xξ

t

for (t, ξ) ∈ [0,∞)× C .

Remark 1.1 (1) We remark that an invariant probability measure µ of Pt must be shift-
invariant provided; that is, letting φθ(ξ) = ξ(θ), θ ∈ [−r0, 0], we have

µθ := µ ◦ φ−1
θ = µ0, θ ∈ [−r0, 0].

In fact, if µ is the law of X0 = ξ which is independent of (B(t))t≥0, by [1, Lemma 1.1.9, p.14],
the independence of ξ ∈ C and {B(t)}t≥0 and the double law of conditional expectation,
one has

π(f) =

∫

C

Ef(Xη
t )π(dη) = E(E(f(Xξ

t ))|F0) = E(f(Xξ
t )), t ≥ 0, f ∈ Bb(C ).

Then, X−θ has the law µ for any θ ∈ [−r0, 0], so that X0(θ) has the same distribution as
X−θ(θ) = X0(0); that is, µθ = µ0. Moreover, since the equation is non-degenerate, for any
t > 0, the law of X(t) has a strictly positive density with respect to the Lebesgue measure
(see, e.g., [15]). So, µθ(dx) = ρ(x)dx holds for some measurable function ρ > 0 on Rd and
all θ ∈ [−r0, 0].

(2) It is well known that when Pt is symmetric in L2(µ), the L2-compactness of Pt for
some t > 0 implies the same property for all t > 0 (see, e.g., [21, Theorem 0.3.9, p.13]).
This assertion is wrong in the non-symmetric setting. In the present framework, Pt is not
uniformly integrable (hence, non-compact) on L2(µ) for t ∈ [0, r0], since, according to (1),
µ−r0 = µt−r0 has full support on Rd, and

Ptf(ξ) = Ef(Xξ
t ) = g(ξ(t− r0)), ξ ∈ C , t ∈ (0, r0]

3
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holds for f(ξ) := g(ξ(−r0)), g ∈ Bb(Rd). Therefore, Theorem 1.1 provides a class of Markov
semigroups which are compact for large t but not uniformly integrable (hence, non-compact)
for small t ∈ (0, r0]. Moreover, when r0 = 0, assertions in Theorem 1.1 reduce to the
corresponding well known ones for SDEs without memory.

In applications, the following consequence of Theorem 1.1 is more convenient to use.

Corollary 1.2. Let k1, k2 > 0 be two constants such that

(1.3) 〈a(x)− a(y), x− y〉 ≤ −k1|x− y|2, x, y ∈ Rd,

(1.4) |b(ξ)− b(η)| ≤ k2‖ξ − η‖∞, ξ, η ∈ C .

If

(1.5) k2
2 ≤

2(
√
k2

1r
2
0 + 1− 1)

r2
0

exp
[√

k2
1r

2
0 + 1− 1− k1r0

]
,

then all assertions in Theorem 1.1 hold for

λ :=
r0

k1r0 − 1 +
√
k2

1r
2
0 + 1

(
2(
√
k2

1r
2
0 + 1− 1)

r2
0

− k2
2 exp

[
1 + k1r0 −

√
k2

1r
2
0 + 1

])
> 0.

Next, we consider a semi-linear model which may not satisfy conditions in Theorem 1.1
and Corollary 1.2. Let Rd⊗Rd be the set of all real d×d-matrices, and let ν be an Rd⊗Rd-
valued finite signed measure on [−r0, 0]; that is, ν = (νij)1≤i,j≤d, where every νij is a finite
signed measure on [−r0, 0]. Consider the following semi-linear FSDE

(1.6) dX(t) =
{∫ 0

−r0
ν(dθ)X(t+ θ) + b(Xt)

}
dt+ σdB(t), t > 0, X0 = ξ,

where σ,B(t) are as in (1.1), and b satisfies (1.4). Let

λ0 = sup

{
Re(λ) : λ ∈ C, det

(
λId×d −

∫ 0

−r0
eλsν(ds)

)
= 0

}
,

where Id×d ∈ Rd ⊗ Rd is the unitary matrix.
In particular, when ν = Aδ0, where A ∈ Rd ⊗Rd and δ0 is the Dirac measure at point 0,

equation (1.6) reduces to the usual semi-linear FSDE:

dX(t) =
{
AX(t) + b(Xt)

}
dt+ σdB(t), t > 0, X0 = ξ,

and λ0 is the largest real part of eigenvalues of A.

4
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Let Γ(0) = Id×d,Γ(θ) = 0d×d for θ ∈ [−r0, 0), and {Γ(t)}t≥0 solve the following equation
on Rd ⊗ Rd:

(1.7) dΓ(t) =

(∫ 0

−r0
ν(dθ)Γ(t+ θ)

)
dt.

According to [18, Theorem 3.1], the unique strong solution {Xξ(t)}t≥0 of (1.6) can be rep-
resented by

Xξ(t) = Γ(t)ξ(0) +

∫ 0

−r0
ν(dθ)

∫ θ

−r0
Γ(t+ θ − s)ξ(s)ds

+

∫ t

0

Γ(t− s)b(Xξ
s )ds+

∫ t

0

Γ(t− s)σdB(s).

(1.8)

In what follows, we assume λ0 < 0. By [12, Theorem 3.2, p.271], for any k ∈ (0,−λ0), there
exists a constant ck > 0 such that

(1.9) ‖Γ(t)‖ ≤ cke
−kt, t ≥ −r0,

where ‖ · ‖ denotes the operator norm of the matrix ·. We remark that the optimal constant
ck is increasing in k ∈ (0,−λ0). If, in particular, ν = Aδ0 for a symmetric d × d-matrix A,
(1.9) holds for ck = 1 and k ∈ (0,−λ0]. In general, see Proposition 4.1 in the Appendix of
the paper for an explicit estimate on ck.

The second main result in this paper is stated as follows.

Theorem 1.3. Let Pt be the Markov semigroup associated with the equation (1.6) such that
ν satisfies λ0 < 0 and b satisfies (1.4). If λ := supk∈(0,−λ0)(k − ckk2e

kr0) > 0, where ck is in
(1.9), then all assertions in Theorem 1.1 hold.

The following corollary follows immediately from Theorem 1.3 since k2 = 0 for b ≡ 0,
and ck = 1 for ν = Aδ0 with some symmetric matrix A.

Corollary 1.4. In the situation of Theorem 1.3.

(1) If b ≡ 0, then all assertions in Theorem 1.1 hold for all λ ∈ (0,−λ0).

(2) Let ν = Aδ0 for some symmetric d × d-matrix A with largest eigenvalue λ0 < 0. If
λ := supk∈(0,−λ0](k − k2e

kr0) > 0, then all assertions in Theorem 1.1 hold.

