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Abstract Based on a recent result on linking stochastic differential equations
on R

d to (finite-dimensional) Burger-KPZ type nonlinear parabolic partial
differential equations, we utilize Galerkin type finite-dimensional approxima-
tions to characterize the path-independence of the density process of Girsanov
transformation for the infinite-dimensional stochastic evolution equations. Our
result provides a link of infinite-dimensional semi-linear stochastic differential
equations to infinite-dimensional Burgers-KPZ type nonlinear parabolic partial
differential equations. As an application, this characterization result is applied
to stochastic heat equation in one space dimension over the unit interval.

Keywords Characterization theorem, Burgers-KPZ type nonlinear equations
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1 Introduction and motivation

The aim of this paper is to characterize the path-independent property of the
density process of Girsanov transformation for infinite-dimensional stochastic
evolution equations (SEEs), a class of semi-linear stochastic differential
equations (SDEs) in infinite dimensions. As a result, we establish a link between
infinite-dimensional SEEs and the infinite-dimensional Burger-KPZ type non-
linear parabolic partial differential equations (PDEs), in the similar way as the
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link of finite-dimensional SDEs to the Burgers-KPZ type nonlinear parabolic
PDEs carried out in [30]. Where in [30], a complete link of finite-dimensional
Markovian type SDEs on R

d as well as on connected complete differential
manifolds to Burgers-KPZ equations has been established, which gives a
characterization of the path-dependence property of Girsanov transformation
for finite-dimensional Markovian type SDEs. In [37], the simple case of one-
dimensional SDEs (with more general conditions on the coefficients) was
discussed in which a generalized Burgers equation has been linked to general
Markovian type SDEs on R.

We notice that in the derivations performed in [30,37], Itô formula plays a
pivotal role. However, due to the complexity of infinite-dimensional stochastic
differential equations, we cannot apply directly the infinite-dimensional Itô
formula (see, e.g., [7, Theorem 4.17, Chapter 4] or [4, Theorem 4.1, Chapter 6])
to the infinite-dimensional SEEs concerned here. In this paper, our first task
is to derive an Itô formula for certain regular functions of the solutions of our
SEEs. We achieve this by utilizing Galerkin type finite-dimensional approxi-
mations of the infinite-dimensional SEEs. With the newly derive Itô formula
in hand, we follow the same line of [30] to prove the necessary and sufficient
conditions for the path-independent property of Girsanov transformation for
the SEEs. We would like to point out that the Itô formula derived in this paper
is also of interest in itself.

Before proceeding further, let us give some motivations for the present
paper. There are two motivations towards our present study on infinite-
dimensional stochastic differential equations. The first motivation comes from
the mathematical study of economics and finance in conjunction with optimiza-
tion problems. In recent years, due to the necessity of stochastic volatility as
the measurement of uncertainty in modeling of financial markets, stochastic
differential equations have received huge attention from both theoretical and
practical aspects, cf. e.g., [17,22,23,28]. The primary point here is to model
the price dynamics or the wealth growth by utilising SDEs, after having
established a so-called real world probability space (e.g., the seminal paper
[2] by Black and Scholes). To an equilibrium financial market, there must
exist a so-called risk neutral probability measure which is absolutely continuous
with the given real world probability measure and it is pivotal to determine the
path-independent property for the associated density process defined by the
Radon-Nikodym derivative [15,16]. It is often encountered in the economical
and financial market models that one should consider agents in large scale that
there are (at least) countably many stocks are treated together so that their
pricing dynamics form an infinite-dimensional SDEs. From the view point
of variational calculus, optimization problems—either in the pattern of
maximizing the utility functions (and/or profits) or in the formulation of
minimizing the cost functions (and/or risk factors)—are in fact linked with the
path-independent property of the pricing trajectories, cf. e.g., [11,38]. Hence,
characterizing the relevant path-independence of the SDEs in terms of (non-
linear) PDEs would be interesting and useful.
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Our second motivation is from the study of infinite interacting particle
systems with stochastic dynamics. To illustrate this point, let us start with
a bit more account of the appearance of classical nonlinear PDEs from
mathematical physics. Since the pioneering work of Burgers in 1930s (cf. e.g.,
[3]), Burgers equation, the simplest nonlinear PDE,

∂u(t, x)
∂t

+ λu(t, x)
∂u(t, x)
∂x

= ν
∂2u(t, x)
∂x2

, (t, x) ∈ [0,+∞) × R,

has received a great attention both in mathematics and physics. Wherein the
parameter λ ∈ R measures the strength of the nonlinearity, ν > 0 stands for
the viscosity, and the (linear) viscous dissipation term on the right-hand side
of the equation is for the sake of softening shock wave phenomena.

Fix d ∈ N, let R
d be the d-dimensional Euclidean space with the inner

product being denoted by 〈·, ·〉. The multidimensional analogue to the above
Burgers equation is the so called higher-dimensional Burgers equation for a
vorticity-free velocity field u : [0,+∞) × R

d → R
d (cf. e.g., [1]) which reads as

follows:
∂u

∂t
+ λ(u · ∇)u = νΔu

where ∇ stands for the space gradient, the dot product is

u · ∇ := 〈u,∇〉,
and

Δ := ∇ · ∇
is the Laplace operator on R

d. Nowadays, Burgers equation is significant in
the mathematical modeling of the large scale structure of the universe with
complexity. The equation appears in many fields like aerodynamics, fluid
dynamics (in particular, hydrodynamics), polymers and disordered systems,
turbulence and propagation of chaos, as well as in shock wave and conserva-
tion laws—to name just a few. Among many interesting and important
investigations, a breakthrough study has been made by three physicists
Kardar, Parisi, and Zhang ([18]) for modeling the time evolution of the profile of
a growing interface with the name of Kardar-Parisi-Zhang (KPZ) equation. The
KPZ equation describes the macroscopic properties of a wide variety of growth
processes, such as growth by ballistic deposition and the Eden model (cf. [19]).
For a more mathematical account of the KPZ equation, the reader is referred
to [14]. The link of the KPZ equation to multidimensional Burgers equation
can be explicated as follows. It is a natural assumption that the field u is often
generated by a potential function (i.e., the profile) u : [0,+∞) × R

d → R :

u(t, ·) = −∇u(t, ·), t ∈ [0,+∞),

which, from the multidimensional Burgers equation, gives the following KPZ
equation for the scalar function u :

