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Abstract: Cylindrical structures possess the advantage of responding multi-directional vibrations compared 

with cantilevers. In this paper a double-wall cylindrical energy harvesting device is proposed to scavenge 

multi-mode mechanical vibrations. Compared with the single wall energy harvester, it is found from the 

finite element analysis that the double wall device generates higher output voltage, and responds to a wider 

oscillating frequency range. These advantages have been validated by experiments, where the open circuit 

output voltage for eight resonating modes has been characterized. For further investigation, dynamic 

responses of the device at these eight resonating modes have been characterized under various excitations. It 

is seen from the experiment that as the driven voltage of the excitation source increases from 5 V to 16 V, the 

output voltage increases and the corresponding quality factors reduces. 
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1. Introduction  

During the past decades, energy harvesters have been widely used in wireless sensor networks [1], 

mechanical structure health monitoring systems [2] and micro-air-vehicles powering units [3]. Energy 

harvesting can be achieved by transferring solar [4], thermal and mechanical energy [5] into electricity. Since 

the mechanical vibration is commonly available, the vibrational energy harvesting devices have been 

intensively researched. Vibrational energy harvesters are normally categorized into three types in terms of 

transduction mechanism, which are electromagnetic [6], electrostatic [7] and the piezoelectric [8]. This paper 

focuses on the piezoelectric vibrational energy harvesting devices. Several mechanical structures and 

operating mechanisms have been reported for piezoelectric vibrational energy harvesters. The rectangular 

cantilever is a general form of the energy harvesting device as it is easy to realize [9]. With the same volume 

of rectangular beam, Roundy et al. [10] devised a triangular trapezoidal beam achieving a better output 

performance. However, the cantilever devices are only effective in the first bending mode. In order to harvest 

multiple oscillating frequencies, Liu et al. [11] have fabricated an array of piezoelectric cantilevers with 

different lengths to respond more resonating frequencies. Schaufuss et al. [12] reported an approach by 

adjusting the position of the auxiliary mass to tune the external vibrating frequency. Liu et al. [13] proposed 

a double-mode energy harvester by placing an oscillator at the tip of the cantilever beam. Zhou et al. [14] 

achieved a novel energy harvester that enables harvesting energy from multimode resonance by introducing 

the multimode intermediate beam. Although the above developments have successfully improved the 

working efficiency, their configurations were complex and should be operated with the help of the auxiliary 

systems. In addition to the cantilever beam, Lee and Youn [15, 16] introduced the concept of the multimodal 

energy harvesting skin to harvest the mechanical energy from multimode vibrations. Spiral-shape cantilever 

beam have been designed to harvest multiple resonant frequencies [17] [18]. The piezoelectric cylindrical 

shell can be a potential structure to harvest multi-modal vibrations in real applications as it can be easily 
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excited into both transverse and thickness shear vibrations [19, 20]. Piezoelectric cylindrical shell has been 

widely used in ultrasonic motors [21], sensors [22] and resonators [23]. Models of tri-axial sensors and 

actuators made of a single piezoelectric cylindrical shell have been reported by Wakatsuki et al. [24] Mazeika 

et al. proposed a new cylindrical piezoelectric actuator in which electrodes were segmented into several 

patches for verifying multimode responses [25]. Li and Tzou demonstrated a piezoelectric cylindrical 

vibrating energy harvester model to show the basic multi modal energy distribution in numerical methods 

[26]. This mechanism was later verified by their experimental study in a piezoelectric ring energy harvester 

in 2013 [27]. However, their models are all in simple support boundary conditions, which is different with 

our proposed clamped-free prototype. Furthermore, double cylindrical shells are reported in this paper for 

improving output electrical power and widening operation frequencies. The mechanical dynamic and 

vibration behaviors have been investigated in [28] [29] [30], it is a new approach to use it in energy 

harvesting applications. The rest of this paper is structured as follows: Schematic design of the double wall 

cylindrical structure is shown in section 2. Numerical analysis is conducted in section 3. It follows by the 

description of experiment in section 4. Finally, conclusions are drawn in section 5. 

 

2 Schematic design of the device 

 

Schematic configuration of the double-wall piezoelectric cylindrical energy harvester is shown as Figure 

1(a). This device mainly consists of two steel cylindrical shells and a fixture. The fixture was machined into 

an L-shape so that the inertial masses move perpendicularly to the longitudinal axis of the cylinder to induce 

transverse motions. In order to enhance the fixture stiffness, two triangular ribbed plates were also welded 

along the L-shape plate edges. One end of the inner cylinder (Figure 1(c)) was welded to the fixture directly, 

and the other end was attached with a proof mass. To make sure the outer cylinder gets through the inner 
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shell, the proof mass was placed inside of the inner cylinder. Similarly, one end of the outer cylinder (Figure 

