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Abstract 

Nearly half of Greenland’s mass loss occurs through iceberg calving, but the physical mechanisms 
operating during calving are poorly known and in situ observations are sparse. We show that 
calving at Greenland’s Helheim Glacier causes a minutes-long reversal of the glacier’s horizontal 
flow and a downward deflection of its terminus. The reverse motion results from the horizontal 
force caused by iceberg capsize and acceleration away from the glacier front. The downward 
motion results from a hydrodynamic pressure drop behind the capsizing berg, which also causes 
an upward force on the solid Earth. These forces are the source of glacial earthquakes, globally 
detectable seismic events whose proper interpretation will allow remote sensing of calving 
processes occurring at increasing numbers of outlet glaciers in Greenland and Antarctica. 
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One third to one half of Greenland’s total mass loss occurs through iceberg calving at the margins of 
tidewater-terminating glaciers (1, 2). Recent, rapid changes in glacier dynamics are associated with 
increased calving rates (3-5) and increased rates of glacial earthquakes (6). At large glaciers with 
near-grounded termini, calving typically occurs when buoyancy forces cause icebergs the full 
thickness of the glacier to capsize against the calving front (6-9). This type of calving is associated 
with glacial earthquakes (6, 7, 10), long-period seismic emissions of magnitude ~5 that are observed 
globally (11). The earthquakes have expanded northward and increased seven-fold in number during 
the last two decades (6, 12, 13), tracking changes in glacier dynamics, the retreat of glacier fronts, 
and increased mass loss (6, 14). Buoyancy-driven calving represents an increasingly important source 
of dynamic mass loss (6-8) as glacier fronts throughout Greenland have retreated to positions near 
their grounding lines (15). However, due to the difficulty of instrumenting the immediate near-
terminus region of these highly active glaciers, few direct observations of the calving process are 
available, limiting development of the deterministic calving models required for improved 
understanding of controls on dynamic ice-mass loss. Detailed knowledge of the glacial-earthquake 
source would allow quantification of calving processes at a large class of Greenland glaciers as well 
as in several regions of Antarctica (13).  

Agreement on the source mechanism of glacial earthquakes is limited. Analysis of long-
period seismic data shows that a sub-horizontal force acts approximately perpendicular to the 
glacier calving front during the earthquakes (6, 13). The observed seismic signal is generated over a 
period of one minute or more (6, 11, 16), much longer than the source duration for tectonic 
earthquakes of similar size (17). Some authors favor a model in which momentum transfer produces 
a force acting in the upglacier and then downglacier directions as a newly calved iceberg overturns, 
accelerates away from the calving front and subsequently decelerates (6, 10, 13, 18). Others suggest 
that the seismic signal arises from the iceberg scraping along the calving front or fjord bottom (7) or 
colliding with the glacier terminus (19). Hydrodynamic interactions with fjord water may be 
important (20) but are little explored. Analytical investigations admit more than one possible 
mechanism for the earthquakes (18), and no persuasive explanation has been presented for the 
vertical component of the earthquake force. Here, we combine geodetic, seismic and laboratory 
data to identify the forces acting during calving at large glaciers and document the source of the 
associated seismic signals. 

We recorded geodetic data at the calving margin of Helheim Glacier (Fig. 1) (9), a major 
outlet of the Greenland Ice Sheet, during 55 days in July-September 2013. A wireless network of on-
ice GPS sensors (21) captured glacier motion with cm-level accuracy at positions very close to the 
calving front at a high temporal sampling rate (22). Hourly images from two cameras located ~4 km 
down-fjord from and looking at the calving front were used in stereo configuration to obtain the 3D 
geometry of the calving front and calved icebergs (8, 22). Data from the global seismographic 
network were analysed for the same time period to identify glacial earthquakes (13, 23) and obtain 
source parameters (11) including the orientation of the force active during the earthquake and the 
amplitude and centroid time, tc, of a centroid-single-force (CSF) history of prescribed shape (22). 