∂u(t, x)
∂t

= νΔu(t, x) +
λ

2
|∇u(t, x)|2.
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Clearly, the above KPZ equation describes the large-distance, long-time
dynamics of the growth process specified by a single-valued height u(t, x) on
a substrate x ∈ R

d. It reflects the competition between the surface tension
smoothing forces νΔu(t, x) and λ

2 |∇u(t, x)|2 (the nonlinear term of u represents
the tendency for growth to occur preferentially in the local normal direction
to the surface). On the other hand, when the diffusion coefficient σ ≡ σ0, a
constant, very interesting and new links of (stochastic) multidimensional
Burgers’ equations to (stochastic) Hamilton-Jacobi-Bellman (HJB) equations
and the continuity equation have been thoroughly investigated by Truman and
Zhao [31–33] (see also the early works [10,29] for a bridge between the diffusion
equations and the Schrödinger equation, now called the Elworthy-Truman
formula). In this content, Hamilton-Jacobi continuity equations provide the
key to obtaining asymptotic expansions in ascending powers of σ0 for solutions
of the corresponding heat (and Schrödinger) wave functions in this setting.

Nowadays, because of their ubiquity, the Burgers equation, the KPZ
equation, and the HJB equations (as well as any of their advances studies)
maintain a very hot research topic on both theoretical and applied aspects in
various fields involving disordered systems and non-equilibrium dynamics. The
applied aspect links to many diverse areas ranging from physics, biochemistry,
and climate and ocean studies (cf. e.g., [26,36]), to economical and financial
studies (cf. [5,15,16,27,38]). There are many works in the literature devoted to
analytic aspect of the equations themselves as well as to computational aspect
(cf. e.g., [6,8,9,12,20,21,25] and references therein).

Go a step further, it is well known that a fairly rich class of the large scale
systems is modeled by infinite-dimensional Markovian type semi-linear SDEs
and the associated scaling limits of such systems are determined by KZP type
nonlinear PDEs, cf. e.g., [18,26,36]. Thus, it is very natural to reveal an intrinsic
link between the infinite-dimensional SDEs and nonlinear Burgers-KPZ type
PDEs. In fact, our main result obtained in this paper does provide a direct
link between infinite-dimensional stochastic equations and parabolic nonlinear
PDEs in a persuasive manner, which shows that certain intrinsic properties of
the (infinite) stochastic dynamical systems are indeed characterized by Burgers-
KPZ type equations. This indicates in certain sense that the Burgers-KPZ
type equations are ubiquitous for infinite systems of stochastically dynamical
motions. Actually, this point inspired our investigation of the present work.

In the present paper, we will consider SDEs on a separable Hilbert space.
To our aim, we notice that the methods employed in [37] and in [30] are
Itô formula and Girsanov transformation. However, it is not straightforward to
have Itô formula in infinite-dimensional so we have to use the finite-dimensional
approximation approach here. Another important fact is that in [30,37], it is
required that the diffusion coefficient of the (finite-dimensional) SDEs must
be invertible so that the (unique) solution process of the initial value
problem has a full support of the whole state space. While in infinite-
dimensional situation, the SDEs are driven by cylindrical Brownian motion
and the initial value problem is solvable in the integral formulation which
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requires that the diffusion coefficient as a family of operators (indexed by time
parameter) must be Hilbert-Schmidt operators so that the relevant stochastic
integrals against the cylindrical Brownian motion are well defined. As a matter
of fact, Hilbert-Schmidt operators are degenerate which are no longer
invertible operators. Apparently, this shows that it is not straight forward to lift
the link for finite-dimensional SDEs to that for the infinite-dimensional SDEs.
The current paper is devoted to study this problem for infinite-dimensional
semi-linear SDEs involving a linear unbounded operator generating a
contraction C0-semigroup, where the stochastic equations are formulated in
the mild manner and the Hilbert-Schmidt condition is posed for the convoluted
diffusion coefficient with the associated C0-seimgroup. By utilising Galerkin
approximation, we can transfer our infinite-dimensional equation into a
family of finite-dimensional equations and we can then derive an Itô formula for
certain regular real-valued function of the solutions and further to establish a
link of infinite-dimensional Burgers-KPZ nonlinear parabolic PDEs to infinite-
dimensional Markovian type semi-linear SDEs. Extensions to more general
infinite-dimensional spaces like Banach spaces, multi-Hilbertian spaces, as well
as locally convex topological vector spaces are interesting and will be considered
in the forthcoming works.

The rest of this paper is organized as follows. In the next section, we first
give a brief account of the Galerkin type finite-dimensional approximations for
SDEs on an (infinite-dimensional) separable Hilbert space H. Then we prove
our main result on the characterization of path-independence of the Girsanov
density of the SDEs. The final section is devoted to a consideration of parabolic
stochastic partial differential equations as an example, where we demonstrate
an application of our main result of Section 3.

2 Galerkin type approximation and Itô formula for infinite-dimensional SEEs

Let (Ω,F , {Ft}t�0, P ) be a given filtered probability space satisfying the usual
conditions that (Ω,F , P ) is a complete probability space and for each t � 0, Ft

contains all P -null sets of F and

Ft+ :=
⋂
s>t

Fs = Ft.