1(d)) was welded through a square connecting plate with screw holes and the other end was attached with a 

proof mass. The outer cylindrical shell was assembled co-axially with the inner wall. The whole assembled 

structure is excited with a vibrating source. Figure 1(b) shows the cross-section of the double-wall 

cylindrical device. The symbols pioi ttRR ,,,,   and ot  represents the inner wall radius, outer wall radius, 

curved angle of piezoelectric layer, inner wall thickness, piezoelectric layer thickness and outer wall 

thickness. The values for them are 3mm, 5mm, 75.4°, 0.8mm, 0.11mm and 0.8mm respectively. Figures 1(c) 

and 1(d) show the detailed structures of both the inner and outer cylindrical shells. Lengths of the inner 

cylindrical shell, piezoelectric layer and outer cylindrical shell are 101mm, 50mm and 100mm. The radius 

and length of the inner proof mass are 3mm and 15mm. The inner radius, outer radius and length of outer 

proof mass are 5.8mm, 20.8mm and 15mm. The piezoelectric layer is placed 10mm away from the fixed end 

to leave enough space for the electric wire. Based on the direct piezoelectric effect, the vibration of the 

structure will induce charges on the surface of the piezoelectric layer. Simulation of the structure is 

conducted in the following section. 

 

3 FEM simulations of cylindrical energy harvesting device 

 

FEM (finite element method) simulations of the proposed cylindrical device are conducted using the 

software package ANSYS 12.0. In the numerical simulation, the piezoelectric layer is modeled by element 

Solid226. The external load resistor is included in the simulation using element type Circu94. Solid186 is 

used to model remaining mechanical structures. Dimensions of the model are set according to the design 

dimensions of the device. As for the material properties, we choose the PVDF for the piezoelectric material 

and mild steel for cylindrical substrate and remaining mechanical structures. The density, Poisson ratio and 
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Young’s modulus of mild steel are 7860kg/m
3
, 0.3 and 210 GPa respectively. As the curved piezoelectric layer 

is polarized in the radius direction, and cylindrical coordinate system in ANSYS is set as  zr ,,  in default, 

the stiffness matrix 
E

ANSYSc , the piezoelectric coupling matrix ANSYSe  and the dielectric coefficient matrix 

ANSYS  are detailed in equation (1). Values for the elasticity stiffness, the piezoelectric stress coefficients and 

the dielectric coefficients of PVDF material are designated as Gpaccc 933.3332211  , 

Gpacccccc 6075.1322331132112  , Gpaccc 1628.1665544  , 
2

2313 0744.0 mCee  , 

2

33 0558.0 mCe  , 12332211   . 
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Electrodes across the surfaces of PVDF films are modeled as coupled elements. From the experimental 

observation, as the driving frequency is over 1254 Hz, both the output voltage and power become much 

smaller. Hence in the modal analysis, the range of the simulation conducted is set within 0 – 1200 Hz. 

Calculated resonant frequencies of the first 7 modes of a single cylindrical shell device are 156.336 Hz, 

173.121 Hz, 362.856 Hz, 403.665 Hz, 896.086 Hz, 913.901 Hz and 1160 Hz. The corresponding mode 

shapes of the piezoelectric layer are shown as Figure 2, in which the first mode is the torsional mode, and 

second and sixth modes are pure bending modes in vertical direction. As for the third and fourth modes, 
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bending and torsional modes exist simultaneously, while the torsional motion dominates in the third mode 

and the bending motion dominates in the fourth mode. In Figure 2(e), both the vertical and lateral bending 

modes can be observed in the fifth mode. For the seventh mode, only extension motion along the length 

direction can be obtained. As for the double wall cylindrical structure, there are ten modes that can be 

obtained and the resonant frequencies are calculated to be 57.475 Hz, 63.768 Hz, 253.726 Hz, 343.428 Hz, 

419.335Hz, 422.48Hz, 823.441 Hz, 861.79 Hz, 1032 Hz and 1200 Hz respectively. Double-wall structure has 

more modes number than the single wall structure, since the response spectral density of the displacement of 

the piezoelectric patch on the inner wall is increased by the coupling effect from the outer wall according to 

the equation (35) in the reference [28].  As the extra resonant modes of the double wall structure are caused 

through the coupling between the inner and the outer cylindrical shells, the frequencies of the extra modes 

depending on the resonant modes of the outer shell, which are lower than those of the pure single wall 

structure since the outer cylindrical shell with a large proof mass attached has lower resonant frequencies. 

Similar to the results shown in Figure 2, pure vertical bending modes could be observed in Figures 3(b), 3(e) 

and 3(g). The torsional motions exist in first, fourth and sixth modes. For the third mode, there exists both 

vertical bending and longitudinal extension motions. Additionally, torsional and vertical bending motions 

both appear in the eighth mode. As for the ninth and tenth modes, the lateral bending and torsional motions 

are obtained. Harmonic analyses of both devices are also conducted for an intuitive comparison. In the 

simulation, the displacement of the harmonic external excitation set to 0.6 μm is because with this external 

excitation the output voltage at the resonant modes in the harmonic analysis is comparable with experimental 

results. Also the displacement value of the external excitation in micrometer scale can be found in reference 

[31] where the external excitation is set at 3.96 μm in the finite element analysis. The external load resistor is 

set to be 2010  for open circuit. The driving frequency is swept from 0.5Hz to 1300 Hz with a step of 