To conclude this section, let us compare Theorems 1.1 and 1.3. The framework of Theo-
rem 1.1 is more general by the generality of a(·). On the other hand, the following example
shows that Theorem 1.3 is not covered by Corollary 1.2, a comparable consequence of The-
orem 1.1. Let r0 = 1, ν(·) = −Id×de−1δ−1(·), and b ≡ 0. Then,

λ0 = sup
{

Re(λ) : λ ∈ C, λ+ e−λ−1 = 0
}

= −1 < 0,

so that Corollary 1.4 applies for all λ ∈ (0,−1); but Corollary 1.2 does not apply due to
a ≡ 0.

The next section is devoted to the proofs of Theorem 1.1 and Corollary 1.2, while Theorem
1.3 is proved in Section 3. Finally, in Appendix we present an estimate on ck in (1.9).

5
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2 Proofs of Theorem 1.1 and Corollary 1.2

Since (1.2) still holds if we replace λ1 by a smaller positive number, and λ = sups∈[0,λ1]

(
s−

λ2e
r0s
)
> 0, there exists λ1 ∈ (0, λ1] such that λ = λ1 − λ2e

r0λ1 > 0. Hence, by using λ1 to
replace λ1, without loss of generality we assume that λ = λ1 − λ2e

r0λ1 > 0.

Lemma 2.1. If λ > 0, then there exist two constants c, ε > 0 such that

sup
t≥0

E eε‖X
ξ
t ‖2∞ ≤ ec(1+‖ξ‖2∞), ξ ∈ C .

Proof. Since in our proof we need to assume in advance that E eε‖X
ξ
t ‖2∞ <∞ for some ε > 0

and each t ≥ 0, we adopt an approximation argument. For each integer n > ‖ξ‖∞, let

τn = inf{t ≥ 0 : ‖Xξ
t ‖∞ ≥ n}.

Then τn ↑ ∞ as n ↑ ∞. Consider the following FSDE

(2.1) dX(n)(t) = {a(X(n)(t)) + b(X
(n)
t )}1[0,τn](t)dt−λ1X

(n)(t)1(τn,∞)(t)dt+ σdB(t), t > 0

with the initial datum X
(n)
0 = ξ. Then (2.1) has a unique strong solution {X(n)(t)}t≥−r0

(see, e.g., [19, Theorem 2.3]) such that X
(n)
t = Xξ

t for t ≤ τn. Therefore, for any t > 0,

(2.2) lim
n→∞

‖X(n)
t −Xξ

t ‖∞ = 0, a.s.

Noting that there exists a constant C(n) > 0 such that

〈
{a(X(n)(t)) + b(X

(n)
t )}1[0,τn](t)− λ1X

(n)(t)1(τn,∞)(t), X
(n)(t)

〉
≤ C(n)− λ1|X(n)(t)|2,

and utilizing Itô’s formula, we infer that

(2.3) d|X(n)(t)|2 ≤ 2{C(n)− λ1|X(n)(t)|2}dt+ 2〈X(n)(t), σdB(t)〉.

For each integer m > ‖ξ‖∞, define

τ̃m = inf{t ≥ 0 : |X(n)(t)| ≥ m}.

Then τ̃m ↑ ∞ as m ↑ ∞. In view of (2.3), for any α > 0, we arrive at

E exp
(
α

∫ t∧τ̃m

0

|X(n)(s)|2ds
)
≤ E exp

(α(|ξ(0)|2 + C(n)t)

λ1

+
α

λ1

∫ t∧τ̃m

0

〈X(n)(s), σdB(s)〉
)

≤ exp
(α(|ξ(0)|2 + C(n)t)

λ1

)(
E exp

(2α2‖σ‖2
λ2

1

∫ t∧τ̃m

0

|X(n)(s)|2ds
))1/2

,

where in the last step we have used the fact that

(2.4) EeN(s) ≤ (Ee2〈N〉(s))1/2

6
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for a P-martingale N(s). Choosing α =
λ2
1

2‖σ‖2 , taking m→∞, and applying Fatou’s lemma
gives

(2.5) E exp
(
α

∫ t

0

|X(n)(s)|2ds
)
≤ exp

(2α(|ξ(0)|2 + C(n)t)

λ1

)
.

Also, by the Itô formula, for any β ≤
√
α/2

2‖σ‖ we deduce from (2.3)-(2.5) that

Eeβ|X
(n)(t)|2 ≤ E exp

(
β(|ξ(0)|2 + 2C(n)t) + 2β

∫ t

0

〈X(n)(s), σdB(s)〉
)

≤ exp(β(|ξ(0)|2 + 2C(n)t))
(
E exp

(
8β2‖σ‖2

∫ t

0

|X(n)(s)|2ds
))1/2

≤ exp(2(β + α/λ1)(|ξ(0)|2 + C(n)t)).

(2.6)

Next, by virtue of (2.4)-(2.6), and Hölder’s inequality, for ε0 <
1
2

(
β ∧
√
α/2

‖σ‖

)
we derive that

E
(

sup
t−r0≤s≤t

eε0|X
(n)(s)|2

)

= E
(

sup
(t−r0)+≤s≤t

exp(ε0(|X(n)((t− r0)+)|2 + ‖ξ‖2∞ + 2C(n)r0)) + 2ε

∫ s

(t−r0)+
〈X(n)(u), σdB(u)〉

)

≤ eE
(

exp(ε0(|X(n)((t− r0)+)|2 + ‖ξ‖2∞ + 2C(n)r0)) + 2ε0

∫ t

(t−r0)+
〈X(n)(s), σdB(s)〉

)

≤ e(E(exp(2ε0(|X(n)((t− r0)+)|2 + ‖ξ‖2∞ + 2C(n)r0)))
1/2

×
(
E
(

exp(8ε2
0‖σ‖2

∫ t

(t−r0)+
|X(n)(s)|2ds

))1/2

<∞,

where (t− r0)+ := (t− r0) ∨ 0, and, in the first inequality, we have applied the fact that

E
(

sup
r∈[0,t]

eM(r)
)
≤ eEeM(t)

for a P-submartingale M(r). Consequently,

(2.7) Eeε0‖X
(n)
t ‖2∞ <∞, n ≥ 1, t ≥ 0

holds for some constant ε0 > 0.
Next, let ξ0(θ) ≡ 0, θ ∈ [−r0, 0]. By (1.2), we have

2〈a(ξ(0)) + b(ξ), ξ(0)〉 ≤ 2〈a(ξ(0)) + b(ξ)− a(0)− b(ξ0), ξ(0)〉+ |a(0) + b(ξ0)| · |ξ(0)|
≤ c0 + λ2‖ξ‖2∞ − λ′1|ξ(0)|2, ξ ∈ C

7
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for some constants c0 > 0 and λ′1 > 0 such that λ′ := λ′1 − λ2e
r0λ′1 > 0 due to λ > 0. So, by

Itô’s formula,

d|X(n)(t)|2 ≤
{
c1 + λ2‖X(n)

t ‖2∞ − λ′1|X(n)(t)|2
}

dt+ dM(t)

holds for c1 := c0 + ‖σ‖2HS and dM(t) := 2〈σdB(t), X(n)(t)〉. This implies

eλ
′
1t|X(n)(t)|2 ≤ |ξ(0)|2 +

∫ t

0

eλ
′
1s(c1 + λ2‖X(n)

s ‖2∞)ds+

∫ t

0

eλ
′
1sdM(s).