We use E to denote the expectation with respect to P.
Given a real separable Hilbert space (H, 〈·, ·〉H , ‖ · ‖H). Let {Wt}t�0 be a

cylindrical Brownian motion defined on (Ω,F , {Ft}t�0, P ) with the following
expression:

Wt := Wt(ω) :=
+∞∑
i=1

βi(t, ω)ei, ω ∈ Ω, t ∈ [0,+∞),

where {βi(t, ω)}i�1 is a family of independent one-dimensional Brownian
motions and {ei}i�1 is a complete orthonormal basis for H which is fixed
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throughout the paper. We have

E(〈Wt, x〉H , 〈Ws, y〉H) = t ∧ s〈x, y〉H , t, s ∈ [0,+∞), x, y ∈ H.

Notice that the covariance operator of our cylindrical Brownian motion is just
the identity operator I on H.

Let L(H) be the collection of all bounded linear operators L : H → H
equipped with the usual operator norm

‖L‖ := sup
‖x‖=1

‖Lx‖H .

Clearly, (L(H), ‖ · ‖) is a Banach space.
Furthermore, we use LHS(H) for the family of all Hilbert-Schmidt operators

L : H → H endowed with the norm

‖L‖HS :=
( +∞∑

i=1

‖Lei‖2
H

)1/2

.

Then (LHS(H), ‖ · ‖HS) is a Hilbert space.
Before proceed further, let us introduce the notion of Fréchet differentiation

for infinite-dimensional spaces which is crucial in our paper. We state it in a
little general form. Given two Banach spaces X and Y, we let L(X,Y) denote the
totality of all bounded linear operators from X to Y. L(X,Y) is a Banach space
endowed with the usual operator norm. A function f : X → Y is called Fréchet
differentiable at x ∈ X, if there exists a bounded linear operator Ax : X → Y

such that
lim

‖h‖X→0

‖f(x+ h) − f(x) −Axh‖Y

‖h‖X

= 0.

If the limit exists, we write ∇f(x) := Ax and call it the Fréchet gradient of f
at x. A function f : X → Y that is Fréchet differentiable for any point x ∈ X is
said to be C1 if the function

∇f : x ∈ X �→ ∇f(x) ∈ L(X,Y)

is continuous. Furthermore, f : X → Y is called a C2 function if ∇f : X →
L(X,Y) is a C1 function. Moreover, we let Dom(∇) denote the totality of all
Fréchet differentiable functions f : X → Y.

We would like to follow [35] to introduce the stochastic equation we are
concerned. Let (A,D(A)) be a linear, unbounded, negative definite, self-adjoint
operator on H generating a contraction C0-semigroup {etA}t�0. Let LA(H)
be the totality of all densely defined closed linear operators L : H → H with
domain Dom(L) ⊂ H such that for every t > 0, etAL extends to a unique
Hilbert-Schmidt operator from H to H, while we use the same notation for the
extension so etAL ∈ LHS(H). Namely,

LA(H) := {L : H → H | etAL ∈ LHS(H), ∀ t > 0}.
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We endow LA(H) with the σ-algebra induced by the family

{L→ 〈etALx, y〉H | t > 0, x, y ∈ H}

from B(R) so that LA(H) is a measurable space.
We are concerned with the following initial value problem for a semi-linear

stochastic differential equation on H :{
dXt = {AXt + b(t,Xt)}dt+ σ(t,Xt)dWt, t > 0,

X0 = x ∈ H,
(2.1)

where
b : [0,+∞) ×H → H, σ : [0,+∞) ×H → LA(H),

are measurable mappings. In this paper, we require the two coefficients fulfill
further that

b : [0,+∞) ×H → H, (t, x) ∈ [0,+∞) ×H �→ etAσ(t, x) ∈ LHS(H),

are C1 with respect to the first variable and C2 with respect to the second
variable, respectively. Here, we would like to point out that one should interpret
([0,+∞), | · |) and (R, | · |) as Banach spaces and the differentiation with respect
to t ∈ [0,+∞) or for R-valued functions on any Banach space follows from
above description. Throughout this paper, we shall assume the following two
conditions.

(H1) Assume that −A has discrete spectrum with eigenvalues

0 < λ1 � λ2 � · · · � λj � · · ·

counting multiplicities such that

+∞∑
j=1

1
λj

< +∞.

We let {ej}j∈N be the corresponding eigen-basis of −A throughout the
paper.

(H2) There exist a constant ε ∈ (0, 1) and an increasing function L : [0,+∞)
→ (0,+∞) such that

sup
t∈[0,T ]

{
‖b(t, 0)‖2

H +
∫ t

0
‖e(t−s)Aσ(s, 0)‖2

HSs
−εds

}
< +∞, ∀ T > 0,

and

‖b(t, x) − b(t, y)‖H + ‖etA(σ(t, x) − σ(t, y))‖HS � L(t)‖x− y‖H ,

∀ t � 0, ∀ x, y ∈ H.
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Remark 2.1 Under assumption (H1), it clear that the space LA(H) allows
to have invertible operators from H to H, such as the identity operator.

It is well known, e.g., from [4,7] and most recently [35], that (H1) and (H2)
imply the existence and uniqueness of the mild solution to (2.1), that is, for
any x ∈ H, there exists a unique H-valued {Ft}t�0-adapted continuous process
Xt, t � 0, such that P-a.s.

Xt = etAx+
∫ t

0
e(t−s)Ab(s,Xs)ds+

∫ t

0
e(t−s)Aσ(s,Xs)dWs, t � 0. (2.2)

Moreover, we have

E
(

sup
t∈[0,T ]

‖Xt‖2
H

)
< +∞, ∀ T > 0.

For our purpose, we need a finite-dimensional approximation to (2.1) so that
we can link the characterization theorem for finite-dimensional SDEs obtained
in [30,37] to the present infinite-dimensional problem (2.1). To be more precise,
we want to set a Galerkin approximation to (2.1), which is classical and efficient
to get existence and uniqueness results for infinite-dimensional equations (see,
e.g., [4, Chapter 6]). So let us follow [35] to set up the Galerkin approximation
for (2.1). We notice that our assumption (H1) indicates that the operator A
satisfies the coercivity condition and the monotonicity condition in [4, p. 178].
For simplicity, we assume that

σ : [0,+∞) ×H → LA(H)

is diagonal with respect to the eigen-basis {ei}i�1.
For any n � 1, let

πn : H → Hn := span{e1, . . . , en}

be the (orthogonal) projection operator, that is,

πnx :=
n∑

i=1

〈x, ei〉Hei, x ∈ H.

