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Abstract  1 

The glucagon-like peptide-1 (GLP-1) receptor (GLP-1R), an important drug target in the treatment of 2 

type 2 diabetes, is a G-protein coupled receptor (GPCR) that mediates insulin secretion by GLP-1. The 3 

N-terminus controls GLP-1R biosynthetic trafficking to the cell surface but the C-terminus 4 

involvement in that trafficking is unknown. The aim of this study was to identify distinct regions 5 

within the C-terminal domain required for human GLP-1R (hGLP-1R) cell surface expression, activity 6 

and internalisation using a number of C-terminal deletions and site-directed mutations. The results of 7 

this study revealed that the residues 411-418 within the C-terminal domain of the hGLP-1R are critical 8 

in targeting the newly synthesised receptor to the plasma membrane. The residues 419-430 are 9 

important for cAMP producing activity of the receptor, most likely by coupling to Gαs. However, the 10 

residues 431-450 within the C-terminus are essential for agonist-induced hGLP-1R internalisation. In 11 

conclusion, these findings demonstrate the hGLP-1R has distinct regions within the C-terminal 12 

domain required for its cell surface expression, activity and agonist-induced internalisation. 13 

 14 

Keywords:  15 

Glucagon like peptide-1 (GLP-1); GLP-1 receptor (GLP-1R); G protein coupled receptor (GPCR); 16 

biosynthetic trafficking; C-terminus; diabetes. 17 
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 1 

Abbreviations: 2 

5-HT2a, 5-hydroxytryptamine receptor 2a; aa, amino acid; AC, adenylyl cyclase; AR, adrenoceptor; 3 

ARF1, ADP-ribosylation factor 1; AT2R, angiotensin II receptor; BSA, bovine serum albumin; Ca2+, 4 

calcium; CaCl2, calcium chloride; cAMP, cyclic adenosine monophosphate; D1R, dopamine D1 5 

receptor; DABCO, 1,4-diazabicyclo[2.2.2.]octane; DAPI, 4′,6-diamidino-2-phenylindole 6 

dihydrochloride; DMEM, dulbecco’s modified eagle medium; DTT, dithiothreitol; ER, endoplasmic 7 

reticulum; ERK, extracellular signal-regulated kinase; FL, full length; FSM, full serum medium; GFP, 8 

green fluorescent protein; GLP-1, glucagon like peptide-1; GLP-1R, GLP-1 receptor; GPCR, G-9 

protein coupled receptors; GRK, GPCR kinase; HCl, hydrochloric acid; HEK293, human embryonic 10 

kidney 293; hGLP-1R, human GLP-1R; HRP, horseradish peroxidise; IgG, immunoglobulin G; LL, 11 

dileucine; M3R, M3 muscarinic receptor; MGC, mammalian gene collection; MgCl2, magnesium 12 

chloride; mGluR, metabotropic glutamate receptor; NP40, nonidet P40; NaCl, sodium chloride; PBS, 13 

phosphate buffered saline; PCR, polymerase chain reaction; PFA, paraformaldehyde; PLC, 14 

phospholipase C; PLD, phospholipase D; PMSF, phenylmethanesulfonylfluoride; PVDF, 15 

polyvinylidene fluoride; SDS, sodium dodecyl sulphate; SFM, serum free medium; TBS, tris buffered 16 

saline; TBS-T, TBS-0.1% tween20; TM, transmembrane; VSVG, vesicular stomatitis virus 17 

glycoprotein; WT, wild type  18 
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1. Introduction 1 

Glucagon like peptide-1 (GLP-1) mediates insulin secretion by acting on the GLP-1 receptor (GLP-2 

1R), making the receptor an important target and of high therapeutic potential in the treatment of type 3 

2 diabetes [1, 2]. GLP-1 in vivo half-life is very short (~1.5min) due to its rapid proteolytic 4 

degradation by dipeptidyl peptidase-IV (DPP-IV) and therefore long acting GLP-1 analogues such as 5 

liraglutide, which have resistance to DPP-IV proteolysis, are developed for the treatment [3]. The 6 

GLP-1R, which is a member of the family B G-protein coupled receptors (GPCRs), functions at the 7 

cell surface by coupling to Gαs and Gαq pathways and causing extracellular signal-regulated kinase 8 

(ERK) phosphorylation [2, 4]. Agonist-induced GLP-1R internalisation plays an important role in 9 

glucose induced insulin secretion [5]. The GLP-1R internalises with similar kinetics in response to 10 

GLP-1 and liraglutide stimulation [6]. However, the rate of GLP-1R recycling in cells treated with 11 

liraglutide is slower than that in cells treated with GLP-1 [6]. Inhibition of the Gαq pathway, but not 12 

the Gαs pathway, has recently been shown to significantly reduce agonist-induced GLP-1R 13 

internalisation [7]. In the same study, chemical inhibitors of the Gαq pathway also shown to suppress 14 

GLP-1-induced ERK phosphorylation, indicating that ERK phosphorylation acts downstream of the 15 

Gαq pathway in GLP-1R internalisation [7].  16 

 The extracellular N-terminal domain in many GPCRs is important for their biosynthetic 17 

trafficking and maturation [2, 8]. Like other family B GPCRs, the GLP-1R contains an N-terminal 18 

signal peptide (SP) and undergoes N-linked glycosylation, which are important for the newly 19 

synthesised receptor cell surface expression [9-11]. We have recently demonstrated the importance of 20 

SP cleavage, N-linked glycosylation and the hydrophobic region after the SP (HRASP) within the N-21 

terminus of the GLP-1R for its biosynthetic trafficking to the plasma membrane [12]. The intracellular 22 

C-terminal domain of GPCRs plays a critical role in agonist-induced internalisation, desensitisation, 23 

down regulation and arrestin signalling of the receptors [13]. Furthermore, the C-terminal region is 24 

required for some GPCRs trafficking from the endoplasmic reticulum (ER) to the plasma membrane 25 

[8]. The C-terminal domain of GPCRs is also known to interact with several intracellular proteins 26 

involved in the internalisation of the receptor to intracellular signalling pathways [2, 8].  27 
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  The motifs such as E(X)3LL, FN(X)2LL(X) 3L, F(X)3F(X)3F, YXXΦ and PPXXFR found 1 

within the C-terminus of some GPCRs have been shown to be required for newly synthesised GPCR 2 

targeting to the plasma membrane [8]. Some GPCRs possess a helix-8 located just downstream of 3 

transmembrane (TM) 7 that associates with a number of intracellular proteins [14]. Additionally, many 4 