The glacier retreated ~1.5 km in a series of calving events during the observing period. We 
identified ten large calving events from the camera images. All coincided with glacial earthquakes; in 
two cases, two earthquakes occurred between subsequent images. During the earthquakes, the 
region near the calving front shows a dramatic reversal of flow, moving upglacier for several minutes 
while simultaneously moving downward (Fig. 2, Fig. S1). The horizontal and vertical motion then 
rebound rapidly. 
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Fig. 1. Helheim Glacier, position of sensors, and seismic force directions. Location of GPS sensors and icebergs 
calved at Helheim Glacier (HH) for glacial-earthquake events at 03:13 DOY 206 2013 and 19:21 DOY 212 2013, 
superimposed on Landsat 7 image from DOY 167 2013. ‘Affected’ sensors exhibit earthquake-related 
deflections. Scan-line-corrector failure stripes have been removed for clarity. Glacier flow from left to right; 
bright white mélange (mix of iceberg fragments and sea ice) can be seen in front of calving margin. Calving-
front positions obtained from photogrammetric DEMs derived from cameras. Times are UTC, positions are 
meters UTM zone 24N.  

 

 

Fig. 2. Response of GPS sensors on glacier at the time of glacial earthquakes. (A) Sensor 1 at 03:13 on DOY 
206 2013. (B) Sensor 9 at 19:21 on DOY 212 2013. Blue dots show detrended along-flow displacement, red 
dots show height. Shading shows 1σ position errors. Earthquake centroid time tc. Horizontal displacement has 
trend from 30-10 mins before tc removed (A=28.9 m/day, B=24.6 m/day). Height has mean removed. (C) and 
(D) Plan view of GPS traces shown in (A) and (B) during 30 minutes around tc, marked as 0. 
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Observations from a glacial earthquake occurring on Day of Year (DOY) 206 at 03:13:47 are 
shown in Figs. 2A and 2C. Analysis of camera images indicates ice loss of 0.461 ± 0.009 km2 (Fig. 1) at 
a location of ice thickness 0.79 km, yielding an iceberg volume of 0.36 km3 with aspect ratio 0.23. 
The earthquake had CSF amplitude 0.24 x 1014 kg-m, with the force oriented 64°W (Fig. 1) and 9° 
above the horizontal. GPS sensor 1 (Fig. 1) showed a pre-earthquake flow speed of 29 m/day. 
Immediately prior to the earthquake centroid time, the sensor reversed its direction and moved 
upglacier at ~40 m/day (displacement 9 cm) and downward (displacement 10 cm). The reversed 
motion was sustained for ~200 seconds and was followed by a downglacier rebound at ~190 m/day 
(displacement 20 cm) and upward movement (16 cm) for ~90 seconds. Similar temporally coincident 
signals are seen on nearby sensors 6 and 15 (Fig. 1, Fig. S1).  

Figures 2B and 2D show glacier deflection for a calving event on DOY 212 (Fig. 1). We 
observe similar responses for all glacial-earthquake / calving events during which GPS sensors 
recording data of adequate quality were located within 500 m of the calved block (a total of 9 glacial 
earthquakes and 8 image pairs). These events occurred on DOY 205, 206 (three events), 207, 211, 
212, and 226 and are observed on multiple GPS sensors (further examples in Fig. S1).  

The earthquake centroid times occur at or near the end of the glacier’s rapid rebound phase, 
such that the upglacier earthquake force aligns in time with the reverse motion of the glacier. The 
horizontal glacier deflection is consistent with a model in which the reaction force on the glacier due 
to seaward acceleration of the newly calved iceberg compresses the glacier front elastically. The 
front then rebounds as the force decreases and reverses polarity during iceberg deceleration. The 
glacier front thus acts as a spring, compressing and re-extending in phase with the applied force, 
which is the horizontal component of the seismic source.  

The downward deflection of the glacier front occurs in a region where vertical motion of the 
GPS sensors at tidal frequencies shows the glacier is ungrounded and seawater is present beneath it. 
Iceberg rotation is likely to cause a low-pressure zone in the opening cavity between the iceberg and 
the glacier front. This pressure decrease would lower the load on the bedrock, resulting in an 
upward force acting on the solid Earth, as observed in our seismic analysis. A pressure decrease near 
the calving front would apply a net downward force on the glacier terminus, lowering the glacier 
surface in a manner similar to that occurring twice each day when the ocean tides draw down the 
water level. At sensors experiencing earthquake deflections, we observe variations in vertical 
position due to the water tide of ~0.1 m per 1 m of tidal variation. The calving-related deflection of 
the glacier surface is ~0.1-0.16 m, suggesting a change in water pressure equivalent to a water-
height change of ~1-1.6 m, or roughly 1-2 x 104 Pa. 