0.5Hz. Figures 4(a), 4(b) and 4(c) show the displacement in x, y and z directions of points along path 1 
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highlighted by a red line on the surface of the piezoelectric layer. From Figure 4 (a), it is obtained that the 

inner cylinder of the double wall devices vibrates at around 57.5 Hz, 64 Hz, 254 Hz, 343 Hz, 419.5Hz, 823.5 

Hz, 862 Hz, 1031.5 Hz and 1200 Hz through the harmonic analysis, which coincides with results of modal 

analysis. In Figure 4(b), bending flexures along the path are observed at 63.5Hz, 253Hz, 419.5Hz, 823Hz 

and 1031.5Hz. Especially at 63.5 Hz, 419.5 Hz, 823Hz and 1031.5Hz, the corresponding maximum values of 

y displacements are 0.52µm, 1.12µm, 8µm and 0.60µm, compared with displacements in x and z directions, 

whose values are calculated to be 0.17µm, 0.11µm, 1.33µm, 0.37µm, and 0.12µm, 0.04µm, 0.92µm, 0.24µm 

respectively. With regard to the motions at 254 Hz, although the device vibrates both in the y and z directions 

with maximum values of 0.51µm and 0.22µm, the displacement in the x direction is much larger 1.04µm. 

For the frequencies of 57.5 Hz, 343Hz and 862 Hz, the displacements in x, y, and z directions are (0.025µm, 

0.094µm, 0.11µm), (0.07µm, 0.13µm, 0.087µm), and (0.54µm, 3.01µm, 1.35µm) respectively. From these 

results, it is found that the x axis displacement is relative small, which indicates that there is very small 

extension along length direction. Meanwhile, for 57.5 Hz and 343Hz, since the y and z axis displacements 

are comparable with each other, thickness shear mode across the y-z cross-section is induced. However, as 

the y displacement at 862 Hz is relatively large, it is primarily bending rather than the thickness shear strain. 

At 1200Hz, although values for the y and z displacements (0.3µm and 0.38µm respectively) are found to be 

comparable, the x displacement (0.9µm) is almost three times of them. Finally, it should be noted that the 

resonant frequency at 422.5 Hz is missing. This is because the mode at 422.5 Hz is too close to the mode at 

419.5 Hz. In order to obtain a better idea of the mechanical energy in material and its potential for 

piezoelectric energy harvesting, the displacement response has been normalized with respect to the base 

acceleration corresponding to all resonant modes as shown in table 1. From the table, it is observed that the 

maximum displacement responses among the first six modes are larger than the other modes, indicating that 

the converting efficiencies at the first six modes are higher.  
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Table 1 Displacement response normalized with respect to the excitation acceleration for the double wall 

cylindrical device 

 x- direction (µm/g) y- direction (µm/g) z- direction (µm/g) 

1
st
 mode at 57.5 Hz 0.32 1.20 1.41 

2
nd

 mode at 64 Hz 1.75 5.37 1.24 

3
rd

 mode at 254 Hz 0.68 0.33 0.14 

4
th
 mode at 343 Hz 0.03 0.05 0.03 

5
th
 mode at 419.5 Hz 0.03 0.27 0.01 

6
th
 mode at 823.5 Hz 0.08 0.50 0.06 

7
th
 mode at 862 Hz 0.03 0.17 0.08 

8
th
 mode at 1031.5 Hz 0.01 0.02 0.01 

9
th
 mode at 1200 Hz 0.03 0.01 0.01 

 

Peak-to-peak output voltages across the piezoelectric layers in both configurations are also obtained. It is 

found that the first and second peaks of the output voltage of the double-wall cylindrical device at 64Hz and 

253.5 Hz are 0.7 mV and 3.1 mV respectively. With the driving frequency increases to 420Hz, the output 

voltage is 73.7 mV. The output voltage is 337.5 mV at the transverse vibration frequency of 823.5 Hz. The 

output voltages, 41.3 mV and 62.9mV, of the fifth (1041.5Hz) and sixth mode (1208.5 Hz) are obtained 

respectively. Correspondingly, output voltages of 9.2 mV, 5.9mV, 14.6 mV, 278.9 mV and 56 mV of the 

single cylindrical device are obtained when the driven frequencies are at 173 Hz, 363 Hz, 404.5 Hz, 914.5 

Hz and 1168Hz respectively. From the obtained results, we can relate the output voltages as shown in Figure 
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5 to the longitudinal and transverse bending motions. Comparing the performances of these two 

configurations, it is found that the output voltage at 823.5 Hz of the double wall cylindrical device is 1.21 

times higher than that of the single wall device at 914.5 Hz. Similar as the displacement response, the output 

voltage of both devices are normalized with respect to the input acceleration. The results are shown as Table 

2. There are five modes that can be utilized for the single wall device, whose output voltage response are 

ranged from 1.89 mV/g to 14.09 mV/g. From results of double wall devices, there are six modes ranging 

from 1.61 mV/g to 21.03 mV/g. Overall the double-wall device has more induced resonant modes and wider 

output ranges at the same external excitation level . 