GPCRs possess a PDZ binding site at the very end of the C-terminal domain, which interacts with the 5 

PDZ domain of proteins required for biosynthetic trafficking of the receptor [2, 15]. 6 

 Agonist-induced GPCR internalisation is predominantly mediated by GPCR kinases 7 

(GRKs), arrestins and clathrin coated pits. GRKs phosphorylate agonist-activated GPCRs to facilitate 8 

the recruitment of arrestins, which target the GPCRs to clathrin-coated pits for rapid internalisation 9 

[16]. In addition to its role in trafficking of newly synthesised GPCRs, the C-terminal domain can 10 

interact with intracellular proteins involved in the internalisation of the receptor [14]. The tyrosine 11 

motif (YXXΦ) within the C-terminus has been shown to associate with clathrin [17]. The β3-12 

adrenoceptor (AR) contains a PXXP motif within the C-terminal domain that interacts with Src, which 13 

results in the activation of ERK [18]. Further, a NPXXY motif within TM7 close to the C-terminal 14 

domain of the serotonin 5-hydroxytryptamine 2a (5-HT2a) receptor interacts with ADP-ribosylation 15 

factor 1 (ARF1) small GTPase and couples to phospholipase D (PLD) in a heterotrimeric G-protein-16 

independent manner [19]. 17 

 A dileucine (LL) motif within the C-terminal domain of some GPCRs has been shown to 18 

promote some GPCRs internalisation by binding to adapter proteins [20]. GPCRs, such as the 19 

neurokinin 1, β2-AR and the angiotensin II receptor (AT2R), require the conserved aromatic residue 20 

tyrosine in the C-terminal domain for their internalisation [21-23]. A mutation of Ser344 within the C-21 

terminal domain of the δ-opioid receptor (DOR) prevents protein kinase C (PKC) dependent 22 

phosphorylation required for internalisation of the receptor [24]. The GLP-1R contains three serine 23 

doublets at positions Ser441,442, Ser444,445 and Ser451,452 and their phosphorylation is also important for 24 

internalisation of the receptor [25]. Further, phosphorylation of some serine doublets within the C-25 

terminal domain of the GLP-1R is mediated by PKC [26].Moreover, the mutation of Glu408, Val409, 26 

Gln410, which are conserved among family B GPCRs, in the C-terminus of GLP-1R has been shown to 27 

affect GLP-1R agonist binding and activity [27].  28 
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 Some GPCRs require E(X)3LL, FN(X)2LL(X)3L, F(X) 3F(X)3F, YXXΦ, PPXXFR, PXXP, 1 

NPXXY and LL motifs within the C-terminal domain for biosynthetic trafficking, interactions with 2 

intracellular signalling proteins and internalisation of the receptor [8]. However, these motifs are not 3 

present within the C-terminus of GLP-1R. Therefore, the aim of this study was to establish the 4 

importance of residues and regions within the C-terminal domain of the human GLP-1R (hGLP-1R) 5 

for the receptor biosynthetic trafficking to cell surface, activity and internalisation using a number of 6 

C-terminal deletion and site-directed mutants. It was determined that residues 411-418 of the hGLP-7 

1R in the C-terminus are critical in targeting the receptor to the plasma membrane. Residues 419-430 8 

within the C-terminal domain are important for the activity of the receptor (as assessed by cAMP 9 

production), most likely for coupling to Gαs. Further, residues 431-450 within the C-terminus are 10 

essential for agonist-induced hGLP-1R internalisation. 11 

 12 

2. Materials and methods 13 

2. 1. Materials 14 

The primary antibodies used were rabbit anti-vesicular stomatitis virus glycoprotein (VSVG) 15 

(ab34774, Abcam Biochemicals), mouse anti-green fluorescent protein (GFP) (11814460001, Roche), 16 

mouse anti-hGLP-1R (MAB2814, R&D Systems), mouse anti-hGLP-1R (sc-390773, Santa Cruz), 17 

rabbit anti-phospho ERK1/2 (pERK1/2) (9102, New England Biolabs) and rabbit anti-ERK1/2 (9102, 18 

New England Biolabs). The Cy3-conjugated anti-mouse immunoglobulin G (IgG) secondary antibody 19 

(715-165-150, Jackson Laboratories) was used for immunofluorescence. The horseradish peroxidase 20 

(HRP)-conjugated anti-mouse (NA933) and anti-rabbit (NA934) IgG (GE Healthcare) secondary 21 

antibodies were used for immunoblotting. Enhanced chemiluminescence (ECL) select reagent was 22 

obtained from GE Healthcare. Liraglutide (GLP-1 analogue) was from Novo Nordisk. All other 23 

chemicals were from Sigma unless otherwise stated.  24 
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Plasmids 1 

The cDNA of SP-VSVG-hGLP-1R∆N23, containing the signal peptide (SP, 1-23 amino acids) coding 2 

sequence followed by VSVG-epitope coding sequence, was cloned into pEGFP-N1 vector (Clontech), 3 

as described previously [7] for expression as the N-terminus VSVG-tagged (after the SP) and the C-4 

terminus GFP-tagged fusion protein in mammalian cells (SP-VSVG-hGLP-1R∆N23-GFP). The SP-5 

VSVG-hGLP-1R∆N23 with no GFP-tag and its C-terminal deletion constructs were generated by PCR 6 

using sequence specific primers containing EcoRI restriction site (5’ primer), SalI restriction site and 7 

stop codon (3’ primer) and SP-VSVG-hGLP-1R∆N23-GFP plasmid as the template, and cloning into 8 

the same sites of pEGFP-N1. The E408A,V409A,Q410A mutation within the hGLP-1R was generated 9 

using Quickchange II XL site-directed mutagenesis kit (Stratagene) and SP-VSVG-hGLP-1R∆N23-10 

GFP plasmid as the template [28]. The mutants with internal deletions (∆) within the C-terminus of 11 

hGLP-1R were generated using Q5 site directed mutagenesis kit (New England Biolabs) and SP-12 