We note that the project operator πn commutes with the semigroup etA, t � 0.
Furthermore, we let

An := A |Hn , bn := πnb, σn := πnσ.

We consider the following stochastic differential equation in Hn :{
dXn

t = {AnX
n
t + bn(t,Xn

t )}dt+ σn(t,Xn
t )dWt,

Xn(0) = πnx.
(2.3)
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As illustrated in [35], assumption (H2) implies that the coefficients bn and
σn fulfill the usuall growth and Lipschitz conditions so that there exists a unique
strong solution Xn

t ∈ Hn, t ∈ [0,+∞), to (2.3). Furthermore, by [35, Theorem
3.1.2], one has

lim
n→+∞E‖Xn

t −Xt‖2
H = 0, t � 0. (2.4)

Finally in this section, we want to establish an Itô formula for real-valued
functions of the solution Xt, t � 0, of (2.1). Here, we notice that the diffusion
coefficient σ in (2.1) is not Hilbert-Schmidt, and thus, infinite-dimensional Itô
formula given, e.g., in [7, Theorem 4.17, Chapter 4] or [4, Theorem 4.1, Chapter
6], cannot apply to the real-valued functions of the solutions of (2.1). As a
matter of fact, it seems to us that so far, there is no Itô formula for functions
of solutions of infinite-dimensional semi-linear SDEs containing our SEEs (2.1)
which are only solved with mild solutions. Hence, it would be interesting to have
Itô formula for this situation. In what follows, we will use the Galerkin finite-
dimensional approximations (2.3) associated with our initial value problem (2.1)
to complete our task.

Proposition 2.1 Assume (H1), (H2), and let v : [0,+∞) × H → R be in
C1,2

b ([0,+∞)×H) such that [∇v(t, x)] ∈ Dom(A) for any (t, x) ∈ [0,+∞)×H
and ‖A∇v(t, ·)‖H is bounded locally and uniformly for t ∈ [0,+∞). Then we
have

v(t,Xt) = v(0,X0) +
∫ t

0
〈σ∗(s,Xs)∇v(s,Xs),dWs〉H +

∫ t

0

[∂v(s,Xs)
∂s

+ 〈∇v(s,Xs), b(s,Xs)〉H + 〈A∇v(s,Xs),Xs〉H
]
ds

+
1
2

∫ t

0
Tr[(σσ∗)(s,Xs)∇2v(s,Xs)]ds. (2.5)

Proof We start with (2.3) where we have derived an approximation sequence
{Xn

t , t � 0}n∈N for the solution {Xt, t � 0} of (2.1), that is, {Xn
t , t � 0}

is indeed an n-dimensional (semimartingale) process (i.e., the process Xn
t , t �

0, lives on the finite-dimensional space Hn for each n, respectively) and the
sequence {Xn

t , t � 0}n∈N converges to {Xt, t � 0} in ‖ · ‖2
H . Furthermore, it is

clear that for each t � 0,

‖ · ‖H − lim
n→+∞ v(t, πnx) = v(t, x),

and therefore,
lim

n→+∞ v(t,Xn
t ) = v(t,Xt).

Hence, we turn to the expression v(t,Xn
t ), which, for each fixed n ∈ N, is a

real-valued function of the finite-dimensional process Xn
t , t � 0, and we can

apply the Itô formula to v(t,Xn
t ). To be more precise, viewing the expression

v(t,Xn
t ) as the composition of the deterministic C1,2-function

v : [0,+∞) ×Hn → R
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with the finite dimensional, continuous semi-martingale Xn
t with expression

(i.e., from our previous (2.3))

dXn
t = [AnX

n
t + bn(t,Xn

t )]dt+ σn(t,Xn
t )dWt, t � 0,

we can apply the Itô formula (see, e.g., [7, Theorem 4.17, Chapter 4] or [4,
Theorem 4.1, Chapter 6]) to v(t,Xn

t ) with notice that here our Wt is (standard)
cylindrical Brownian motion (with mean zero and covariance given by identity),
which yields the following derivation:

v(t,Xn
t ) = v(0, πnX0) +

∫ t

0
〈∇nv(s,Xn

s ), σn(s,Xn
s )dWs〉H

+
∫ t

0

[∂v(s,Xn
s )

∂s
+ 〈∇nv(s,Xn

s ), AnX
n
s + bn(s,Xn

s )〉H
]
ds

+
1
2

∫ t

0
Tr[∇2

nv(s,X
n
s )(σn(s,Xn

s )(Id)1/2)(σn(s,Xn
s )(Id)1/2)∗]ds

= v(0, πnX0) +
∫ t

0
〈σ∗n(s,Xn

s )∇nv(s,Xn
s ),dWs〉H

+
∫ t

0

[∂v(s,Xn
s )

∂s
+ 〈∇nv(s,Xn

s ), AnX
n
s + bn(s,Xn

s )〉H
]
ds

+
1
2

∫ t

0
Tr[(σnσ

∗
n)(s,Xn

s )∇2
nv(s,X

n
s )]ds, (2.6)

where

∇n :=
n∑

j=1

∇ejej , ∇ej := 〈∇, ej〉H , 1 � j � n,

and we have used the following identity in the above derivation:

〈∇nv(s,Xn
s ), σn(s,Xn

s )dWs〉H = 〈σ∗n(s,Xn
s )∇nv(s,Xn

s ),dWt〉H .