Let N(t) = sups∈[0,t]

∫ s
0

eλ
′
1rdM(r). We obtain

eλ
′
1t‖X(n)

t ‖2∞ ≤ er0λ
′
1 sup
θ∈[−r0,0]

eλ
′
1(t+θ)|X(n)(t+ θ)|2

≤ eλ
′
1r0‖ξ‖2∞ +

∫ t

0

eλ
′
1(s+r0)(c1 + λ2‖X(n)

s ‖2∞)ds+ eλ
′
1r0N(t)

≤ c2(1 + ‖ξ‖2∞)eλ
′
1t + eλ

′
1r0N(t) + λ2e

λ′1r0

∫ t

0

eλ
′
1s‖X(n)

s ‖2∞ds

for some constant c2 > 0. By Gronwall’s inequality, one has

eλ
′
1t‖X(n)

t ‖2∞ ≤c2(1 + ‖ξ‖2∞)eλ
′
1t + eλ

′
1r0N(t)

+ λ2e
λ′1r0

∫ t

0

{
c2(1 + ‖ξ‖2∞)eλ

′
1s + eλ

′
1r0N(s)

}
exp

[
λ2e

λ′1r0(t− s)
]
ds.

Recalling that λ′ = λ′1 − λ2e
λ′1r0 > 0, we arrive at

‖X(n)
t ‖2∞ ≤ c2(1 + ‖ξ‖2∞) + eλ

′
1(r0−t)N(t)

+ λ2e
λ′1r0

∫ t

0

{
c2(1 + ‖ξ‖2∞) + eλ

′
1(r0−s)N(s)

}
e−λ

′(t−s)ds

≤ c3
(
1 + ‖ξ‖2∞ + e−λ

′
1tN(t)

)
+ c3

∫ t

0

e−λ
′
1s−λ′(t−s)N(s)ds

for some constant c3 > 0. Therefore, for any ε ∈ (0, 1),

(2.8) E eε‖X
(n)
t ‖2∞ ≤ ec3(1+‖ξ‖2∞)

√
I1 × I2

holds for

I1 := E exp

[
2c3ε

∫ t

0

e−λ
′
1s−λ′(t−s)N(s)ds

]
,

I2 := E exp
[
2c3εe

−λ′1tN(t)
]
.

To finish the proof, below we estimate I1 and I2, respectively.

8
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(a) Estimate on I1. Note that

I1 = E exp

[
2c3(1− e−λ

′t)ε

λ′

∫ t

0

e−λ
′
1sN(s)ν0(ds)

]
,

where

ν0(ds) :=
λ′

1− e−λ′t
e−λ

′(t−s)ds, [0, t].

To avoid the singularity of the reference probability measure ν0(·) above whenever t → 0,
we extend the integral to the larger interval [−r0, t]. Define

ν(ds) =
λ′eλ

′r0

eλ′r0 − e−λ′t
e−λ

′(t−s)ds on [−r0, t],

Letting N(s) = 0 for s ≤ 0, and applying Jensen’s inequality for the probability measure
ν(ds), we have

exp

[
4c3ε

∫ t

0

e−λ
′
1s−λ′(t−s)N(s)ds

]

= exp

[
4c3ε(e

λ′r0 − e−λ
′t)

λ′eλ′r0

∫ t

−r0
e−λ

′
1sN(s)ν(ds)

]

≤
∫ t

−r0
exp

[
4c3ε(e

λ′r0 − e−λ
′t)

λ′eλ′r0
e−λ

′
1sN(s)

]
ν(ds)

≤ λ′eλ
′r0

eλ′r0 − 1

∫ t

−r0
exp

[
4c3ε

λ′
e−λ

′
1sN(s)

]
e−λ

′(t−s)ds.

So, by Jensen’s inequality and the Burkhold-Davis-Gundy inequality, there exist constants
c4, c5 > 0 such that

I2
1 ≤ E exp

[
4c3ε

∫ t

0

e−λ
′
1s−λ′(t−s)N(s)ds

]

≤ λ′eλ
′r0

eλ′r0 − 1

∫ t

−r0
e−λ

′(t−s)E exp

[
4c3ε

λ′
e−λ

′
1sN(s)

]
ds

≤ c4

∫ t

−r0
e−λ

′(t−s)
(

E exp

[
c4ε

2e−2λ′1s
∫ s

0

e2λ′1u‖X(n)
u ‖2∞ du

]) 1
2

ds

≤ c5

(
1 + E

∫ t

−r0
e−λ

′(t−s) exp

[
c5ε

2

∫ s

−r0
e−2λ′1(s−u)‖X(n)

u ‖2∞ du

]
ds
)
,

where we set X
(n)
s = ξ for s ≤ 0.

Now, using Jensen’s inequality as above for the probability measure

2λ′1e
λ′1r0

e2λ′1r0 − e−2λ′1s
e−2λ′1(s−u)du on [−r0, s],

9
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we arrive at

I2
1 ≤ c6

(
1 + E

∫ t

−r0
e−λ

′(t−s)ds

∫ s

−r0
ec6ε

2‖X(n)
u ‖2∞−2λ′1(s−u)du

)

= c6

(
1 +

∫ t

−r0
E ec6ε

2‖X(n)
u ‖2∞du

∫ t

u

e−λ
′(t−s)−2λ′1(s−u)ds

)

for some constant c6 > 0. Since λ′1 ≥ λ′ > 0, we have

−2λ′1(s− u)− λ′(t− s) ≤ −λ′(t− u)− λ′1(s− u),

so that this implies

I2
1 ≤ c6

(
1 +

∫ t

−r0
e−λ

′(t−u)E ec6ε
2‖X(n)

u ‖2∞du

∫ t

u

e−λ
′
1(s−u)ds

)

≤ c6

(
1 +

1

λ′1

∫ t

−r0
e−λ

′(t−u)E ec6ε
2‖X(n)

u ‖2∞ du
)
.