VSVG-hGLP-1R∆N23-GFP plasmid as the template. The mutations, deletions and right reading 13 

frames were confirmed by DNA sequencing of the constructs. 14 

2. 2. Cell culture and transfection 15 

Human embryonic kidney 293 (HEK293) cells were maintained at 37oC in a 5% CO2 humidified 16 

environment in Dulbecco’s modified Eagle medium (DMEM; serum free medium [SFM]) 17 

supplemented with 10% foetal calf serum, 2 mM glutamine, 100 U/ml penicillin and 0.1 mg/ml 18 

streptomycin (full serum medium [FSM]). Cells were transiently transfected for 48 h using JetPrime 19 

transfection reagent (Polyplus; 2 µl/µg DNA) according to the manufacturer’s instructions.  20 

2. 3. Enzyme linked immunosorbent assay (ELISA) 21 

This is carried out as described previously with unpermeabilised cells to quantify cell surface 22 

expression [7]. Briefly, HEK293 cells expressing the hGLP-1R were serum starved for 1 h and then 23 

stimulated without or with 100 nM liraglutide for 1 h at 37oC/5% CO2. Cells were then fixed with 4% 24 

paraformaldehyde (PFA) for 5 min and non-specific binding sites blocked with 1% bovine serum 25 

albumin (BSA) made in Tris buffered saline (TBS) (1% BSA/TBS) for 45 min. Cells were incubated 26 
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with the anti-hGLP-1R mouse antibody (diluted 1:15000) in 1% BSA/TBS for 1 h, washed with TBS 1 

and then incubated with the HRP-conjugated anti-mouse IgG (diluted 1:5000) in 1% BSA/TBS for 1 2 

h. Cells were washed and developed using 1-step Ultra TMB (Bio-Rad) for 15 min and the reaction 3 

stopped by adding an equal volume of 2 M sulphuric acid. The optical density was read at 450 nm 4 

using a plate reader. 5 

2. 4. Immunofluorescence 6 

Intracellular localisation of hGLP-1R expression was assessed by immunofluorescence as described 7 

previously [7]. Briefly, cells were serum starved for 1 h, incubated with the anti-hGLP-1R mouse 8 

antibody (diluted 1:5000) in 1% BSA/SFM for 1 h at 4oC and then stimulated without or with 100 nM 9 

liraglutide for 1 h at 37oC/5% CO2. Cells were then fixed with 4% PFA for 30 min. Cells were 10 

permeabilised with 0.2% Triton X-100 made in phosphate buffered saline (PBS) for 10 min, blocked 11 

in blocking buffer (1% BSA made in wash buffer [0.1% Triton X-100 in PBS]) for 30 min and then 12 

incubated with the Cy3-conjugated anti-mouse antibody (diluted 1:200 in blocking buffer) for 1 h. 13 

Cells were then washed 3 times with wash buffer and incubated with DAPI (4′,6-diamidino-2-14 

phenylindole dihydrochloride, 1 mg/ml) diluted 1:2000 in PBS to stain nucleus. Coverslips were 15 

mounted on glass microscopic slides using mounting solution (0.1 M Tris-HCl, pH 8.5, 10% Mowiol 16 

50% glycerol) containing 2.5% DABCO (1,4 diazabicyclo (2.2.2) octane). Immunofluorescence 17 

staining was visualised using a Zeiss LSM710 confocal microscope fitted with a 63x oil immersion 18 

lens. 19 

2. 5. cAMP assay 20 

Cells grown in 24-well plates were serum starved for 1 h and then stimulated without or with 100 nM 21 

liraglutide for 1 h at 37oC/5% CO2 in the presence of 0.25 mM phosphodiesterase inhibitor Ro201724. 22 

Cells were lysed and cAMP levels in the cell lysates were estimated using the cAMP direct 23 

immunoassay kit (Abcam) [7]. 24 
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2. 6. Cell lysates 1 

Cell lysates were prepared as reported previously [7]. Briefly, HEK293 cells expressing the hGLP-1R 2 

were lysed in ice cold modified RIPA lysis buffer (10 mM Tris-HCl, pH 7.5 containing 10 mM 3 

ethylenediaminetetraacetic acid [EDTA], 1% nonyl phenoxypolyethoxylethanol [NP40], 0.1% sodium 4 

dodecyl sulphate [SDS], 0.5% sodium deoxycholate and 150 mM NaCl) with 1% mammalian protease 5 

inhibitors. The cell lysate was mixed with 50% 3x SDS-polyacrylamide gel electrophoresis (PAGE) 6 

sample loading buffer (75 mM Tris-HCl, pH 6.8 containing 3% SDS, 30% glycerol, 0.003% 7 

bromophenol blue and 0.3 M dithiothreitol [DTT]) and incubated at room temperature for 1 h. These 8 

cell lysates used to detect hGLP-1R expression by immunoblotting using the anti-GFP and anti-VSVG 9 

antibodies. 10 

 For assessing ERK1/2 phosphorylation, HEK293 cells expressing the hGLP-1R were serum 11 

starved for 1 h and then stimulated without or with 100 nM liraglutide for 5 min at 37oC/5% CO2. 12 

Cells were then lysed in ice cold modified RIPA lysis buffer (50 mM Tris-HCl, pH 7.5, containing 0.2 13 

M NaCl, 10 mM MgCl2, 0.1% SDS; 0.5% sodium deoxycholate, 1% TritonX-100 and 5% glycerol) 14 

with 1% mammalian protease inhibitors. The cell lysate was mixed with 25% 5x SDS-PAGE sample 15 

loading buffer (125 mM Tris-HCl, pH 6.8 containing 5% SDS, 50% glycerol, 0.005% bromophenol 16 

blue and 5% β-mercaptoethanol) and heated at 100oC for 5 min. These cell lysates were used to detect 17 

phosphorylated ERK and total ERK by immunoblotting using the anti-pERK1/2 and anti-ERK1/2 18 

antibodies. 19 

2. 7. Immunoblotting 20 

This was carried out as described previously [29, 30]. Briefly, proteins were separated in a SDS-21 

PAGE gel by electrophoresis and transferred onto polyvinylidene fluoride (PDVF) membrane. 22 

Membranes were blocked with TBST (TBS with 0.1% tween 20) containing 5% milk powder 23 

(blocking buffer) for 1 h at room temperature. Membranes were immunoblotted with either the anti-24 