Table 2 Output voltage responses normalized with respect to the base acceleration for both single and double 

wall cylindrical devices 

 1
st
 mode 2

nd
 mode  3

rd
 mode 4

th
 mode 5

th
 mode  6

th
 mode 

Single wall 12.99 mV/g 

@ 173 Hz 

1.89 mV/g 

@ 363 Hz 

3.77 mV/g 

@ 404.5 Hz 

14.09 mV/g 

@ 914.5 Hz 

2.83 mV/g 

@ 1168 Hz 

 

Double wall 7.23 mV/g 

@ 64 Hz 

2.04 mV/g 

@ 253.5 Hz 

17.66 mV/g 

@ 420 Hz 

21.03 mV/g 

@ 823.5 Hz 

1.61 mV/g 

@ 1041.5 Hz 

1.82 mV/g 

@ 1208.5 

Hz 

 

4 Experiments 

 Figure 6 shows the experimental setup including: (1) TTi TG 1010A function generator, (2) mechanical 

shaker (LDS V406), (3) Tektronix TDS 1001B oscilloscope and (4) Agilent 34405A digital multimeter 

(DMM). Figure 6(b) is the zoomed out figure for the double wall cylindrical energy harvesting device. The 

output voltage was taken from the oscilloscope. When conducting the harmonic measurement of the device, 

the driven frequency is swept from 15Hz to 1275Hz, and the driving voltage for the shaker is set at 12V. All 
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the external load resistances are characterized using the Agilent 34405A digital multimeter.  

 

4.1 Measurements of the single wall harvester 

 

In order to demonstrate the advantages of the double-wall piezoelectric cylindrical energy harvester, the 

single wall device was firstly characterized for comparison. The first step was to conduct a frequency 

sweeping analysis with an open electric circuit. In order to avoid lengthy measurement, the swept step is set 

to be 1 Hz near the resonant frequencies and 5Hz far away from the resonant points. Figure 7(a) and 7(b) 

show the output peak-peak voltage and root mean square root voltage versus the excitation frequency. From 

the results, it is observed that the fundamental resonant frequency is 154.6 Hz where peak-peak and RMS 

values are 276 mV and 81.2 mV. The ratio between these two values is 3.4, which is a little different from the 

theoretical ratio 2.828(
rmspeakpeak VV 22

). The difference can be explained as the output voltage is not an 

ideal sinusoidal wave. The varying trend of output voltage versus frequency relationship is obvious in the 

figure. In addition, there are several small fluctuations around 112 Hz, 424Hz, 738Hz, 926Hz in circled areas. 

That is probably due to that bending modes are not being fully excited. The optimum load resistance can be 

determined at the resonant frequency 156.3 Hz. In order to conduct a systematic analysis on the relationship 

between the output performance and the load resistance, the selected resistances are varied from 9.79 kΩ to 

53.7 MΩ. From Figures 8(a) and 8(b), it is observed that the output voltage rapidly increases with the load 

resistance from 9.79 kΩ to 5.56 MΩ. After that, the output voltage will keep steady at 0.36 V and 0.115 V 

respectively. From the output voltage U and the load resistance R, the output power P is calculated as 

R

U
P

2

            (2) 

Figures 8(c) and 8(d) illustrates the output power versus the load resistance in the logarithmic scale. The 

curves are Gaussian shaped, where the maximum peak-to-peak and RMS values are 44.4 nW and 3.94 nW. 
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The corresponding optimum resistance is 1.05 MΩ.  

 

4.2 Characterization of double-wall harvester 

 

Compared with the single wall piezoelectric energy harvester, the double wall harvester shows more 

resonant modes. Frequencies for these resonant modes are 48Hz, 92Hz, 620Hz, 860Hz, 948Hz, 1079Hz, 

1135Hz and 1254Hz respectively. The peak-peak output voltages corresponding to these frequencies are 

0.286 V, 0.113 V, 0.34V, 0.416 V, 0.214 V, 0.136 V, 0.372 V and 0.264 V. RMS voltages are 0.0548 V, 0.0265 

V, 0.103 V, 0.13 V, 0.0597 V, 0.0336 V, 0.115 V and 0.0768 V. When the driving frequency is tuned over 

1300 Hz, no higher modes can be observed. Combined with Figures 5, 7 and 9, it is concluded that although 

the experimental results of resonant frequencies do not exactly match with the numerical analysis, the similar 

trends of voltage responses are still justified both for single wall and double wall devices. From the data 

shown in Figures 9(a) and 9(b), the Q factor is calculated through 

i

r

f

f
Q i


        (3) 