By our assumptions on v and that the operator A is self-adjoint, we have

lim
n→+∞

∫ t

0
〈[σ∗n∇nv](s,Xn

s ),dWs〉H =
∫ t

0
〈[σ∗∇v](s,Xs),dWs〉H ,

lim
n→+∞

∫ t

0
〈∇nv(s,Xn

s ), AnX
n
s 〉Hds =

∫ t

0
〈A∇v(s,Xs),Xs〉Hds,

lim
n→+∞

∫ t

0
〈∇nv(s,Xn

s ), bn(s,Xn
s )〉Hds =

∫ t

0
〈∇v(s,Xs), b(s,Xs)〉Hds,

lim
n→+∞

∫ t

0
Tr[(σnσ

∗
n)(s,Xn

s )∇2
nv(s,X

n
s )]ds =

∫ t

0
Tr[(σσ∗)(s,Xs)∇2v(s,Xs)]ds,

and
lim

n→+∞
∂v(s,Xn

s )
∂s

=
∂v(s,Xs)

∂s
.

Therefore, letting n→ +∞, we end up with (2.5) from (2.6). �
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3 Characterization of path-independent property

We start with recalling the Girsanov theorem in infinite-dimensions (see [7,
10.2.1]). Notice that the covariance operator of our cylindrical Brownian motion
{Wt}t�0 is the identity operator I on (H, ‖ · ‖H). One can then determine the
infinite-dimensional Brownian motion on Itô’s universal Wiener space with the
reproducing kernel space H, cf. e.g., [13].

Next, assume that
γ : [0,+∞) ×H → H

is measurable such that for every T > 0 (note that here T could take to be +∞
as well)

E

(
exp

[
1
2

∫ T

0
‖γ(s,Xs)‖2

Hds
])

< +∞, (3.1)

which is known as the Novikov condition. Then the process

W̃t := Wt −
∫ t

0
γ(s,Xs)ds, t ∈ [0, T ],

is a cylindrical Brownian motion (i.e., having the identity operator I on H as
its covariance operator) with respect to {Ft}t∈[0,T ] on the probability space
(Ω,F , P̃T ), where P̃T is defined via the Radon-Nikodym derivative:

dP̃T

dP
(ω) := exp

(∫ T

0
〈γ(s,Xs(ω)),dWs(ω)〉H − 1

2

∫ T

0
‖γ(s,Xs(ω))‖2

Hds
)
.

We refer the reader, e.g., to [7, Proposition 10.17] for an alternative sufficient
condition instead of (3.1). The relation between Wt and W̃t in the stochastic
differentiation form is

dW̃t = dWt − γ(t,Xt)dt,

from which, in terms of the new cylindrical Brownian motion W̃t, the SDE in
(2.1) reads

dXt = {AXt + b(t,Xt) + σ(t,Xt)γ(t,Xt)}dt+ σ(t,Xt)dW̃t, t ∈ (0, T ].

Furthermore, if σ(t, x) is invertible for each (t, x) ∈ [0,+∞) ×H, then we can
specify

γ(t, x) := −σ−1(t, x)b(t, x), (t, x) ∈ [0,+∞) ×H.

Thus, if the coefficients b and σ in our equation (2.1) fulfill the following
condition:

E

(
exp

[
1
2

∫ T

0
‖σ−1(s,Xs)b(s,Xs)‖2

Hds
])

< +∞, ∀ T > 0,
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or equivalently,

E

(
exp

[
−

∫ T

0
〈σ−1(s,Xs)b(s,Xs),dWs〉H − 1

2

∫ T

0
‖σ−1(s,Xs)b(s,Xs)‖2

Hds
])

= 1, T > 0,

then our SDE in (2.1) becomes simply

dXt = AXtdt+ σ(t,Xt)dW̃t, t ∈ (0, T ].

From now on, we assume further the following condition throughout the
rest of the paper.

(H3) The operator σ(t, x) is invertible for each (t, x) ∈ [0,+∞) ×H and
the two coefficients b, σ in (2.1) fulfill

E

(
exp

{
1
2

∫ T

0
‖σ−1(t,Xt)b(t,Xt)‖2

Hdt
})

< +∞, ∀ T > 0.

To summarize the above discussion, we conclude that under (H1)–(H3), the
Girsanov density

dP̃t

dP
(ω) := exp

{
−

∫ t

0
〈σ−1(s,Xs(ω))b(s,Xs(ω)),dWs(ω)〉H

− 1
2

∫ t

0
‖σ−1(s,Xs(ω))b(s,Xs(ω))‖2

Hds
}
, t � 0, (3.2)

is a well-defined process for the SDE in (2.1).

Remark 3.1 Since the diffusion coefficient σ is invertible and the cylindrical
Brownian motion Wt, t � 0, is determined by the inner product of H (the
covariance operator is the identity operator on H), the solution Xt, t > 0, of
(2.1) lives on a large space containing the whole space H, namely, the support
of the solution Xt, t > 0, of (2.1) covers the whole space H. Moreover, it was
proved in [35] that the Harnack inequality holds for the Markov semigroup of
the solution Xt, t > 0, which indicates that the law of the H-valued random
variable Xt is fully supported by H for each t > 0.

We are now in the position to state our main result. It gives necessary and
sufficient conditions of the path-independence of the Girsanov density process
for (infinite-dimensional) SDEs on separable Hilbert spaces.