GLP-1R mouse antibody (diluted 1:500 in blocking buffer) or anti-GFP mouse antibody (diluted 1:500 25 

in blocking buffer) to assess protein expression levels or the anti-pERK1/2 rabbit antibody (diluted 26 

1:1000 in blocking buffer) to assess ERK1/2 phosphorylation for overnight at 4oC. Membranes were 27 
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washed and then incubated with the HRP-conjugated anti-mouse or anti-rabbit secondary antibody 1 

(diluted 1:2500 in blocking buffer) for 1 h at room temperature. Membranes were then incubated in 2 

ECL select substrate and bands visualised using the ChemiDocTM XRS system (Bio-Rad). Blots 3 

probed with the anti-hGLP-1R mouse antibody or anti-GFP mouse antibody were stripped by using 4 

Western blot stripping buffer (Thermo Scientific) and re-probed with the anti-VSVG rabbit antibody 5 

(diluted 1:1000 in blocking buffer) to assess protein expression levels. Blots probed with the anti-6 

pERK1/2 rabbit antibody were stripped and re-probed with the anti-ERK1/2 rabbit antibody (diluted 7 

1:1000 in blocking buffer) to assess total ERK1/2. The HRP-conjugated anti-rabbit secondary 8 

antibody (diluted 1:2500 in blocking buffer) was used as described above. 9 

2. 8. Tunicamycin treatment 10 

This was carried out as described previously [7, 11] Briefly, cells were treated with 5 µg/ml 11 

tunicamycin at the time of transfection. After 48 h of transfection, cells were lysed and subjected to 12 

immunoblotting. 13 

2. 9. Data analysis 14 

Data were analysed using the GraphPad Prism program. All data are presented as means ± standard 15 

error of the mean (SEM) of three independent experiments. Statistical analysis between multiple 16 

groups were determined by the Bonferroni post-test after one-way analysis of variance (ANOVA), 17 

where p>0.05 was considered as statistically not significant (n.s.). Statistical analysis between multiple 18 

groups normalised to a control group was analysed by the Dunnett’s post-test after one-way ANOVA. 19 

Confocal images shown in the figures are representative of 190-200 transfected cells from three 20 

different experiments. Similarly, immunoblotting data shown in the figures are representative of three 21 

independent experiments. 22 

 23 
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3. Results 1 

3. 1. The C-terminal domain mutations affect hGLP-1R cell surface expression  2 

The importance of the C-terminus for hGLP-1R cell surface expression was determined using a 3 

number of C-terminal deletion mutants, which contain the VSVG-epitope tag at the N-terminus after 4 

the SP (Figure 1). However, three deletion mutations, ∆411-418, ∆419-430 and ∆431-450, and a site-5 

directed mutant (E408A,V409A,Q410A), which has previously been shown to affect agonist binding 6 

to the hGLP-1R [27], contain an additional GFP-tag at the C-terminus. We have shown previously that 7 

the cAMP producing activity of the SP-VSVG-GFP construct (which contains both VSVG and GFP 8 

tags) is similar to that of the hGLP-1R with no tag or either of the VSVG-tag or GFP-tag, indicating 9 

that the attachment of the VSVG and GFP tags to the hGLP-1R had no effect on the activity of the 10 

receptor [12]. 11 

 Lysates of HEK293 cells expressing some of the C-terminal mutants of hGLP-1R showed a 12 

doublet of same intensity in immunoblotting (~55 kDa and ~35 kDa in size) with both the anti-hGLP-13 

1R and anti-VSVG antibodies, demonstrating no alterations in hGLP1-R protein expression by these 14 

mutations. The high molecular weight band in the doublet has previously been shown as the mature 15 

form of the receptor whereas the low molecular weight band represents the immature form of the 16 

receptor [12, 31]. However, the N410 construct only showed a single band, which corresponds to the 17 

lower molecular weight band of the doublet, with both the antibodies, demonstrating its existing 18 

mainly as the immature form of the receptor (Figure 2). It is important to note that immunoblotting 19 

with the anti-VSVG antibody produces a non-specific band at ~35 kDa and the anti-hGLP-1R 20 

antibody produces a non-specific band at ~55 kDa, which are also present in lanes loaded with the 21 

lysate of untransfected HEK293 cells (Figure 2). HEK293 cells do not express GLP-1R [32, 33] and 22 

therefore ~55kDa produced by the anti-hGLP-1R antibody in untransfected HEK293 cells lysates 23 

loaded lanes was considered as a non-specific band. The lower molecular weight (~35 kDa) band of 24 

SP-VSVG (full length [FL]) produced by the anti-VSVG antibody co-migrated with the non-specific 25 

band. Additionally, the GFP-tagged wild type (SP-VSVG-GFP), ∆419-430 and ∆431-450 constructs 26 

all showed a doublet (~70 kDa and ∼85 kDa in size) when the lysates of HEK293 cells transfected 27 
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with these constructs were immunoblotted with the anti-VSVG and anti-GFP antibodies (Figure 2). In 1 

contrast, the ∆411-418 and E408A,V409A,Q410A mutants showed only the lower molecular weight 2 

(~70 kDa) band of the doublet with both the antibodies demonstrating them expressing mainly as the 3 

immature form of the receptor (Figure 2).  4 

 To determine the effect of the C-terminal deletion and site-directed mutations on hGLP-1R 5 

cell surface expression, these mutants were expressed in HEK293 cells and analysed for their cell 6 

surface expression by ELISA (Figure 3A) and immunofluorescence (Figure 3B). The FL (463aa) and 7 

the N450, N443, N440 and N430 deletion mutants showed identical cell surface expression when 8 

assessed by ELISA (100%, 96.6 ± 2.2%, 97.1 ± 1.7%, 93.5 ± 3.7%, 97.0 ± 1.5%, p>0.05, respectively, 9 

Figure 3A). However, the mutant with the entire C-terminal domain deletion (N410) showed no cell 10 

surface expression (0.1 ± 0.1%, p<0.001), demonstrating that the C-terminal domain is required for 11 

hGLP-1R biosynthetic trafficking to the cell surface. These results also demonstrate that the last 33aa 12 

within the C-terminus are not required for cell surface expression of the hGLP-1R. Therefore, these 13 

results suggest that the residues 411-430 are most likely involved in the receptor’s cell surface 14 

expression. Next, the effect of internal deletions made within (∆411-418, ∆419-430) and outside 15 