(2.9)

(b) Estimate on I2. A shown in (a), by the Burkhold-Davis-Gundy inequality and using
Jensen’s inequality for the probability measure

2λ′1e
λ′1r0

e2λ′1r0 − e−2λ′1t
e−2λ′1(t−s)ds on [−r0, t],

we conclude that

I2
2 ≤ c7

(
1 + E exp

[
c7ε

2e−2λ′1t
∫ t

−r0
e2λ′1s‖X(n)

s ‖2∞ds

])

≤ c8

(
1 + E

∫ t

−r0
ec8ε

2‖X(n)
s ‖2∞e−2λ′1(t−s)ds

)(2.10)

holds for some constants c7, c8 > 0.
Now, combining (2.8), (2.9) with (2.10), and taking ε = ε0 ∧ 1

c6∨c8 , we arrive at

Eeε‖X
(n)
t ‖2∞ ≤ ec9(1+‖ξ‖2∞)

(
1 +

∫ t

−r0

(
Eeε‖X

(n)
s ‖2∞

)
e−λ

′(t−s)ds

) 1
2

≤ ec10(1+‖ξ‖2∞) +
λ′

2

∫ t

−r0

(
Eeε‖X

(n)
s ‖2∞

)
e−λ

′(t−s)ds

for some constants c9, c10 > 0. Equivalently,

eλ
′tEeε‖X

(n)
t ‖2∞ ≤ ec9(1+‖ξ‖2∞)+λ′t +

λ′

2

∫ t

−r0

(
Eeε‖X

(n)
s ‖2∞

)
eλ
′sds.

By (2.7) and ε ≤ ε0, we see that

Eeε‖X
(n)
t ‖2∞ <∞, t ≥ 0.

10



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Then, by Gronwall’s inequality,

eλ
′tEeε‖X

(n)
t ‖2∞ ≤ ec10(1+‖ξ‖2∞)+λ′t +

λ′

2

∫ t

−r0
ec10(1+‖ξ‖2∞)+λ′s+λ′

2
(t−s)ds.

Therefore,

Eeε‖X
(n)
t ‖2∞ ≤ ec10(1+‖ξ‖2∞) +

λ′

2

∫ t

−r0
ec10(1+‖ξ‖2∞)−λ′

2
(t−s)ds ≤ ec(1+‖ξ‖2∞)

for some constant c > 0. According to (2.2), the proof is finished by applying Fatou’s
lemma.

Lemma 2.2. For any t ≥ 0 and ξ, η ∈ C , ‖Xξ
t −Xη

t ‖2∞ ≤ ‖ξ − η‖2∞eλ1r0−λt.

Proof. By Itô’s formula, we have

d|Xξ(t)−Xη(t)|2 ≤
(
λ2‖Xξ

t −Xη
t ‖2∞ − λ1|Xξ(t)−Xη(t)|2

)
dt.

Then

eλ1t|Xξ(t)−Xη(t)|2 ≤ |ξ(0)− η(0)|2 + λ2

∫ t

0

eλ1s‖Xξ
s −Xη

s ‖2∞ds.

So,

eλ1t‖Xξ
t −Xη

t ‖2∞ ≤ er0λ1‖ξ − η‖2∞ + λ2e
r0λ1

∫ t

0

eλ1s‖Xξ
s −Xη

s ‖2∞ds.

Therefore, the proof is finished by Gronwall’s inequality since we have assumed that λ =
λ1 − λ2e

r0λ1 .

Now, we introduce the dimension-free Harnack inequality in the sense of [20]. We are
referred to [4, 9, 25] for more results on the Harnack inequality of FSDEs. Since results in
these papers do not directly imply the following Lemma 2.3, we include a simple proof using
coupling by change of measure introduced in [2]. By (1.2) and the Lipschitz property of b,
(1.4) holds for some k2 ≥ 0 and

2〈a(x)− a(y), x− y〉 ≤ 2〈b(ξy)− b(ξx), x− y〉+ (λ2 − λ1)|x− y|2 ≤ −k1|x− y|2, x, y ∈ Rd

holds for some constant k1 ∈ R as required in Lemma 2.3, where ξx(θ) = x, ξy(θ) = y for
θ ∈ [−r0, 0].

Lemma 2.3. Let (1.3) and (1.4) hold for some constants k1 ∈ R and k2 ≥ 0. Then, for any
p > 1, δ > 0, positive f ∈ Bb(C ), and ξ, η ∈ C ,

(
Pt+r0f(ξ)

)p ≤
(
Pt+r0f

p(η)
)

exp

[
p2‖σ−1‖2(1 + δ)

2(p− 1)

{2k1|ξ(0)− η(0)|2
e2k1t − 1

+
k2

2

δ

(
r0‖ξ − η‖2∞ +

|ξ(0)− η(0)|2(e4k1t − 1− 4k1te
2k1t)

2k1(e2k1t − 1)2

)}]
.

11
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Proof. Let Xs = Xξ
s and Y (s) solve the equation

(2.11) dY (s) =

(
a(Y (s)) + b(Xs) + g(s)1[0,τ)(s) ·

X(s)− Y (s)

|X(s)− Y (s)|

)
ds+ σdB(s), Y0 = η,

where
τ := inf{s ≥ 0 : X(s) = Y (s)}

is the coupling time and g ∈ C([0,∞)) is to be determined. It is easy to see that this equation
has a unique solution up to the coupling time τ . Letting Y (s) = X(s) for s ≥ τ , we obtain
a solution Y (s) for all s ≥ 0. We will then choose g such that τ ≤ t, i.e., Xt+r0 = Yt+r0 .
Obviously, we have

d|X(s)− Y (s)| ≤ −
{
k1|X(s)− Y (s)|+ g(s)

}
ds, s < τ.

Then

(2.12) |X(s)− Y (s)| ≤ |ξ(0)− η(0)|e−k1s − e−k1s
∫ s

0

ek1rg(r)dr, s ≤ τ.

In (2.12), take

(2.13) g(s) =
|ξ(0)− η(0)|ek1s∫ t

0
e2k1sds

, s ∈ [0, t].

If t < τ , we infer from (2.12) and (2.13) that

(2.14) |X(s)− Y (s)| ≤ |ξ(0)− η(0)|(e2k1t−k1s − ek1s)

e2k1t − 1
, 0 ≤ s ≤ t.

This implies X(t) = Y (t) and hence, it is contradictory to t < τ . Hence we arrive at τ ≤ t
and Xt+r0 = Yt+r0 as required. Moreover, note that (2.14) still holds for t ≥ τ . Now, let

h(s) = σ−1
{

1[0,τ)g(s)
X(s)− Y (s)

|X(s)− Y (s)| + b(Xs)− b(Ys)
}
.