Theorem 3.1 Assume (H1)–(H3), and let

v : [0,+∞) ×H → R

be in C1,2
b ([0,+∞) ×H) such that

[∇v(t, x)] ∈ Dom(A), ∀ (t, x) ∈ [0,+∞) ×H, (3.3)
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and ‖A∇v(t, ·)‖H is bounded locally and uniformly for t ∈ [0,+∞). Then the
Girsanov density (3.2) for (2.1) fulfills the following path-independent property:

dP̃t

dP
= exp(v(0,X0) − v(t,Xt), t � 0, (3.4)

if and only if v satisfies

∂v(t, x)
∂t

= −1
2
{Tr[(σσ∗)∇2v](t, x) + ‖σ∗∇v‖2

H(t, x)} − 〈x,A∇v(t, x)〉H (3.5)

and
b(t, x) = [(σσ∗)∇v](t, x), ∀ (t, x) ∈ (0,+∞) ×H. (3.6)

Proof We start with the proof of the sufficiency. Namely, we assume that
there is a v ∈ C1,2

b ([0,+∞) ×H) satisfying (3.3) and ‖A∇v(t, ·)‖H is bounded
locally and uniformly for t ∈ [0,+∞) such that (3.5) and (3.6) hold. We want
to verify (3.4). We note that showing (3.4) is equivalent to verifying

v(t,Xt) = v(0,X0) +
1
2

∫ t

0
‖σ−1(s,Xs)b(s,Xs)‖2

Hds

+
∫ t

0
〈σ−1(s,Xs)b(s,Xs),dWs〉H . (3.7)

By the Itô formula (2.5), we have

v(t,Xt) = v(0,X0) +
∫ t

0
〈σ∗(s,Xs)∇v(s,Xs),dWs〉H

+
∫ t

0

[∂v(s,Xs)
∂s

+ 〈∇v(s,Xs), b(s,Xs)〉H + 〈A∇v(s,Xs),Xs〉H
]
ds

+
1
2

∫ t

0
Tr[(σσ∗)(s,Xs)∇2v(s,Xs)]ds.

Now, from our assumption (3.6), we get

‖σ∗∇v‖2
H(t, x) = 〈[σ∗∇v](t, x), [σ∗∇v](t, x)〉H

= 〈[(σσ∗)∇v](t, x),∇v(t, x)〉H
= 〈b(t, x),∇v(t, x)〉H , (t, x) ∈ [0,+∞) ×H, (3.8)

and
‖σ∗∇v‖2

H(t, x) = ‖σ−1b‖2
H(t, x). (3.9)

Putting the identity (3.8) into (3.5) yields

∂v(t, x)
∂t

= −1
2

Tr[(σσ∗)∇2v](t, x) − 1
2
〈b(t, x),∇v(t, x)〉H − 〈x,A∇v(t, x)〉H ,

and furthermore, along the path Xs, s � 0, we have
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∂v(s,Xs)
∂s

= −1
2

Tr[(σσ∗)∇2v](s,Xs) − 1
2
〈b(s,Xs),∇v(s,Xs)〉H

−〈Xs, A∇v(s,Xs)〉H . (3.10)

and by (3.9), we get

‖σ∗∇v‖2
H(t,Xt) = ‖σ−1b‖2

H(t,Xt). (3.11)

Putting (3.10) and (3.11) into (2.5), we obtain

v(t,Xt) = v(0,X0) +
∫ t

0
〈σ∗(s,Xs)∇v(s,Xs),dWs〉H

+
1
2

∫ t

0
〈∇v(s,Xs), b(s,Xs)〉Hds

= v(0,X0) +
1
2

∫ t

0
‖σ−1(s,Xs)b(s,Xs)‖2

Hds

+
∫ t

0
〈σ−1(s,Xs)b(s,Xs),dWs〉H ,

which is exact (3.7), which we wanted for the sufficiency.
Now, let us show the necessity. That is, we assume that there is a v ∈

C1,2
b ([0,+∞) × H) satisfying (3.3) and ‖A∇v(t, ·)‖H is bounded locally and

uniformly for t ∈ [0,+∞) such that (3.7) holds (which is equivalent to that (3.4)
holds). We aim to verify that (3.5) and (3.6) hold. In fact, viewing v(t,Xt) as a
real-valued semimartingale, by the uniqueness of Doob-Meyer’s decomposition
theorem, we can compare the two expressions for v(t,Xt) in (3.7) and in the
Itô formula (2.5), respectively, to get for each t > 0,∫ t

0
〈σ−1(s,Xs)b(s,Xs),dWs〉H =

∫ t

0
〈σ∗(s,Xs)∇v(s,Xs),dWs〉H (3.12)

and

1
2

∫ t

0
‖σ−1(s,Xs)b(s,Xs)‖2

Hds

=
∫ t

0

[∂v(s,Xs)
∂s

+ 〈∇v(s,Xs), b(s,Xs)〉H + 〈A∇v(s,Xs),Xs〉H
]
ds

+
1
2

∫ t

0
Tr[(σσ∗)(s,Xs)∇2v(s,Xs)]ds. (3.13)

From (3.12), we get∫ t

0
〈σ−1(s,Xs)b(s,Xs) − σ∗(s,Xs)∇v(s,Xs),dWs〉H = 0, ∀ t > 0,
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which implies

σ−1(s,Xs)b(s,Xs) = σ∗(s,Xs)∇v(s,Xs), ∀ s > 0,

since Ws, s � 0, is non-degenerate. Moreover, due to the fact that the support
of the solution Xs, s � 0, covers the whole space H, we can conclude that

b(s, x) = σ(s, x)σ∗(s, x)∇v(s, x), ∀ (s, x) ∈ (0,+∞) ×H. (3.14)

Hence, we obtain (3.6). Next, putting (3.14) into (3.13), we have

1
2

∫ t

0
‖σ∗(s,Xs)∇v(s,Xs)‖2

Hds

=
∫ t

0

[∂v(s,Xs)
∂s

+ ‖σ∗(s,Xs)∇v(s,Xs)‖2
H + 〈A∇v(s,Xs),Xs〉H

]
ds

+
1
2

∫ t

0
Tr[(σσ∗)(s,Xs)∇2v(s,Xs)]ds

since

〈∇v(s,Xs), b(s,Xs)〉H = 〈∇v(s,Xs), σ(s,Xs)σ∗(s,Xs)∇v(s,Xs)〉H
= 〈σ∗(s,Xs)∇v(s,Xs), σ∗(s,Xs)∇v(s,Xs)〉H
= ‖σ∗(s,Xs)∇v(s,Xs)‖2

H .