(∆431-450) of the 411-430 residues were used to assess the exact region within the C-terminus that is 16 

required for targeting newly synthesised the hGLP-1R to cell surface. The ∆411-418 deletion 17 

abolished hGLP-1R cell surface expression (0.7 ± 0.7%, p<0.001). However, the ∆419-430 and ∆431-18 

450 mutants cell surface expressions were similar to that of the SP-VSVG-GFP WT control (81.6 ± 19 

6.1% and 97.9 ± 3.7%, p>0.05, respectively, of the control). These results demonstrate that the 411-20 

418 region of the hGLP-1R is critical for cell surface expression of the receptor. The 21 

E408A,V409A,Q410A mutation, which has previously been shown to affect GLP-1R agonist binding 22 

and activity [27], also largely abolished hGLP-1R cell surface expression (9.7 ± 9.7%, p<0.001) when 23 

assessed by ELISA. The ELISA results were also confirmed by immunofluorescence (Figure 3B) 24 

where cell surface expression was seen for the N450, N443, N440, N430, ∆419-430 and ∆431-450 25 

deletion mutants, which was assessed by cell surface staining of the receptor with the anti-hGLP-1R 26 

antibody. However, N410, ∆411-418 and E408A,V409A,Q410A mutants showed no cell surface 27 

expression (Figure 3B). The reduction in cell surface expression of these mutants was not due to 28 
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altered protein expression levels as all these mutants showed similar levels of the protein expression 1 

(Figure 2). 2 

3. 2. The C-terminal domain mutations have no effect on hGLP-1R N-glycosylation 3 

The hGLP-1R that is targeted to the cell surface (mature hGLP-1R) is N-glycosylated [9-11]. The 4 

hGLP-1R C-terminal deletion or site-directed mutants were assessed for their N-linked glycosylation 5 

to establish whether these mutations affect hGLP-1R cell surface expression by altering its N-6 

glycosylation. For this purpose, cells expressing the C-terminal deletion mutants or 7 

E408A,V409A,Q410A mutant were treated without or with tunicamycin, an N-linked glycosylation 8 

inhibitor, and analysed their expression (band pattern) by immunoblotting using either the anti-VSVG 9 

or anti-GFP antibodies. Immunoblotting of the lysates of HEK293 cells expressing VSVG-SP (FL) 10 

showed the characteristic doublet at ~55 kDa and ~35 kDa (Figure 4). Treatment with tunicamycin, 11 

altered this pattern and instead a single band at ~27 kDa was seen. This shift is used as readout to 12 

assess hGLP-1R N-linked glycosylation. The C-terminal deletion mutants (N450, N443, N440 and 13 

N430) of the hGLP-1R that express at the cell surface also showed a shift in the band pattern when 14 

treated with tunicamycin, demonstrating that these deletions are also glycosylated like the FL. 15 

However, the N410 deletion mutant, which do not express at cell surface, showed a single band at ~35 16 

kDa in immunoblotting and a shift in that band mobility when treated with tunicamycin. This 17 

suggested that the mutant is N-glycosylated to some extent and therefore loss of this mutant cell 18 

surface expression may not be due to absence of N-linked glycosylation.  19 

 The SP-VSVG-GFP WT showed a doublet (~70 kDa and ∼85 kDa) in immunoblotting 20 

(Figure 4). Treatment with tunicamycin altered this band pattern, two bands at ~60 kDa and ~65 kDa 21 

were observed. Like the WT, the ∆419-430 and ∆431-450 deletion constructs showed the double band 22 

pattern that shifted to ~60 kDa and ~65 kDa when treated with tunicamycin, demonstrating that the 23 

deletions have no effect on N-linked glycosylation. The E408A,V409A,Q410A and ∆411-418 mutants 24 

that did not target to the cell surface only showed a single band at ~70 kDa and a shift in that band 25 

mobility when treated with tunicamycin, indicating that these mutants are still N-glycosylated to some 26 

extent. Taken together, these results demonstrate that all hGLP-1R C-terminal mutants are N-27 
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glycosylated and the loss of some deletion mutants (N410, ∆411-418 and E408A,V409A,Q410A) 1 

biosynthetic trafficking to cell surface is not due the absence of N-linked glycosylation. 2 

3. 3. Effect of the C-terminal mutations on the hGLP-1R activity 3 

The GLP-1R is a Gαs coupled GPCR and therefore the effect of C-terminal mutations on the receptor 4 

activity was assessed by measuring cAMP produced in cells expressing these mutants stimulated 5 

without and with 100 nM liraglutide (Figure 5). All constructs expressing cells showed basal cAMP 6 

levels between 0.4 ± 0.04 and 0.6 ± 0.1 pmol/well (p>0.05), indicating that the mutants expression has 7 

no effect on basal cAMP levels. Deleting up to 33aa from the end of the C-terminal domain (WT, 8 

N450, N443, N440 and N430) of the hGLP-1R had no significant effect on agonist-induced maximal 9 

cAMP production (3.4 ± 0.2, 3.8 ± 0.4, 3.3 ± 0.4, 3.3 ± 0.04 and 3.3 ± 0.4 pmol/well, p>0.05, 10 

respectively). However, deleting the entire C-terminal domain (residues 411-463 [N410 construct]) 11 

prevents the receptor expression at the cell surface and therefore the cells expressing this mutant 12 

showed no agonist-induced cAMP production 0.4 ± 0.1 pmol/well, p<0.001). We then assessed the 13 

effect of internal deletions made in the region of 411-430 (∆411-418 and ∆419-430) on agonist-14 

stimulated cAMP production. The hGLP-1R deletion ∆411-418 does not express at the cell surface 15 

and therefore as expected no agonist stimulated cAMP production was observed in cells expressing 16 

this mutant (0.6 ± 0.1 pmol/well, p<0.001). However, the 419-430 deletion within the C-terminal 17 

domain of the hGLP-1R had also almost completely abolished cAMP production (0.8 ± 0.06 18 

pmol/well, p<0.001) even though this deletion still allowed targeting of hGLP-1R to the cell surface. 19 

Further, the ∆431-450 mutant showed maximal cAMP production (3.5 ± 0.5 pmol/well, p>0.05) 20 

similar to that of the SP-VSVG-GFP WT control (3.5 + 0.3 pmol/well). Additionally, the 21 