Where 
ir

f  and if  represent resonant frequency and half power bandwidth respectively for mode i. Q 

factors corresponding to the eight modes are calculated to be 43.78, 19.1, 97.49, 85.85, 48.6, 72.16, 390.36, 

and 403.49. Low quality factor values indicate the device has wider response frequency band, which is 

advantageous for harvesting more environmental vibrations. Table 5 summarizes the quality factors for the 

double wall device. The relationship between the output voltage and the load resistance for the double wall 

device has been characterized as shown in Figures 10(a) and 10(b). With increasing external load resistance, 

the output voltage increases abruptly at the beginning. When the resistance reaches up to 2.642 MΩ, the 

voltage gets saturated. It is seen that the output voltages at 614 Hz, 866 Hz, 1136 Hz are about two times 
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higher than other modes. This may be attributed to the bending motions of the piezoelectric layer dominating 

in these modes. The output power versus the load resistance is shown in Figures 10(c) and 10(d). The 

optimum load resistances, 1.136 MΩ, 1.05 MΩ, 491.7 KΩ, 427 KΩ, 310.96 KΩ, 310.96 KΩ, 310.96 KΩ and 

310.96 KΩ, corresponding to these eight modes have been obtained. As the external load resistance 

corresponding to the maximum output power is calculated by 1/(ωC), and the capacitance C is the generated 

charge divided by the output voltage V/(ωQ). ωQ is equal to the amplitude of the AC current. Therefore 

when the resonant frequency increases, the optimal load resistance decreases.  The maximal output power 

appears at 1136 Hz where the value for peak-peak power is 134 nW. The maximum peak-peak output powers 

for 48 Hz, 91 Hz, 614 Hz, 866 Hz, 926 Hz, 1056 Hz and 1254 Hz are 13.54 nWatt, 6.72 nW, 107.59 nW, 

81.02 nW, 23.56 nW, 14.7 nW and 54.35 nW, and maximum RMS output powers are 0.499 nW, 0.358 nW, 

9.97 nW, 7.45 nW, 5.89 nW, 4.79 nW and 4.64 nW respectively. The result of optimum resistance versus the 

resonant frequency is shown in Figure 11.  

 

In order for a clear comparison, the output voltages of the two devices are normalized with respect to the 

base acceleration (characterizing the efficiency), and the results are shown in tables 3. It is found that with 

the increased external driving frequency, the normalized output voltage is undermined. The first five modes 

having relatively large output are usable. While for the double wall device, there are eight modes that are 

usable. Table 4 shows the results of output powers normalized with respect to the base acceleration for both 

single and double wall cylindrical devices. For the single wall device, only the mode at 156.3 Hz can be 

examined where the output power with respect to the base acceleration is 4.61×10
-5

 (nW·m)/g. As for the 

double wall device, the result is ranging from 3.34×10
-7

 to 1.49×10
-4

 (nW·m)/g. With the driving frequency 

increases, the output power decreases gradually from mode 1 to mode 6.  
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Table 3 Output voltage responses normalized with respect to the base acceleration for both single and double 

wall cylindrical devices 

 1st mode 2nd mode  3rd mode 4th mode 5th mode  6th mode 7th mode 8th mode 

Single wall 1.54×10-7 

(V·m)/g 

@ 112 Hz 

2.93×10-7 

(V·m)/g 

@ 154.6 Hz 

1.05×10-8 

(V·m)/g 

@ 424 Hz 

5.26×10-9 

(V·m)/g 

@ 738Hz 

3.61×10-9 

(V·m)/g 

@ 926 Hz 

   

Double wall 3.15×10-6 

(V·m)/g 

@ 48 Hz 

3.39×10-7 

(V·m)/g 

@ 92 Hz 

2.24×10-8 

(V·m)/g 

@ 620 Hz 

1.43×10-8 

(V·m)/g 

@ 860Hz 

6.04×10-9 

(V·m)/g 

@ 948 Hz 

2.96×10-9 

(V·m)/g 

@ 1079 Hz 

7.32×10-9 

(V·m)/g 

@1135 Hz 

4.26×10-9 

(V·m)/g 

@1254 Hz 

 

 

Table 4 Output power responses normalized with respect to the base acceleration for both single and double 

wall cylindrical devices 

 1st mode 2nd mode  3rd mode 4th mode 5th mode  6th mode 7th mode 8th mode 

Single wall  4.61×10-5 

(nW·m)/g 

@ 156.3 Hz 

      

Double wall 1.49×10-4 

(nW·m)/g 

@ 48 Hz 

2.06×10-5 

(nW ·m)/g 

@ 91 Hz 

7.24×10-6 

(nW ·m)/g 

@ 614 Hz 

2.74×10-6 

(nW ·m)/g 

@ 866Hz 

6.97×10-7 

(nW ·m)/g 

@ 926 Hz 

3.34×10-7 

(nW ·m)/g 

@ 1056 Hz 

2.63×10-6 

(nW ·m)/g 

@1136 Hz 

8.76×10-7 

(nW ·m)/g 

@1254 Hz 

 

The multimode response of presented device is attributed to the circular cross-section and the large 

aspect ratio of cylinders, which makes it easy to be excited in both circumferential and longitudinal 
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directions. Especially for longer cylinder, more longitudinal and bending modes can be seen [25]. It should 

be noted that the L-shaped connection could introduce some energy loss through its oscillations, which can 

be overcome by further optimized mechanical designs. Vibrations of the inner cylinder can be coupled into 

the outer cylinder and vise versa through the mass attached to the end of the inner cylinder by knocking 

effect. This knocking is a potential advantage as more resonating modes can be generated. Although the 

harvested power is only at level of 100 nW, it is enough to power the 32 kHz quartz oscillator [32]. 