Thus, the following holds for all t > 0:∫ t

0

[∂v(s,Xs)
∂s

+
1
2

Tr[(σσ∗∇2)(s,Xs)] − 1
2
‖σ∗∇v(s,Xs)‖2

H

+ 〈A∇v(s,Xs),Xs〉H
]
ds = 0,

which further yields

∂v(s,Xs)
∂s

+
1
2

Tr[(σσ∗∇2)(s,Xs)]− 1
2
‖σ∗∇v(s,Xs)‖2

H +〈A∇v(s,Xs),Xs〉H = 0

for all s > 0. Using again the fact that the support of the solution Xs, s � 0,
covers the whole space H, we derive

∂v(s, x)
∂s

+
1
2

Tr[(σσ∗∇2)(s, x)] − 1
2
‖σ∗∇v(s, x)‖2

H + 〈A∇v(s.x), x〉H = 0,

from which we obtain (3.5). This completes the proof of the necessity. We are
done. �

We end up this section with two examples on a link from finite-dimensional
SDEs to infinite-dimensional SDEs. To illustrate our examples in its simplest
manner, let us assume that the diffusion coefficient operator σ(t, x) is diagonal
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for each (t, x) ∈ [0,+∞) × H with respect to the orthonormal basis {ei}i∈N,
i.e.,

σ(t, x) = diag(σi(t, x))i∈N

with (σi(t, x))i∈N being, for each (t, x) ∈ [0,+∞)×H, an (infinite-dimensional)
R

+∞-vector with respect to the orthonormal basis {ei}i∈N.

Example 3.1 Let n ∈ N be fixed. For equation (3.5), we let v(t, x) depend
on the first n components of x = (x1, x2, ..., xn, ...) ∈ H, that is,

v(t, x) := v(t, x1, x2, . . . , xn).

Clearly, this is then similar to the case of finite-dimensions situation considered
in [30]. In fact, for x ∈ Hn, recall that Aei = −λiei (see our assumption (H1)).
Then we have

−〈Ax,∇v(t, x)〉H =
n∑

i=1

λi
∂v(t, x)
∂xi

, ∀ (t, x) ∈ [0,+∞) ×Hn. (3.15)

Furthermore, since for i > n,

∂v(t, x)
∂xi

=
∂2v(t, x)
∂x2

i

= 0,

we have, for b = (b1n, b2n, ..., bnn, bn+1
n , ...),

bi(t, x) = σi(t, x)2
∂v(t, x)
∂xi

(3.16)

and

Tr[(σσ∗)∇2v](t, x) =
n∑

i=1

σi(t, x)2
∂2v(t, x)
∂x2

i

, x ∈ Hn. (3.17)

Similarly, set
σn(t, x) = diag((σn)i(t, x)).

Then we have

‖σ∗n∇v‖2
H(t, x) =

n∑
i=1

σ2
i (t, x)

(∂v(t, x)
∂xi

)2
, x ∈ Hn. (3.18)

Combining (3.15)–(3.18), equation (3.5) for such special v : [t, x) × Hn → R

then becomes

∂v(t, x)
∂t

= −1
2

n∑
i=1

σ2
i (t, x)

{∂2v(t, x)
∂x2

i

+
(∂v(t, x)

∂xi

)2}
+

n∑
i=1

λi
∂v(t, x)
∂xi

. (3.19)
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Moreover, letting n → +∞, we arrive the straightforward infinite-dimensional
analogy of the Burgers-KPZ equation:

∂v(t, x)
∂t

= −1
2

+∞∑
i=1

σ2
i (t, x)

{∂2v(t, x)
∂x2

i

+
(∂v(t, x)

∂xi

)2}
+

+∞∑
i=1

λi
∂v(t, x)
∂xi

,

(t, x) ∈ [0,+∞) ×H. (3.20)

The link to the Burgers-KPZ equation obtained in [30] (as well as from the one-
dimensional equation derived in [37]) is that at there Wt, t � 0, is the standard
Brownian motion with mean zero and covariance being the identity matrix,
while as here our Wt, t � 0, is the (standard) cylindrical Brownian motion
whose finite-dimensional projects are just the standard Brownian motion with
mean zero and identity matrix covariance. It would be interest to study infinite-
dimensional SDEs driven by cylindrical Wiener processes with more general
covariance operators Q in the framework of abstract Wiener spaces (cf. e.g.,
[4,7,24,35]). We will consider this problem in our forthcoming work.

Example 3.2 Let R : H → LHS(H) be a fixed operator. For m ∈ N, let
Rm : [0,+∞) ×H �→ Rm(t, x) ∈ LHS(H) be bounded, i.e.,

sup
(t,x)∈[0,+∞)×H

‖Rm(t, x)‖HS < +∞.

We set for the σ(t, x) ∈ LHS(H), (t, x) ∈ [0,+∞) ×H, in our Theorem 2.1 as
the following perturbation:

σm(t, x) := R+ 2−mRm(t, x), (t, x) ∈ [0,+∞) ×H.

That is, under the given orthonormal basis {ej}j∈N, the dependence of σm(t, x)
on the m-th coordinate xm = 〈x, em〉 becomes weaker and weaker as m goes to
sufficiently large and

lim
m→+∞ ‖σm(t, x) −R‖HS = 0.

Next, we denote

(σm
i (t, x))i∈N := diag((σm(t, x))N×N) = diag((R + 2−mRm(t, x))N×N),

i.e., the real-valued coordinate

σm
i (t, x) := (R+ 2−mRm(t, x))ii

with
lim

m→+∞σm
i (t, x) = 〈Rei, Rei〉 =: ri ∈ R.