E408A,V409A,Q410A mutant of the hGLP-1R showed very low cAMP production (0.6 ± 0.2 22 

pmol/well, p<0.001), which is expected as this mutant does not target to the cell surface. Taken 23 

together, these results indicate that the mutants of hGLP-1R with negligible cell surface expression 24 

show very low levels of ligand induced cAMP but those levels are similar to that of wild-type when 25 

normalised to cell surface expression of the mutants. This suggests that ligand-induced maximal 26 
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cAMP production by hGLP-1R is not effected by the mutations such as 411-418. These results also 1 

indicate that residues 419-430 of the hGLP-1R are important for ligand induced cAMP production. 2 

3. 4. Effect of the C-terminal mutations on agonist-induced hGLP-1R internalisation and 3 

ERK1/2 phosphorylation 4 

The C-terminal deleted and site-directed mutants of the hGLP-1R that show cell surface expression 5 

were assessed for their effect on agonist-induced hGLP-1R internalisation by ELISA (Figure 6A) and 6 

immunofluorescence (Figure 6B). Deleting 13aa (N450) from the end of the C-terminal domain had 7 

no effect on agonist-induced internalisation (100.0 ± 1.0%, p>0.05). However, the N443, N440 and 8 

N430 mutants all showed a significant reduction in agonist-induced internalisation compared to the FL 9 

(79.5 ± 4.7% [p<0.01], 57.1 ± 2.4% and 31.5 ± 5.8% [p<0.001], respectively). This demonstrated that 10 

residues 430-450 are most likely to be involved in hGLP-1R internalisation. This was confirmed by 11 

using the hGLP-1R internal deletion mutants, ∆419-430 and ∆431-450. The ∆431-450 deletion 12 

significantly reduced agonist-induced internalisation of the hGLP-1R, as only 22.9 ± 5.3% (p<0.001) 13 

of the receptor expressed at the cell surface was internalised. However, the ∆419-430 deletion had no 14 

effect on agonist-induced hGLP-1R internalisation (111.9 ± 7.1%, p>0.05). These results were 15 

confirmed by immunofluorescence (Figure 6B). 16 

 Upon activation by agonist binding, the GLP-1R is known to cause ERK1/2 phosphorylation 17 

[34]. We have recently shown that the agonist-induced hGLP-1R internalisation is mediated by the 18 

Gαq pathway and the phosphorylated ERK acts downstream of the Gαq pathway in hGLP-1R 19 

internalisation [7]. Therefore, the C-terminal deletion mutants were assessed for their effect on 20 

agonist-induced ERK1/2 phosphorylation (Figure 7A-B). The N410, ∆411-418 and 21 

E408A,V409A,Q410A mutants, which show no cell surface expression, did not induce ERK1/2 22 

phosphorylation (4.0 ± 1.5%, 6.7 ± 2.7% and 10.3 ± 0.6%, p<0.001, respectively). The hGLP-1R C-23 

terminal deletion mutants, N450, N443, N440 and N430, ERK1/2 phosphorylation inducing ability 24 

correlated with their agonist-induced internalisation. Deletion of 13aa (N450) from the C-terminus of 25 

hGLP-1R had no effect on agonist-induced ERK1/2 phosphorylation (103.6 ± 2.4%). However, the 26 

hGLP-1R mediated ERK1/2 phosphorylation reduced with increasing deletion from the C-terminus of 27 
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hGLP-1R (N443, 90 ± 5.5% [p>0.05]; N440, 28.5 ± 8.6%; N430, 8.5 ± 5.8% [p<0.001],). Lastly, the 1 

∆419-430 mutant showed no significant change in ERK1/2 phosphorylation when compared to the 2 

WT control (103.9 ± 7.5%, p>0.05). Further, as residues 431-450 of the hGLP-1R are essential for 3 

internalisation of the receptor, deletion of these residues (∆431-450) also reduced ERK1/2 4 

phosphorylation mediated by the hGLP-1R (20.7 ± 3.1% [p<0.001]). Taken together, these results 5 

demonstrate that residues 431-450 are essential for hGLP-1R internalisation and ERK1/2 6 

phosphorylation. 7 

 8 

4. Discussion 9 

The C-terminal domain of many GPCRs plays a critical role in the receptor trafficking, agonist-10 

induced internalisation, desensitisation, down regulation and arrestin signalling [13]. In this study, 11 

several deletion and site-directed mutants of the hGLP-1R were generated to identify the distinct 12 

regions within the C-terminal domain required for hGLP-1R biosynthetic trafficking, its Gαs coupling 13 

(cAMP producing activity) and internalisation. Additionally, an E408A,V409A,Q410A mutant was 14 

generated and assessed for its effect on hGLP-1R cell surface expression, as this mutation had 15 

previously been shown to inhibit cAMP production of the hGLP-1R [27].  16 

 The expression of GPCRs at the cell surface is essential for their functional response. 17 

Reduced cell surface expression of the GLP-1R in pancreatic β-cells has been shown to contribute to 18 

the impaired incretin effects in type 2 diabetes [35, 36]. Therefore, the mechanisms underlying newly 19 

synthesised GPCR targeting to the cell surface is of high importance. GPCRs are synthesised in the 20 

ER and transported to the Golgi before being trafficked to the plasma membrane, which is tightly 21 

regulated [8]. Some GPCRs require specific motifs within the C-terminal domain to target to 22 

endosomes, the Golgi and plasma membrane, but this specificity is not clear for many GPCRs [14, 37-23 

40]. Using a number of C-terminal deletion mutants of the hGLP-1R, this study determined residues 24 

411-418 are critical for newly synthesised hGLP-1R cell surface expression. The membrane proximal 25 

region of the C-terminal domain is important for the biosynthetic trafficking of many GPCRs such as 26 

α2B-AR, AT2R type 1A and dopamine receptor 1 (D1R) to the plasma membrane [41]. The membrane 27 
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proximal region of the C-terminal domain of the α2B-AR and AT2R type 1A [42] have been shown to 1 

be essential for exportation of the receptor from the ER. This study and the other studies have shown 2 

that the N-linked glycosylation is critical for newly synthesised GLP-1R targeting to the cell surface 3 