Furthermore, it is possible to miniaturize it into much smaller scales using micromachining processes. 

 

4.3 Dynamic response of double-wall cylindrical energy harvesting device 

 

It is necessary to characterize the output performance of the device under different driven voltages. 

Figures 12(a)-12(h) demonstrate the relation between peak-peak output voltage and the driving frequency for 

different excitation amplitudes, 5 V, 10 V and 16 V. The frequency band width in the measurement at each 

mode is set to be 41 Hz. External resistances for the eight resonant modes are all set to be optimum 

resistances, which are 601 KΩ, 601 KΩ, 491.7 KΩ, 491.7 KΩ, 427 KΩ, 427 KΩ, 310.96 KΩ and 310.96 KΩ 

respectively. The experiment has been repeated dozens of times, which caused shifting of the optimum load 

resistance at the first two modes. While the load resistances for the other modes still match with previous 

characterizations. Measurements show that the output voltages at the first mode, second mode, fifth mode, 

sixth mode and eighth mode are lower than the voltages at third, fourth and seventh mode. Furthermore, the 

output voltage increases with the increasing external driving voltage. Figure 12(a) shows the peak-peak 

output voltages corresponding to driving voltages of 5 V, 10 V and 16 V are 63.2 mV, 88 mV and 110 mV 

respectively, and the corresponding resonant frequencies are 49 Hz, 49 Hz and 48 Hz. It should be noted that 

there is one Hertz shift when the driven voltage is set at 16 V. The oscilloscope used in the experiment is the 
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40 MHz bandwidth TDS 1001B and the time base range is from 5 ns to 50 s/div, so the smallest frequency it 

can measure is 0.02 Hz. The similar pattern can be found in Figure 12(b). In Figure 12(c), the maximum 

peak-peak voltages are 124 mV at 622 Hz for 5 V driving, 170 mV at 621 Hz for 10 V driving , and 232 mV 

at 619 Hz for 15 V driving. In Figure 12(d), the resonant frequencies for 5 V and 15 V driving are the same at 

859 Hz, where the output voltages are 166 mV and 272 mV respectively. When the device is driven at 10 V, 

the output voltage is 250 mV at 857 Hz. The quality factors are quite different with each other, which are 

106.52, 128.10 and 54.5. In the fifth resonant mode (Figure 12(e)), the resonant frequency shifts down when 

the external voltage increases from 5 V to 15 V. The corresponding resonant frequencies are 957 Hz, 953 Hz 

and 948 Hz. The peak-peak output voltages are shown to be 80.8 mV, 110 mV and 136 mV respectively. And 

the quality factors are 45.55, 52.05 and 43.84. In the sixth mode (Figure 12(f)), the corresponding measured 

resonant frequencies are 1079 Hz, 1078 Hz and 1076 Hz, and the output peak-peak voltages are 62.4 mV, 

84.8 mV and 110 mV. The quality factors are calculated as 34.28, 56.65 and 75.07. For the seventh mode 

(Figure 12(g)), the resonant frequencies for the three external excitations are the same as 1131 Hz. The 

maximum peak-peak voltages are 120 mV, 188 mV and 244 mV. The quality factors are 374.5, 316.81 and 

363.67. In Figure 12(h), the resonant frequencies for 10 V and 15 V driving have two Hertz shift from the 

resonant frequency at 5 V driving. The peak-peak voltage for 5 V driving is 78.4 mV at 1254 Hz. The 

peak-peak voltage for 10 V and 15 V driving are 125 mV and 162 mV respectively. The quality factors are 

257.26, 359.77 and 166.12. From these results, it is found that as the external excitation increases, the output 

voltage will be improved. However, at higher driving voltages the quality factors will usually be undermined 

and more energy will be dissipated in the mechanical vibrations. The quality factors corresponding to all 

modes at these three driving voltages are listed in Table 5. Table 6 summarizes the normalized output power, 

from which it displays the same trend as in Table 4. Furthermore, it provides information about the 

normalized output power varying with the driving voltage from 5 V to 15 V. It means that when the 
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excitation increases, the energy converting efficiency is improved correspondingly. Table 7 compares the 

performance of our model with previous reported prototypes in the viewpoint of energy harvesting from 

multimode mechanical response. Although the normalized output power density range does not show any 

superiority than other types of devices, this work does exhibit a widened response from multimode 

vibrations.      