Then equation (3.5) in Theorem 2.1 for the vm(t, x) reads
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∂vm(t, x)
∂t

= − 1
2

{ +∞∑
i=1

((R + 2−mRm(t, x))ii)2
∂2vm(t, x)

∂x2
i

+
+∞∑
i=1

((R + 2−iRi(t, x))ii)2(t, x)
(∂vm(t, x)

∂xi

)2
}

+
+∞∑
i=1

λi
∂vm(t, x)
∂xi

.

As m→ +∞, we have the real-valued (point wise) limit

v(t, x) := lim
m→+∞ vm(t, x),

which satisfies the following infinite-dimensional Burger-KPZ equation (with
constant coefficients)

∂v(t, x)
∂t

= −1
2

{ +∞∑
i=1

r2i
∂2v(t, x)
∂x2

i

+
+∞∑
i=1

(
r2i
∂v(t, x)
∂xi

)2
}

+
+∞∑
i=1

λi
∂v(t, x)
∂xi

.

4 Application to stochastic heat equation

In this final section, we will consider an example of space time inhomogeneous
parabolic SPDEs. Here, we take for granted the familiarity with the introduc-
tory account on SPDEs presented, e.g., in [4,34] or [24]. Let (Ω,F , {Ft}t�0, P )
be the given probability set-up as in Section 2. We consider the following
problem for a stochastic heat equation driven by space-time white noise on the
bounded space domain [0, 1] ⊂ R :⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂u(t, x)
∂t

=
∂2u(t, x)
∂x2

+ φ(t, x, u(t, x)) + ψ(t, x, u(t, x)))
∂2B(t, x)
∂t∂x

,

t > 0, x ∈ (0, 1),

u(t, 0) = u(t, 1) = 0, t � 0,

u(0, x) = u0(x), x ∈ [0, 1],

(4.1)

where
φ,ψ : [0,+∞) × [0, 1] × R → R

are space-time inhomogeneous coefficients, and {B(t, x)}(t,x)∈[0,+∞)×[0,1] is a
Brownian sheet on [0,+∞)× [0, 1]. The heuristic derivative ∂2B

∂t∂x is interpreted
as the space-time white noise, which can be made rigorously, e.g., by utilizing
generalized functions ([34]).

It is sometimes also convenient, cf. e.g., [4,7], to link the space-time white
noise to an L2([0, 1])-valued cylindrical Brownian motion on (Ω,F , {Ft}t�0, P ).
Let us elucidate this point a bit here. First, let B(ds,dz) be such that

B(t, x) =
∫ t

0

∫ x

0
B(ds,dz), ∀ (t, x) ∈ [0,+∞) × [0, 1].
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Next, it is clearly that the Hilbert space H := L2([0, 1]) is separable. Let A :=
∂2

∂x2 be the one-dimensional Laplace operator on [0, 1] with Dirichlet boundary
condition so its domain is

Dom(A) = H2([0, 1]) ∩H1
0 ([0, 1]),

where Hk([0, 1]) stands for the L2-Sobolev space of order k and Hk
0 ([0, 1]) is

the closure of C∞
0 ([0, 1]) in Hk for k = 1, 2. Denote by {θn}n∈N the complete

orthonormal basis in H consisting of the eigenfunctions of A, which is given by

θn(x) :=
√

2 sin(nπx), n ∈ N,

so that
Aθn(x) = −n2π2θn(x).

Then

Wt :=
+∞∑
n=1

(∫ t

0

∫ 1

0
θn(x)B(ds,dx)

)
θn

defines A-cylindrical Brownian motion on H (i.e., with covariance Q = A).
Problem (4.1) is solvable with a unique strong solution under the following

assumption on the coefficients (cf. e.g., [4, Chapter 6] or [7, Chapter 7]).
I) The coefficients φ, ψ are Lipschitz continuous with linear growth in the

sense that there exists C > 0 such that

|φ(t, x, z)|2 + |ψ(t, x, z)|2 � C(1 + |z|2)
and

|φ(t, x, z1) − φ(t, x, z2)|2 + |ψ(t, x, z1) − ψ(t, x, z2)|2 � C|z1 − z2|2

hold for all (t, x) ∈ [0,+∞) × [0, 1] and for arbitrarily given z, z1, z2 ∈ R.

II) The diffusion coefficient ψ is uniformly bounded from below and above,
i.e., there exist positive constants C1 and C2 such that for all z ∈ R,

C1 � |ψ(t, x, z)| � C2

holds for all (t, x, z) ∈ [0,+∞) × [0, 1] × R.

If I) is fulfilled, one can show that (4.1) has a unique (global) mild solution
u(t, x), t � 0, x ∈ [0, 1], i.e., u satisfies the following mild equation:

u(t, x) =
∫ 1

0
p(t, x, y)u0(y)dy +

∫ t

0

∫ 1

0
p(t− s, x, y)φ(s, y, u(s, y))dsdy

+
∫ t

0

∫ 1

0
p(t− s, x, y)ψ(s, y, u(s, y))B(ds,dy),

with the property that

u(t) := u(t, ·) : [0, 1] → R ∈ L2([0, 1]) = H,
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E
(

sup
t∈[0,+∞)

‖u(t)‖2
H

)
< +∞,

where p(t, x, y) stands for the fundamental solution of ∂
∂t −A.

Now, we want to reformulate equation (4.1) in its abstract form. To this
end, we set

Xt := u(t, ·), b(t,Xt) := φ(t, ·, u(t, ·)), σ(t,Xt)(v) := ψ(t, ·, u(t, ·))v(t, ·)
(4.2)

for u(t, ·), v(t, ·) ∈ H for any t � 0. Then, equation (4.1) becomes{
dXt = {AXt + b(t,Xt)}dt+ σ(t,Xt)dWt, t � 0,

X0 = u0 ∈ H, (4.3)

which is exactly in the form of (2.1). Since our one-dimensional Dirichlet
Laplacian A fulfills assumption (H1), Theorem 2.1 goes to verbatim for
sufficiency of the path-independent property of the Girsanov density process
for (4.3), which can be further transferred to (4.1) via the links (4.2) in a
straightforward manner.
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