Noting that (2.14) implies

‖Xs − Ys‖2∞ ≤ 1[0,r0](s)‖ξ − η‖2∞ + 1(r0,r0+t](s)
(e2k1t−k1(s−r0) − ek1(s−r0))2|ξ(0)− η(0)|2

(e2k1t − 1)2
,

we obtain from (1.4) and (2.13) that

|h(s)|2 ≤ ‖σ−1‖2(1[0,t](s)g(s) + k2‖Xs − Ys‖∞)2

≤ ‖σ−1‖2(1[0,t](s)(1 + δ)g(s)2 + (1 + δ−1)k2
2‖Xs − Ys‖2∞)

≤ 1[0,t](s)
4k2

1e2k1s‖σ−1‖2(1 + δ)|ξ(0)− η(0)|2
(e2k1t − 1)2

+ 1(r0,r0+t](s)
e2k1s‖σ−1‖2(1 + δ)|ξ(0)− η(0)|2k2

2(e2k1t−k1(s−r0) − ek1(s−r0))2

δ(e2k1t − 1)2

+ 1[0,r0](s)‖σ−1‖2k2
2(1 + δ−1)‖ξ − η‖2∞ =: γ(s).

12
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Then we have∫ t+r0

0

|h(s)|2ds ≤
∫ t+r0

0

γ(s)ds

≤ exp

[
‖σ−1‖2(1 + δ)

(
(e4k1t − 1− 4k1te

2k1t)k2
2|ξ(0)− η(0)|2

2k1δ(e2k1t − 1)2

+
r0k

2
2‖ξ − η‖2∞

δ
+

2k1|ξ(0)− η(0)|2
e2k1t − 1

)]
.

(2.15)

Hence we arrive at

E exp

[
1

2

∫ t+r0

0

|h(s)|2ds
]
<∞.

As a result, Novikov’s condition holds so that, by the Girsanov theorem, {B̃(s)}t∈[0,t+r0] is a
Brownian motion under the weighted probability measure dQ := RdP with

R := exp

[
−
∫ t+r0

0

〈h(s), dB(s)〉 − 1

2

∫ t+r0

0

|h(s)|2ds
]
.

Observe that (2.11) can be rewritten as

dY (s) =
(
a(Y (s)) + b(Ys)

)
ds+ σdB̃(s), Y0 = η, s ∈ [0, t+ r0].

By the weak uniqueness of solution and Xt+r0 = Yt+r0 , we have

(2.16) Pt+r0f(η) = E[Rf(Yt+r0)] = E[Rf(Xt+r0)].

Then, by Jensen’s inequality,

(Pt+r0f(η))p =
(
E[Rf(Xt+r0)]

)p ≤ (Pt+r0f
p(ξ))

(
ER

p
p−1
)p−1

.

Consequently, the desired assertion follows by noting that

ER
p
p−1 ≤ e

p2

2(p−1)2

∫ t+r0
0 γ(s)dsEe

− p
p−1

∫ t+r0
0 〈h(s),dB(s)〉− p2

2(p−1)2

∫ t+r0
0 |h(s)|2ds

= e
p2

2(p−1)2

∫ t+r0
0 γ(s)ds

,

(2.17)

and taking (2.15) into consideration.

Lemma 2.4. If λ > 0, then Pt has a unique invariant probability measure µ such that

lim
t→∞

Ptf(ξ) = µ(f), f ∈ Cb(C ), ξ ∈ C .

Proof. Let P(C ) be the set of all probability measures on C . Let W be the L2-Wasserstein
distance on P(C ) induced by the distance ρ(ξ, η) := 1 ∧ ‖ξ − η‖∞; that is,

W (µ1, µ2) := inf
π∈C (µ1,µ2)

(
π(ρ2)

) 1
2 , µ1, µ2 ∈P(C ),

where C (µ1, µ2) is the set of all couplings of µ1 and µ2. It is well known that P(C ) is a
complete metric space with respect to the distance W , and the convergence in W is equivalent
to the weak convergence (see, e.g., [6, Theorems 5.4 and 5.6]). Let P ξ

t be the law of Xξ
t .

Then it remains to prove the following two assertions:

13
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(i) For any ξ ∈ C , there exists µξ ∈P(C ) such that limt→∞W (P ξ
t , µξ) = 0;

(ii) For any ξ, η ∈ C , µξ = µη.

To show (i), it suffices to show that {P ξ
t }t≥0 is a Cauchy sequence with respect to W . To

this end, for any t2 > t1 > 0, we consider the following FSDEs

dX(t) = {a(X(t)) + b(Xt)}dt+ σdB(t), X0 = ξ, t ∈ [0, t2],

dX(t) = {a(X(t)) + b(X t)}dt+ σdB(t), X t2−t1 = ξ, t ∈ [t2 − t1, t2].

Then the laws of Xt2 and X t2 are P ξ
t2 and P ξ

t1 , respectively. By (1.2), we have

d|X(t)−X(t)|2 ≤
(
λ2‖Xt −X t‖2∞ − λ1|X(t)−X(t)|2

)
dt, t ∈ [t2 − t1, t2].

As in the proof of Lemma 2.2, this implies

‖Xt −X t‖2∞ ≤ eλ1r0‖Xt2−t1 − ξ‖2∞e−λ(t+t1−t2), t ∈ [t2 − t1, t2].

In particular,
‖Xt2 −X t2‖2∞ ≤ eλ1r0‖Xt2−t1 − ξ‖2∞e−λt1 .

By Lemma 2.1, we have

E‖Xt2−t1 − ξ‖2∞ ≤ C := sup
t≥0

E‖Xt − ξ‖2∞ <∞.

Then one has

sup
t2∈[t1,∞)

W (P ξ
t1 , P

ξ
t2) ≤ sup

t2∈[t1,∞)

E{1 ∧ |Xt2 −X t2‖2∞} ≤ Ceλ1r0−λt1

which tends to zero as t1 goes to infinity, so that {P ξ
t }t≥0 is a Cauchy sequence with respect

to W .
Next, (ii) follows by observing that

W (µξ, µη) ≤ W (P ξ
t , µξ) +W (P η

t , µη) +W (P ξ
t , P

η
t ), ξ, η ∈ C ,

and taking (i) and Lemma 2.2 into account.

Proof of Theorem 1.1. (a) We first prove that ‖Pt‖2→4 < ∞ holds for large enough t > 0.
Let f ∈ Bb(C ) with µ(f 2) = 1. By Lemma 2.3, for any t0 > r0 there exists a constant c0 > 0
such that

(Pt0f(ξ))2 ≤ (Pt0f
2(η))ec0‖ξ−η‖

2
∞ , ξ, η ∈ C .