Table 5 Quality factors of double wall cylindrical devices 

 1st mode 2nd mode  3rd mode 4th mode 5th mode  6th mode 7th mode 8th mode 

Driven @ 5 Volt <1.2 

@ 49 Hz 

<2.24  

@ 92 Hz 

117.17  

@ 622 Hz 

104.92  

@ 859 Hz 

45.55  

@ 957 Hz 

34.28  

@ 1079 Hz 

374.5   

@1131 Hz 

257.26 

@1254 Hz 

Driven @ 10 Volt 19.3  

@ 49 Hz 

<2.22  

@ 91 Hz 

80.95  

@ 621 Hz 

74.06  

@ 857 Hz 

52.05  

@ 953 Hz 

56.65  

@ 1078 Hz 

316.81 

@1131 Hz 

359.77 

@1252 Hz 

Driven @ 15 Volt 19.14  

@ 48 Hz 

13  

@ 91 Hz 

83.88  

@ 619 Hz 

54.40  

@ 859 Hz 

43.84  

@ 948 Hz 

75.07  

@ 1076 Hz 

363.67 

@1131 Hz 

166.12 

@1252 Hz 

 

Table 6 The power normalized with respect to driven frequency for double wall cylindrical device, (nW·m)/g 

 1st mode 2nd mode  3rd mode 4th mode 5th mode  6th mode 7th mode 8th mode 

Driven @ 5 

Volt 

2.768×10-3 6.89×10-4 8.083×10-5 7.595×10-5 1.669×10-5 7.8325×10-6 3.6202×10-5 1.257×10-5 

Driven @ 10 

Volt 

5.53666×10-3 9.0736×10-4 1.5241×10-4 1.7307×10-4 3.1201×10-5 1.4492×10-5 8.8856×10-5 3.2056×10-5 

Driven @ 15 

Volt 

8.738×10-3 1.391×10-3 2.857×10-4 2.039×10-4 4.82×10-5 2.448×10-5 1.497×10-4 5.384×10-5 
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Table 7 Performance comparison between proposed device and previous references 

Reference Volume of piezoelectric 

layer (mm3) 

Resonant frequencies  (Hz) Normalized output power 

density range (nW·m)/( mm3·g) 

Reference [33] 125×105×1.02 804.05/1499.75 1.39×10-7—4.76×10-6  

Reference [34]  
8.5×10×0.127 —stage 1 

8.5×5×0.127—stage 2 

8.5×2.5×0.127—stage 3 

34.5/73.7/124.9 6.48×10-3— 0.1811  

Reference [35] 440  40/140 6.09×10-2—1.32  

Reference [36] 1.675×10-2  380 0—2.05×10-2  

Prototype in this 

work  

50×5×0.11  48/91/614/866/926/1056/1136/1254 3.19×10-8—5.42×10-6  

 

4 Conclusion 

A double-wall piezoelectric cylindrical resonator for harvesting multi-modal mechanical vibrations has 

been presented in this paper. From the numerical analysis, it shows that ten vibration modes have been 

demonstrated. In experiment eight vibration modes are observed and can be utilized for energy harvesting, 

and the rest two modes have no power output possibly due to charge cancellation in torsional deformations. 

Both voltage and power responses corresponding to each resonant mode have been characterized. Through 

the measurement, the outputs for resonant modes of 614 Hz, 866 Hz and 1135 Hz are comparably higher, and 

the outputs at 48 Hz, 91 Hz, 926 Hz, 1056 Hz and 1254 Hz are slightly lower, which could be attributed to 

the mode shape difference. Prototypes of a single and a double wall cylindrical harvester have been 

characterized and compared. By measuring the resonance frequencies, the Q factor, the output voltage, the 

optimum load resistance and calculating the power generated under different driving voltages, it is shown 

that the double wall cylindrical energy harvester has more resonant modes and higher energy converting 



Page 18 of 35

Acc
ep

te
d 

M
an

us
cr

ip
t

18 
 

efficiency. The dynamic response of each resonating mode corresponding to different external excitations has 

also been presented. By comparing the performance of our device with previous reported prototypes in the 

viewpoint of energy harvesting from multimode mechanical response, the widest working frequency range 

(48Hz – 1254 Hz) and the most number of workable oscillation modes have been demonstrated. 
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List of Figure Captions: 

Figure 1. (a) Schematic diagram of the double-wall cylindrical energy harvesting device, which includes 1, 

L-shape fixture; 2, connecting plates used to connect outer cylinder with the fixture; 3, ribbed plates to 

enhance the stiffness of L-shape fixture; 4, screws to co-axially match the outer hollow cylinder with inner 

cylinder; 5, piezoelectric cylindrical patch; 6, outer hollow cylinder; 7, proof mass of outer cylinder; 8, inner 

hollow cylinder; 9, proof mass of inner cylinder; 10, screw holes to connect the assembled platform with 

vibrating shaker. (b) Cross-section at position A –A shown in figure 1(a), where pioi ttRR ,,,,  and ot  

denote inner wall radius, outer wall radius, curved angle of piezoelectric layer, inner wall thickness, 

piezoelectric layer thickness and outer wall thickness, (c) inner cylindrical shell and (d) outer cylindrical 

shell. 

 

Figure 2. Mode shapes of the piezoelectric layer of the single wall cylindrical device. 

 

Figure 3. Mode shapes of the piezoelectric layer of double wall cylindrical device. 

 

Figure 4. The displacement of the side edge of the piezoelectric patch (highlighted in red lines) on the double 

wall cylindrical device. (a), x displacement versus frequency; (b), y displacement versus frequency; (c), z 

displacement versus frequency. 