[9-11]. However, the hGLP-1R with residues 411-418 deletion is still N-glycosylated to some extent 4 

but not targeted to the cell surface. It is therefore possible that this deletion prevents biosynthetic 5 

trafficking of the glycosylated hGLP-1R to the plasma membrane but the mechanism underlying this 6 

requires further investigation. Residues 411-418 of hGLP-1R form part of the helix-8 region, which 7 

has been demonstrated to stabilise the receptor at the cell surface and associates with a number of 8 

intracellular proteins [14]. Therefore it is possible that the deletion of residues 411-418 of hGLP-1R 9 

may affect stability of the receptor. It is also possible that this mutation may affect trafficking of the 10 

hGLP-1R from the Golgi/ER to the plasma membrane or interfere with further processing within ER 11 

and/or the Golgi. In this study, the E408A,V409A,Q410A mutation within TM7 (closest to the C-12 

terminal domain) of the GLP-1R has been shown to affect cell surface expression of the receptor. This 13 

triple mutation has previously been shown to reduce dramatically agonist binding and cAMP 14 

production [27]. Consisting with the previous study, our study also demonstrated that the triple mutant 15 

does not induce cAMP production because its cell surface expression is drastically reduced. Glu408, 16 

Val409, Gln410 in hGLP-1R are adjacent to the membrane proximal region of the C-terminus and form 17 

part of the putative helix-8 region. Mutating these residues may therefore cause a conformational 18 

change within the C-terminus and thereby reduce the receptor’s localisation at the cell surface and/or 19 

reduce access to residues 411-418, which are required for biosynthetic targeting of the receptor to the 20 

plasma membrane.  21 

 The C-terminal domain of GPCRs is also known to interact with intracellular proteins to 22 

activate intracellular signalling pathways [20, 43]. The C-terminal domain of the β3-AR interacts with 23 

Src, which results in the activation of ERK [18]. Additionally, the βγ subunit of the heterotrimeric G-24 

protein and Ca2+/calmodulin bind to the C-terminal domain of the metabotropic glutamate receptor 25 

(mGluR) 7a and 7b and regulate P and Q type Ca2+ channels [44]. In this study, the deletion of 26 

residues 419-430 of the hGLP-1R has shown to impair agonist-induced cAMP production, suggesting 27 

that this region is directly or indirectly involved in coupling the receptor to Gαs. It is also possible that 28 
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deleting residues 419-430 may cause a conformational change in the receptor that is unfavourable to 1 

cAMP stimulation. Although a number of the mutants’ maximal cAMP stimulation is similar to that of 2 

the wild-type, it is possible that the agonist potency of these mutants could be different, and the 3 

differences would not be identified with the saturating agonist concentration used in this study. 4 

However, a previous study suggested that deleting residues 419-435 of the hGLP-1R decreases the 5 

agonist-induced cAMP production [27]. Taken together, the results of our study and a previous study 6 

[27] indicate that 419-430 residues within the C-terminus of GLP-1R are important for cAMP 7 

stimulation. Like the GLP-1R, a mutant of mGluR1α lacking the C-terminus has been shown to be 8 

defective in stimulating cAMP production through the Gαs pathway [45]. The intracellular loop three 9 

(IC3) of the GLP-1R has also been shown to be important for the Gαs coupling [46]. Therefore it is 10 

possible that, in addition to the IC3, the residues 419-430 within the C-terminus are critical for Gαs 11 

coupling of the GLP-1R.  12 

 The internalisation of GPCRs from the cell surface after agonist stimulation is required to 13 

dampen the biological response, to recycle and resensitise the receptor through dephosphorylation, or 14 

to propagate signals through novel signalling pathways [47]. Upon agonist stimulation, the 15 

internalised GLP-1R has been shown to co-localise with adenylyl cyclase (AC) on endosomes and 16 

stimulate insulin secretion from pancreatic β-cells demonstrating the importance of hGLP-1R 17 

internalisation for insulin secretion [5]. Therefore, agonist-induced internalisation of the hGLP-1R into 18 

intracellular compartments of the cell is important for regulation of the receptor’s activity [48]. The 19 

phosphorylation of serine/threonine residues within the C-terminal domain is critical for the 20 

internalisation and desensitisation of many GPCRs [25, 49, 50]. The hGLP-1R has previously been 21 

shown to require four serine phosphorylation sites. Ser431,432, Ser441,442, Ser444,445 and Ser451,452, within 22 

the C-terminus for internalisation and desensitisation of the receptor [25, 26, 51]. Here, a series of C-23 

terminal deletion mutants were used to identify the distinct region(s) within the C-terminus required 24 

for hGLP-1R internalisation. This study showed that the region between 431-450, which contains 25 

serine doublets Ser431,432, Ser441,442 and Ser444,445, of the hGLP-1R is required for internalisation of the 26 

receptor. This is consistent with a previous report, which demonstrated the mutation of the serine 27 

doublet, Ser451,452, had little effect on hGLP-1R internalisation [25]. Additionally, a separate study 28 
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reported a mutation of the serine doublet, Ser431,432, had little effect on hGLP-1R internalisation [52]. 1 

Therefore, the phosphorylation of serine doublets Ser441,442 and Ser444,445 are likely to be involved in 2 

agonist-induced hGLP-1R internalisation and possibly they do so through β-arrestin-2 recruitment, as 3 

previous studies ruled out the requirement of β-arrestin-1 for hGLP-1R internalisation [7, 51]. 4 

However, the involvement of the phosphorylation of serine doublets Ser441,442 and Ser444,445 in GLP-1R 5 

internalisation need to be confirmed by using phosphomimetic and alanine mutations of the serine 6 

doublets. The bradykinin B2 receptor with alanine mutations to serine/threonine residues within the C-7 

terminal domain has been shown to be deficient in arrestin binding and internalisation of the receptor 8 