No observations of pressure or water-level variations are available from the region in the 
fjord immediately in front of the glacier, where thick ice mélange (Fig. 1) prohibits instrumentation. 
However, results from analog laboratory experiments allow us to evaluate our inferences (22). A 
model glacier “terminus” was secured at one end of a water-filled tank, and plastic “icebergs” made 
from low-density polyethylene were placed flush against the terminus and allowed to capsize 
spontaneously under the influence of gravitational and buoyancy forces (24; Fig. 3). Sensors 
embedded in the model glacier terminus monitored pressure in the water column and the force 
exerted on the terminus during iceberg capsize.  

The measured force on the terminus as the iceberg begins to capsize is oriented in the 
upglacier direction and slowly increases as the iceberg rotates. As the iceberg nears horizontal, the 
force decreases rapidly. Pressure at the terminus decreases as the iceberg  
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Fig. 3. Scaled laboratory data from glacier “terminus” during “iceberg” capsize event compared to field 
observations. (A) Horizontal displacement scaled from force (black line) compared to downflow GPS data 
(blue). (B) Vertical displacement scaled from pressure (black line) compared to vertical GPS data (red). Errors in 
laboratory data are standard deviation from repeated capsize events. GPS data as in Figure 2A. Photographs 
show stage of capsize at times marked by dashed lines and (solid gray line) tc. Aspect ratio of model iceberg is 
0.22. 

 

rotates, increasing again as the iceberg nears horizontal. Once the iceberg loses contact with the 
terminus, the measured force and pressure begin to oscillate due to induced wave action in the 
tank.  

We scaled up the measured forces and pressures to match the dimensions of icebergs calved 
at Helheim Glacier (Fig. 3). The laboratory data scale by powers of the ratio of the iceberg height in 
the field to the iceberg height in the laboratory (20,24). The scaled peak force agrees well with 
typical values inferred from earthquake analysis (~1011 N). The scaled peak pressure drop (~5x104 Pa) 
applied over an area corresponding to the iceberg’s map-view dimensions yields an upward-directed 
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force consistent with the seismically inferred vertical force component, such that the total force 
acting on the solid Earth is oriented ~10° above the horizontal. Computation and inversion of 
synthetic seismograms from the scaled force and pressure data confirms the consistency of the 
laboratory model with real-world data. 

We use the scaled force and pressure to predict the deformation of the terminus region 
(22). The total force Ftot per unit area AF acting on the calving region produces a horizontal, linear 
deflection orthogonal to the calving front Ftot/AF = EΔL/L, where E is the Young’s modulus of glacial 
ice. The value of L is chosen to provide the best match to the glacier position data. This length-scale 
likely represents the distance from the terminus to the grounding zone. We model the ungrounded 
section of the glacier as an elastic beam of length L loaded by the vertical force due to the pressure 
drop. The inferred distances L are a few km, consistent with values estimated from GPS data. 

Glacier displacements predicted from the scaled laboratory data for iceberg dimensions 
corresponding to a calving event on DOY 206 (Fig. 1, Fig. 2A) are shown in Fig. 3. Agreement with the 
observed glacier displacement is very good, particularly during the time over which the force acts in 
the upglacier direction (until the earthquake centroid time). After this time, the laboratory-derived 
prediction is dominated by oscillations of the water column in the tank, which does not contain the 
thick layer of ice mélange present in Helheim Fjord and expected to damp such high-frequency 
oscillations.  

We conclude that as large icebergs rotate and accelerate away from the glacier calving front 
(Fig. 4), the reaction force, which is the horizontal component of the earthquake force, compresses 
the glacier front elastically, overcoming normal downglacier flow and temporarily reversing the 
motion of the glacier. Hydrodynamic interaction of the iceberg with the fjord water rapidly reduces 
pressure behind the rotating iceberg, resulting in an upward force on the solid Earth that is the 
vertical force observed in the earthquake. The lowered water pressure draws down the ungrounded 
glacier margin, pulling the glacier surface downward during the earthquake.  

 

Fig. 4. Cartoon of glacier terminus during calving event. Glacier deflection caused by capsizing iceberg shown 
relative to initial position (dotted line). Acceleration of iceberg to right exerts a force in the upglacier direction 
(left), leading to reverse motion of the GPS sensors (green star). Reduced pressure behind the iceberg (“L”) 
draws water from beneath the glacier and from the proglacial fjord, pulling the floating portion of the glacier 
downward and exerting an upward force on the solid Earth.  

 

Our results document the forces active during an increasingly important class of calving 
events and definitively identify the processes that cause glacial earthquakes. This understanding of 
glacier calving and glacial earthquakes opens the potential for remote, quantitative characterisation 
of iceberg calving and calving rates, as well as improved models for ice-ocean interaction.  
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