 

Figure 5. Open circuit output voltages of single cylindrical and double cylindrical devices versus driven 

frequencies. 

 

Figure 6. Experimental setup for double-wall piezoelectric cylindrical energy harvesting device. (a) The 

whole measured system including (1) TTi TG 1010A function generator, (2) mechanical shaker(LDS V406), 

(3) Tektronix TDS 1001B oscilloscope; (4) Agilent 34405A digital multimeter(DMM); (b) Zoomed out 

figure for the double wall cylindrical energy harvesting device. 

 

Figure 7. Harmonic analysis of inner cylindrical energy harvesting device, (a)Peak-Peak voltage output; (b) 

RMS voltage. 

 

Figure 8. (a) Peak-Peak voltage versus load resistance; (b) RMS voltage versus load resistance. (c) Output 

peak-peak power versus load resistance; (d) Output RMS power versus load resistance. 

 

Figure 9. (a) Harmonic analysis of double-wall cylindrical energy harvesting device, Peak-Peak voltage 

output; (b) Harmonic analysis of double-wall cylindrical energy harvesting device, RMS voltage output. 

 

Figure 10. (a) Peak-Peak voltage versus load resistance at different modal resonant frequencies; (b) RMS 

voltage versus load resistance at different modal resonant frequencies. (c) Output peak-peak power versus 

load resistance in logarithmic scale for multiwall cylindrical energy harvesting device; (d) Output RMS 

power versus load resistance in logarithmic scale for multiwall cylindrical energy harvesting device. 

 

Figure 11. Optimum load resistance versus resonant frequency. 

 

Figure 12. Output dynamic response corresponding to eight resonant modes at different external excitations. 
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List of Figure Captions: 

 

Figure 1. (a) Schematic diagram of the double-wall cylindrical energy harvesting device, which 

includes 1, L-shape fixture; 2, connecting plates used to connect outer cylinder with the fixture; 3, 

ribbed plates to enhance the stiffness of L-shape fixture; 4, screws to co-axially match the outer 

hollow cylinder with inner cylinder; 5, piezoelectric cylindrical patch; 6, outer hollow cylinder; 7, 

proof mass of outer cylinder; 8, inner hollow cylinder; 9, proof mass of inner cylinder; 10, screw 

holes to connect the assembled platform with vibrating shaker. (b) Cross-section at position A –A 

shown in figure 1(a), where pioi ttRR ,,,,  and ot  denote inner wall radius, outer wall radius, curved 

angle of piezoelectric layer, inner wall thickness, piezoelectric layer thickness and outer wall 

thickness, (c) inner cylindrical shell and (d) outer cylindrical shell. 

 
Figure 2. Mode shapes of the piezoelectric layer of the single wall cylindrical device. 

 

Figure 3. Mode shapes of the piezoelectric layer of double wall cylindrical device. 

 

Figure 4. The displacement of the side edge of the piezoelectric patch (highlighted in red lines) on the 

double wall cylindrical device. (a), x displacement versus frequency; (b), y displacement versus 

frequency; (c), z displacement versus frequency. 

 

Figure 5. Open circuit output voltages of single cylindrical and double cylindrical devices versus 

driven frequencies. 

 

Figure 6. Experimental setup for double-wall piezoelectric cylindrical energy harvesting device. (a) 

The whole measured system including (1) TTi TG 1010A function generator, (2) mechanical 

shaker(LDS V406), (3) Tektronix TDS 1001B oscilloscope; (4) Agilent 34405A digital 

multimeter(DMM); (b) Zoomed out figure for the double wall cylindrical energy harvesting device. 

 

Figure 7. Harmonic analysis of inner cylindrical energy harvesting device, (a)Peak-Peak voltage 

output; (b) RMS voltage. 

 

Figure 8. (a) Peak-Peak voltage versus load resistance; (b) RMS voltage versus load resistance. (c) 

Output peak-peak power versus load resistance; (d) Output RMS power versus load resistance. 

 

Figure 9. (a) Harmonic analysis of double-wall cylindrical energy harvesting device, Peak-Peak 

voltage output; (b) Harmonic analysis of double-wall cylindrical energy harvesting device, RMS 

voltage output. 

 

Figure 10. (a) Peak-Peak voltage versus load resistance at different modal resonant frequencies; (b) 

RMS voltage versus load resistance at different modal resonant frequencies. (c) Output peak-peak 

power versus load resistance in logarithmic scale for multiwall cylindrical energy harvesting device; 

(d) Output RMS power versus load resistance in logarithmic scale for multiwall cylindrical energy 

harvesting device. 

 

Figure 11. Optimum load resistance versus resonant frequency. 

 

Figure 12. Output dynamic response corresponding to eight resonant modes at different external 

excitations. 
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Highlights for the manuscript: “Double-wall piezoelectric 

cylindrical energy harvester” 

 

 A double wall cylindrical structure has been designed, simulated, fabricated, and 

characterized for energy harvesting. 

 

 The device has advantages of multiple resonant frequencies, and capability of 

responding multi-directional environmental vibrations. 

 

*Highlights (for review)
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