[53]. Further, phosphorylation of Ser355, Ser356 and Ser366 within the C-terminus domain of the β2-AR 9 

by GRK2 has been shown to be required for internalisation of the receptor [54]. In this study, GLP-1-10 

induced ERK1/2 phosphorylation was also used as readout for hGLP-1R internalisation. This is 11 

because the ERK1/2 phosphorylation, downstream of the Gαq pathway, has recently been shown to be 12 

important for agonist-induced hGLP-1R internalisation [7]. Interestingly, residues 419-430 of the 13 

hGLP-1R were important for stimulation of cAMP production with no negative effect on its 14 

internalisation, which supports the our recent observations that the GLP-1R does not require cAMP 15 

production for internalisation of the receptor [7].  16 

 In this study, cAMP production and receptor internalisation of the hGLP-1R was 17 

investigated in response to liraglutide, a long-acting GLP-1 analogue currently being used for 18 

treatment of type 2 diabetes [3]. The results from this study confirm that liraglutide and GLP-1 act in a 19 

similar manner in coupling the GLP-1R to cAMP production and internalisation. The importance of 20 

residues 419-430 of hGLP-1R for liraglutide induced cAMP production was established in this study, 21 

which is similar to a previous finding that shown the importance of residues 419-435 of GLP-1R for 22 

GLP-1 stimulated cAMP production [27]. Further, Ser441,442 and Ser444,445 doublets within the C-23 

terminal domain of the GLP-1R have been shown to be important for GLP-1 induced receptor 24 

internalisation [25, 26, 51]. In this study, residues 431-450 of GLP-1R, which include these doublets, 25 

are shown to be required for liraglutide induced internalisation. Overall, this study identified distinct 26 

regions within the C-terminal domain of the hGLP-1R that are critical for cell surface expression (411-27 

418), cAMP production (419-430) and agonist-induced internalisation (431-450) of the receptor 28 
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(Figure 8). These findings provide a better understanding of the C-terminal domain role in regulating 1 

hGLP-1R cell surface expression, activity and internalisation. 2 
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Figure Legends 1 

 2 

Figure 1. HGLP-1R deletion and site-directed mutant constructs used to characterise the effect 3 

of the C-terminal domain on its cell surface expression, internalisation and activity. Schematic 4 

view of the hGLP-1R C-terminal domain deletion and site-directed mutants used in this study.  5 

 6 

Figure 2. Effect of the C-terminal domain mutations on hGLP-1R protein expression. Expression 7 

of the C-terminal deletion and site-directed mutants of hGLP-1R was assessed by immunoblotting. 8 

Lysates of HEK293 cells expressing the C-terminal deleted and site-directed mutants were 9 

immunoblotted using the anti-VSVG, anti-GLP-1R and anti-GFP antibodies (*denotes the non-10 

specific band). 11 

 12 

Figure 3. Effect of the C-terminal domain mutations on cell surface expression of hGLP-1R. Cell 13 

surface expression of hGLP-1R C-terminal domain mutants in HEK293 cells was assessed by ELISA 14 

(A) and immunofluorescence (B) using the anti-hGLP-1R antibody. In immunofluorescence, the anti-15 

hGLP-1R antibody staining is shown in red or GFP-tag of the constructs (green) and the anti-hGLP-16 

1R antibody staining (red) overlay is shown in yellow, and nuclear staining with DAPI in blue (scale 17 

bars in immunofluorescence images represent 10 µM). Data are mean ± SEM, n=3. Data were 18 

analysed by the Dunnett’s post-test after one-way ANOVA; values differ from control, n.s. p>0.05; ** 19 

p <0.01. 20 

 21 

Figure 4. Effect of hGLP-1R C-terminal domain mutations on the receptor N-linked 22 

glycosylation. HEK293 cells transfected with the C-terminal deletion and site-directed mutants were 23 

treated without or with 5 µg/ml tunicamycin for 48 h. The cells were lysed and the cell lysates were 24 

immunoblotted with the anti-GFP or anti-VSVG antibodies (*denotes the non-specific band). 25 

 26 

Figure 5. Effect of the C-terminal domain mutations on hGLP-1R activity. HEK293 cells 27 

expressing the C-terminal deletion and site-directed mutants were stimulated with 100 nM liraglutide 28 
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for 60 min and measured cAMP produced to determine hGLP-1R activity. Data are mean ± SEM, n=3. 1 

Data were analysed by the Bonferonni post-test after one-way ANOVA; values differ from control, 2 

n.s. p>0.05; *** p <0.001. 3 

 4 

Figure 6. Effect of the C-terminal domain mutations on agonist-induced hGLP-1R 5 

internalisation. HEK293 cells expressing the C-terminal deletion and site-directed mutants of hGLP-6 

1R were stimulated with 100nM liraglutide for 60 min and assessed for hGLP-1R internalisation by 7 

ELISA (A) and immunofluorescence (B) using the anti-hGLP-1R antibody. In immunofluorescence, 8 

the anti-hGLP-1R antibody staining is shown in red or GFP-tag of the constructs (green) and the anti-9 

hGLP-1R antibody staining (red) overlay is shown in yellow, and nuclear staining with DAPI in blue 10 

(scale bars in immunofluorescence images represent 10 µM). Data are mean ± SEM, n=3. Data were 11 

analysed by the Dunnett’s post-test after one-way ANOVA; values differ from control, n.s. p>0.05;, 12 

** p<0.01. 13 

 14 

Figure 7. Effect of hGLP-1R C-terminal domain mutations on the receptor mediated ERK1/2 15 

phosphorylation. HEK293 cells transfected with the C-terminal deletion and site-directed mutant 16 

constructs were stimulated with 100 nM liraglutide for 5 min, lysed and ERK1/2 phosphorylation was 17 

assessed by immunoblotting (A) and quantified by densitometry and normalised to total ERK1/2 18 

levels (B). The densitometry data is presented as fold phosphorylation (phosphorylated/total) and are ± 19 

SEM, n=3. Data were analysed by the Dunnett’s post-test after one-way ANOVA; values differ from 20 

control, n.s. p>0.05; ** p<0.01. 21 

 22 

Figure 8. Overview of hGLP-1R showing the distinct regions within the C-terminal domain 23 

required for its cell surface expression, activity and internalisation as deduced from the present 24 

study. The distinct regions within the C-terminal domain of hGLP-1R identified, in this study, for cell 25 

surface expression (411-418), activity (419-430) and internalisation (431-450) of the receptor. 26 
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Highlights: 

• The C-terminus is vital for GLP-1R cell surface expression, activity and internalisation.  

• Residues 411-418 in the C-terminus are critical for GLP-1R cell surface expression.  

• Residues 419-430 within the C-terminus are important for the activity of GLP-1R. 

• Residues 431-450 in the C-terminus are essential for GLP-1R internalisation. 

 