By the Markov property and Schwartz’s inequality,

|Pt+t0f(ξ)|2 = |E(Pt0f)(Xξ
t )|2 ≤

(
E
√

(Pt0f
2(Xη

t )) exp[c0‖Xξ
t −Xη

t ‖2∞]
)2

≤ (E(Pt0f
2(Xη

t ))Eec0‖X
ξ
t−X

η
t ‖2∞ = (Pt+t0f

2(η))Eec0‖X
ξ
t−X

η
t ‖2∞ .

14
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Combining this with Lemma 2.2, we obtain

|Pt+t0f(ξ)|2 ≤ (Pt+t0f
2(η)) exp

[
c1e
−λt‖ξ − η‖2∞

]
.

Let r > 0 such that µ(Br) ≥ 1
2
, where Br := {‖ · ‖∞ < R}. Then

|Pt+t0f(ξ)|2 exp
[
− c1e−λt(‖ξ‖∞ + r)2

]
≤ 2|Pt+t0f(ξ)|2

∫

Br

exp
[
− c1e−λt‖ξ − η‖2∞

]
µ(dη)

≤ 2

∫

C

Pt+t0f
2(η)µ(dη) = 2.

Thus,

(2.18) |Pt+t0f(ξ)|4 ≤ exp
[
c2(1 + ‖ξ‖2∞e−λt)

]
, t ≥ 0

holds for some constant c2 > 0. On the other hand, by Lemmas 2.1 and 2.4 we have

µ(N ∧ eε‖·‖
2
∞) = lim

t→∞
E(N ∧ eε‖X

0
t ‖2∞) ≤ ec <∞, N > 0

for some constant c > 0. Taking N → ∞, we obtain µ(eε‖·‖
2
∞) < ∞. Therefore, (2.18)

implies ‖Pt+t0‖2→4 <∞ for large enough t > 0.
(b) By, e.g., [25, Proposition 3.1 (2)], the Harnack inequality implies that Pt has a density

with respect to µ for t > r0. Thus, according to [26, Theorem 2.3], the hyperboundedness of
Pt proved in (a) implies that Pt is compact in L2(µ) for large enough t > 0. Hence, Theorem
1.1(2) is proved.

(c) To prove Theorem 1.1(3), we let Xt, Yt and R be given as in the proof of Lemma 2.3.
By (2.16) and Pt+r0f(ξ) = Ef(Xt+r0), we have

|Pt+r0f(ξ)− Pt+r0f(η)| ≤ E|f(Xt+t0)(R− 1)| ≤
√

(Pt+r0f
2(ξ))E(R2 − 1).

Take p = 2 and t = t1 > 0 such that ‖Pt1+r0‖2→4 < ∞ according to (a). By (2.17) there
exists a constant c1 > 0 such that ER2 ≤ ec1‖ξ−η‖

2
∞ . So,

|Pt1+r0f(ξ)− Pt1+r0f(η)|2 ≤ (Pt1+r0f
2(ξ))(ec1‖ξ−η‖

2
∞ − 1)

≤ (Pt1+r0f
2(ξ))c1‖ξ − η‖2∞ec1‖ξ−η‖

2
∞ .

(2.19)

Hence, for any t > 0,

|Pt+2(t1+r0)f(ξ)− Pt+2(t1+r0)f(η)|2 ≤
(
E|Pt1+r0(Pt1+r0f)(Xξ

t )− Pt1+r0(Pt1+r0f)(Xη
t )|
)2

≤
(
E
√

(Pt1+r0(Pt1+r0f)2(Xξ
t ))c1‖Xξ

t −Xη
t ‖2∞ec1‖X

ξ
t−X

η
t ‖2∞
)2

≤ (Pt+t1+r0(Pt1+r0f)2(ξ))E
[
c1‖Xξ

t −Xη
t ‖2∞ec1‖X

ξ
t−X

η
t ‖2∞
]
.

Combining this with Lemma 2.2, we arrive at

|Pt+2(t1+r0)f(ξ)− Pt+2(t1+r0)f(η)|2

≤ (Pt+t1+r0(Pt1+r0f)2(ξ))c2e
−λt‖ξ − η‖2∞ exp

[
c2e
−λt‖ξ − η‖2∞

]

≤ (Pt+t1+r0(Pt1+r0f)2(ξ))c3e
−λt exp

[ε
4
‖ξ − η‖2∞

]

15
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for some constants c2, c3 > 0 and large enough t > 0, where ε > 0 such that µ(eε‖·‖
2
∞) < ∞

according to (a). So,

2µ(|Pt+2(t1+r0)f − µ(f)|2) =

∫

C×C

|Pt+2(t1+r0)f(ξ)− Pt+2(t1+r0)f(η)|2µ(dξ)µ(dη)

≤ c3e
−λt
(∫

C

{
Pt+t1+r0(Pt1+r0f)2

}2
(ξ)µ(dξ)

) 1
2
(∫

C×C

exp
[ε

2
‖ξ − η‖2∞

]
µ(dξ)µ(dη)

) 1
2

≤ Ce−λtµ(f 2), t ≥ 0

holds for some constant C > 0, since by Jensen’s inequality and the fact that µ is Pt-invariant,
we have

∫

C

{
Pt+t1+r0(Pt1+r0f)2

}2
dµ ≤

∫

C

(Pt1+r0f)4dµ ≤ ‖Pt1+r0‖42→4µ(f 2)2.

Therefore, the assertion in Theorem 1.1(3) holds for large enough t > 0. Since Pt is contrac-
tive in L2(µ), it holds for all t > 0.

(d) We now go back to the proof of Theorem 1.1(1). This assertion follows from (a)
and Theorem 1.1(3) by straightforward calculations. Let f ∈ L2(µ) with µ(f 2) = 1. Let

f̂ = f − µ(f). We have µ(Ptf̂) = µ(f̂) = 0. Let t0 > r0 such that ‖Pt0‖2→4 <∞, we obtain

µ((Pt+t0f)4) = µ(f)4 + 4µ(f)µ((Pt+t0 f̂)3) + 6µ(f)2µ((Pt+t0 f̂)2) + µ((Pt+t0 f̂)4)

≤ µ(f)4 + 4|µ(f)| · ‖Pt0‖32→3

{
µ((Ptf̂)2)

} 3
2

+ 6µ(f)2µ((Pt+t0 f̂)2) + ‖Pt0‖42→4µ((Ptf̂)2)2

≤ µ(f)4 + ce−λt
{
|µ(f)|

(
µ(f̂ 2)

) 3
2 + µ(f)2µ(f̂ 2) +

(
µ(f̂ 2)

)2}

(2.20)

for some constant c > 0 according to Theorem 1.1(3). Since

|µ(f)|
(
µ(f̂ 2)

) 3
2 ≤ µ(f)2µ(f̂ 2) +

(
µ(f̂ 2)

)2
,

the relation (2.20) implies that for large t > 0,

µ((Pt+t0f)4) ≤ µ(f)4 + 2µ(f)2µ(f̂ 2) +
(
µ(f̂ 2)

)2
=
{
µ(f)2 + µ(f̂ 2)}2 = µ(f 2) = 1.

(e) Finally, we prove Theorem 1.1(4). By the first inequality in (2.19), we have

‖∇ηPt1+r0f‖2(ξ) := lim sup
s→0

|Pt1+r0f(ξ + sη)− Pt1+r0f(ξ)|2
s2

≤ c1‖η‖2∞Pt1+r0f
2(ξ).

Thus, |Pt1+r0f(ξ) − Pt1+r0f(η)|2 ≤ c1‖f‖2∞‖ξ − η‖2∞. Combining this with Lemma 2.2 and
using the Markov property, we obtain

|Pt+t1+r0f(ξ)− Pt+t1+r0f(η)|2 ≤ c1‖f‖2∞E‖Xξ
t −Xη

t ‖2∞ ≤ c2e
−λt‖f‖2∞

for some constants c2 > 0. This completes the proof.

16
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Proof of Corollary 1.2. By (1.3) and (1.4), for any s > 0 we have

2〈a(ξ(0))− a(η(0)) + b(ξ)− b(η), ξ(0)− η(0)〉
≤ −2k1|ξ(0)− η(0)|2 + 2k2‖ξ − η‖∞ · |ξ(0)− η(0)|

≤ −(2k1 − s)|ξ(0)− η(0)|2 +
k2

2

s
‖ξ − η‖2∞.

Let λ1(s) = 2k1 − s, λ2(s) =
k2
2

s
. Then Theorem 1.1 applies if there exists s ∈ (0, 2k1] such

that
λ2(s) < λ1(s)e

−r0λ1(s) = (2k1 − s)e−r0(2k1−s);

that is,

(2.21) k2
2 < sup

s∈(0,2k1)

(2k1s− s2)e−r0(2k1−s),

where the sup is reached at

s0 =
k1r0 +

√
k2

1r
2
0 + 1− 1

r0
,

such that (2.21) coincides with (1.5) and Theorem 1.1 applies with

λ := λ1(s0)− λ2(s0)e
r0λ1(s0)

=
r0

k1r0 − 1 +
√
k2

1r
2
0 + 1

(
2(
√
k2

1r
2
0 + 1− 1)

r2
0

− k2
2 exp

[
1 + k1r0 −

√
k2

1r
2
0 + 1

])
.

3 Proof of Theorem 1.3

We first recall the following Fernique inequality [10] (see also [5]).

Lemma 3.1 (Fernique Inequality). Let (X(t))t∈D be a family of centered Gaussian random
variables on Rd with

sup
t∈D

E|X(t)|2 ≤ σ <∞

for some constant σ > 0, where D :=
∏

1≤i≤N [ai, bi] is a cube in RN . Let φ ∈ C([0,∞]) be

non-decreasing such that
∫∞

0
φ(e−r

2
)dr <∞ and

E|X(t)−X(s)|2 ≤ φ(|t− s|), s, t ∈ D.

Then there exist constants C1, C2 > 0 depending only on (bi − ai)1≤i≤N , N, d, φ and σ such
that

P
(

sup
t∈D
|X(t)| ≥ r

)
≤ C1e

−C2r2 , r ≥ 1.

17
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Proof of Theorem 1.3. Let Pt be the Markov semigroup associated with the equation (1.6)
such that ν satisfies λ0 < 0, b satisfies (1.4), and λ = supk∈(0,−λ0)(k − ckk2e

kr0) > 0. Then,
by following the proof of Lemma 2.4, (1.8) and (1.9) for some k ∈ (0,−λ0) imply that Pt
has a unique invariant probability measure µ. Moreover, by taking Z = 0 and combining
the linear drift with b, we see that Lemma 2.3 applies to the present equation for k1 = 0 and
some constant k2 > 0. Thus, following the line in the proof of Theorem 1.1, we only need to
show that Lemma 2.1 and Lemma 2.2 apply to the equation (1.6) as well.

Let k ∈ (0,−λ0) such that

(3.1) λ = k − ckk2e
kr0 > 0.

It follows from (1.4), (1.8) and (1.9) that

|Xξ(t)−Xη(t)| ≤ ‖Γ(t)‖ · |ξ(0)− η(0)|+
∫ 0

−r0

∥∥∥
∫ θ

−r0
Γ(t+ θ − s)ν(dθ)

∥∥∥ · |ξ(s)− η(s)|ds

+

∫ t

0

‖Γ(t− s)‖ · |b(Xξ
s )− b(Xη

s )|ds

≤ C1e
−kt‖ξ − η‖∞ + ckk2

∫ t

0

e−k(t−s)‖Xξ
s −Xη

s ‖∞ds

for some constant C1 ≥ 1. Then

ekt‖Xξ
t −Xη

t ‖∞ ≤ ekr0 sup
t−r0≤s≤t

(eks|Xξ(s)−Xη(s)|)

≤ C1e
kr0‖ξ − η‖∞ + ckk2e

kr0

∫ t

0

eks‖Xξ
s −Xη

s ‖∞ds.

This, together with Gronwall’s inequality, gives that

‖Xξ
t −Xη

t ‖∞ ≤ C1e
kr0‖ξ − η‖∞e−λt.(3.2)

So, Lemma 2.2 applies.

Next, by (1.4), (1.8) and (1.9),

ekt‖Xξ
t ‖∞ ≤ C2(‖ξ‖∞ + ekt) + cke

kr0k2

∫ t

0

eks‖Xξ
s‖∞ds

+ ekr0 sup
(t−r0)+≤s≤t

(
eks
∣∣∣
∫ s

0

Γ(s− r)σdB(r)
∣∣∣
)

18



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

holds for some constant C2 > 0. By Gronwall’s inequality, this implies

‖Xξ
t ‖∞ ≤ C2(‖ξ‖∞ + 1) + ekr0 sup

t−r0≤s≤t

∣∣∣
∫ s

0

Γ(s− r)σdB(r)
∣∣∣

+ C2(‖ξ‖∞ + 1)

∫ t

0

e−λ(t−s)ds

+ ekr0
∫ t

0

(
sup

(s−r0)+≤u≤s

∣∣∣
∫ u

0

Γ(u− r)σdB(r)
∣∣∣
)

e−λ(t−s)ds

≤ C3(1 + ‖ξ‖2∞) + C3

∫ t

0

e−λ(t−s) sup
u∈[−r0,0]

|Zs,u|ds

for some constant C3 > 0, where

Zs,u :=

∫ (s+u)+

0

Γ(s+ u− r)σdB(r), s ≥ 0, u ∈ [−r0, 0].

Then, by Jensen’s inequality for the probability measure λeλr0

eλr0−e−λt e
−λ(t−s)ds on [−r0, t], there

exists a constant C4 > 0 such that

Eeε‖X
ξ
t ‖2∞ ≤ eεC4(1+‖ξ‖2∞)E exp

[
εC4

(∫ t

0

e−λ(t−s) sup
u∈[−r0,0]

|Zs,u|ds
)2]

≤ eεC4(1+‖ξ‖2∞) λeλr0

λeλr0 − 1

∫ t

−r0
e−λ(t−s)

(
E exp

[C4ε

λ
sup

u∈[−r0,0]

|Zs,u|2
])

ds

(3.3)

for any ε > 0, where we set Zs,u = 0 for s ∈ [−r0, 0]. Note from Itô’s isometry and (1.9) that

σ := sup
s≥0,u∈[−r0,0]

E|Zs,u|2 <∞,

and that there exist constants c1, c2, c3 > 0 such that

E|Zs,u − Zs,v|2 ≤ 2E
∣∣∣∣
∫ (s+u)+

(s+v)+
Γ(s+ u− r)σdB(r)

∣∣∣∣
2

+ 2E
∣∣∣∣
∫ (s+v)+

0

(
Γ(s+ u− r)− Γ(s+ v − r)

)
σdB(r)

∣∣∣∣
2

≤ c1|u− v|+ 2‖σ‖2
∫ (s+v)+

0

‖Γ(s+ u− r)− Γ(s+ v − r)‖2dr

≤ c1|u− v|+ c2|u− v|2 ≤ c3|u− v|, s ≥ 0, − r0 ≤ v ≤ u ≤ 0.

Thus, by Lemma 3.1 with N = 1, D = [−r0, 0] and φ(r) = cr,

C(ε) := sup
s≥0

E exp
[C4ε

λ
sup

u∈[−r0,0]

|Zs,u|2
]
<∞

holds for small enough ε > 0. Therefore, (3.3) implies the assertion in Lemma 2.1.
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4 Appendix

For application of Theorem 1.3, we aim to estimate the constant ck in (1.9). Write ν =
(νij)1≤i,j≤d for finite signed measures νij on [−r0, 0]. Let |νij| be the total variation of νij.
For any λ > λ0, define

‖ν‖ = sup
1≤i≤d

√∑

1≤j≤d
|νij|([−r0, 0])2, Tλ = 2eλ

−r0‖ν‖, λ− = (−λ) ∨ 0,

ρλ = max
θ∈[−Tλ,Tλ]

∥∥∥∥
(

(λ+ iθ)Id×d −
∫ 0

−r0
eλ+iθν(ds)

)−1

− (λ+ iθ − λ0)
−1Id×d

∥∥∥∥.

Proposition 4.1. For any λ > λ0,

‖Γ(t)‖ ≤
{(λ− λ0 + 1)π

λ− λ0

+
4(|λ0|+ eλ

−r0‖ν‖)
Tλ

+ 2ρλTλ

}
eλt, t ≥ 0.

Proof. For any z 6= λ0, define

Qz = zId×d −
∫ 0

r0

ezsν(ds), Gz = Q−1
z −

1

z − λ0

Id×d.

We have (see [12, Theorem 1.5.1])

(4.1) Γ(t) = lim
T→∞

∫ T

−T
Q−1
λ+iθe

t(λ+iθ)dθ = lim
T→∞

∫ T

−T

(
Gλ+iθ +

Id×d
λ− λ0 + iθ

)
et(λ+iθ)dθ, λ > λ0.

Obviously,
∥∥ ∫ 0

−r0 e(λ+iT )sν(ds)
∥∥ ≤ er0λ

−‖v‖ and

√
1 + λ2T−2 − eλ

−r0‖ν‖
|T | ≥ 1

2
, |T | ≥ Tλ.

Then

‖Q−1
λ+iT‖ ≤

1√
λ2 + T 2 − e|λ|r0‖ν‖

≤ 2

|T | , |T | ≥ Tλ.

This yields

‖Gλ+iT‖ ≤ ‖Q−1
λ+iT‖ ·

∥∥∥∥

∫ 0

−r0 e(λ+iT )sν(ds)− λ0Id×d

λ+ iT − λ0

∥∥∥∥

≤ 2(|λ0|+ eλ
−r0‖ν‖)

|T |
√

(λ− λ0)2 + T 2
≤ 2(|λ0|+ eλ

−r0‖ν‖)
T 2

, |T | ≥ Tλ.

Thus, for any T ≥ Tλ,
∫ T

T

‖Gλ+iθe
t(λ+iθ)‖dθ =

∫ Tλ

−Tλ
‖Gλ+iθe

t(λ+iθ)‖dθ +

∫

|θ|>Tλ
‖Gλ+iθe

t(λ+iθ)‖dθ

≤ 2ρλTλe
λt +

4(|λ0|+ eλ
−r0‖ν‖)eλt
Tλ

.

(4.2)
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On the other hand,

lim
T→∞

∫ T

−T

et(λ+iθ)

λ− λ0 + iθ
dθ = ieλt lim

T→∞

∫ T

−T

(λ− λ0)e
itθ

(λ− λ0)2 + θ2
dθ − eλt lim

T→∞

∫ T

−T

θeitθ

(λ− λ0)2 + θ2
dθ

=: Θ1 + Θ2.

It is easy to see that

‖Θ1‖ ≤
2eλt

λ− λ0

lim
T→∞

arctan
( θ

λ− λ0

)∣∣∣
T

0
=

πeλt

λ− λ0

.

Moreover, by the residue theorem,

‖Θ2‖ =
∣∣∣− 2πeλtiRes

[ zeitz

(λ− λ0)2 + z2
, (λ− λ0)i

]∣∣∣

=
∣∣∣− 2πeλti lim

z→(λ−λ0)i
(z − (λ− λ0)i)×

zeitz

(λ− λ0)2 + z2

∣∣∣

=
∣∣∣− 2πeλti lim

z→(λ−λ0)i

zeitz

2(λ− λ0)i

∣∣∣

=
∣∣∣− 2πeλti

(λ− λ0)ie
−t(λ−λ0)

2(λ− λ0)i

∣∣∣

= πeλ0t ≤ πeλt.

Hence, we arrive at

∣∣∣∣ lim
T→∞

∫ T

−T

et(λ+iθ)

λ− λ0 + iθ
dθ

∣∣∣∣ ≤
(λ− λ0 + 1)πeλt

λ− λ0

.

Combing this with (4.2) and (4.1), we finish the proof.
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