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Abstract: We study black holes carrying higher spin charge in AdS3 within the

framework of SL(N,R)×SL(N,R) Chern-Simons theory. Focussing attention on the

N = 4 case, we explicitly analyze the asymptotic symmetry algebra of black hole

solutions with a chemical potential for spin-four charge. We demonstrate that the

background describes an RG flow between an IR fixed point withW4 symmetry and a

UV fixed point withW-symmetry associated to a non-principal embedding of sl(2) in

sl(4). Matching Chern-Simons equations with Ward identities of the deformed CFT,

we show that the UV stress tensor is twisted by a certain U(1) current, and the flow

is triggered by an operator with dimension 4/3 at the UV fixed point. We find inde-

pendent confirmation of this picture via a consistent formulation of thermodynamics

with respect to this UV fixed point. We further analyze the thermodynamics of

multiple branches of black hole solutions for N = 4, 5 and find that the BTZ-branch,

dominant at low temperatures, ceases to exist at higher temperatures following a

merger with a thermodynamically unstable branch. We also point out an interesting

connection between the RG flows and generalized KdV hierarchies.
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1 Introduction

Theories of gravity with interacting higher spin gauge fields have come to play a

central role within the general theme of the AdS/CFT correspondence [1, 2]. Large-

N gauge theories in the free limit, dual to tensionless limits of string theory, require

the presence of infinite towers of higher spin gauge fields in the dual string theory

[3–7]. The most concrete realizations of similar dualities involving higher spin gauge

theory have been shown to arise in the context of large-N vector models in three [8–

11] and two dimensions [12–17]. Within the setting of AdS3/CFT2 duality, which is

the focus of the present paper, the complexity of higher spin theories can be reduced

as it becomes possible to truncate to a finite set of higher spin fields and formulate

the system as SL(N,R) × SL(N,R) Chern-Simons theory [18–25]. These theories

provide us not only with an opportunity to explore the holographic duality within

a novel, tractable framework, but also allow us to study properties of black hole

like objects in theories where diffeomorphism invariance is enlarged to a higher spin

gauge symmetry.

Black hole configurations carrying spin-three charge in SL(3,R)×SL(3,R) Chern-

Simons theory were constructed in [26], and shown to have several remarkable fea-

tures. Notably, the black hole horizon ceases to be a gauge-invariant notion [27],

and whether a configuration is a black hole or not is determined by the holonomy of

the Chern-Simons connection around the Euclidean time circle. Indeed, fixing this

holonomy guarantees that the first law of thermodynamics holds for the higher spin

black holes [28, 29].

Another notable feature of the higher spin black holes as constructed in [26] is

that a non-vanishing higher spin charge is obtained only when a chemical potential

for the corresponding higher spin current is also turned on. In the language of the

dual CFT2, a chemical potential for any current with spin s > 2 can be viewed

as an irrelevant deformation by an operator of dimension s. On general grounds

such a deformation would spoil the ultraviolet (UV) behaviour of any CFT2, and the

associated grand canonical partition function can be viewed at best as an asymptotic

expansion in powers of the higher spin chemical potential. It is surprising, therefore,

that in the dual gravity picture of [26, 27, 30], while the higher spin chemical potential

does alter the asymptotic AdS3 (UV) geometry, the alteration is of a special nature: it

corresponds to a flow to a new AdS3 with a different radius and a different asymptotic

symmetry algebra. Specifically, in the SL(3,R)× SL(3,R) Chern-Simons theory, the

spin-three chemical potential induces a flow between a theory with W3 symmetry

and a different UV theory with W(2)
3 symmetry (the Polyakov-Bershadsky algebra

[31, 32]). These two symmetry algebras correspond to the two different embeddings

of sl(2) in sl(3), the so-called principal and non-principal (or diagonal) embeddings,

respectively.
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The picture above is expected to naturally generalize for any (integer) N . How-

ever, the specifics of such generalizations are yet to be explored completely. It is

not a priori obvious whether the new (UV) AdS3 asymptotics, induced by a higher

spin chemical potential, will always have aW-algebra symmetry associated to a non-

principally embedded SL(2,R) in SL(N,R). For instance, as pointed out in [33] the

naive central charge corresponding to a specific non-principal embedding is at odds

with the value inferred from the AdS-radius of the asymptotic geometry, for generic

N . Understanding the nature and symmetries of these UV fixed points is important

if the grand canonical ensemble (on the gravity side) is to be taken seriously for

generic finite values of the higher spin chemical potential. Eventually we would also

want to make sense of the asymptotics of analogous black hole solutions within the

hs[λ] Vasiliev theory [34, 35] dual to WN minimal models in the ’t Hooft large-N

limit [12, 16].

In this paper we investigate the theory with N = 4, deformed by a chemical

potential for spin-4 charge. We perform an explicit analysis of the asymptotic sym-

metry algebra (classical Drinfeld-Sokolov reduction) for the resulting Chern-Simons

connections, along the lines of [25]. We find that the black hole solution1 indeed

describes a flow between two conformal fixed points, with two different W-algebras.

While the original theory has W4 symmetry, the new UV fixed point exhibits a

W-symmetry associated to the (2, 1, 1) embedding2 of sl(2) in sl(4).

Importantly, we find that conformal transformations at the UV fixed point are

generated by a twisted stress tensor, where the twisting/improvement is by an abelian

current in the asymptotic symmetry algebra. The stress tensor improvement is in-

ferred by requiring the Chern-Simons equations of motion to match with Ward iden-

tities in the UV fixed point theory. Precisely the same twisting is also necessary in

order to explain why the ratio of central charges of the UV and IR W-algebras is

determined by the ratio of the corresponding AdS radii. An immediate consequence

of this is that the black hole solution can be viewed as a flow induced by a relevant

deformation of the UV fixed point, via a chemical potential for a conserved current

(with scaling dimension 4/3). Using the approach of [36, 37], we further show that

formulating thermodynamics with respect to the UV fixed point independently con-

firms the results obtained from the analysis of the asymptotic symmetry algebra and

Ward identities.

The existence of multiple branches of solutions to the holonomy conditions

which determine a black hole background implies a rich thermodynamic phase struc-

ture which was explored in [37] within the SL(3,R) Chern-Simons theory (see also

[38, 39]). Extending this to SL(4,R) and SL(5,R) theories, we find that there is

1The spin-4 black hole solution we study was first obtained in [33].
2Embeddings of sl(2) in sl(N) are classified by integer partitions of N .
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a general pattern. The BTZ-branch of solutions3 dominate the ensemble for low

temperatures (equivalently, low chemical potential for fixed temperature), and even-

tually merge with a thermodynamically unstable branch and cease to exist beyond

a critical temperature. In addition, the number of (real) branches increases rapidly

with N .

Our analysis confirms the expectation that higher spin black hole solutions in

SL(N,R) Chern-Simons theories are generically embedded within RG flows between

an IR CFT with WN symmetry and a UV CFT with a non-principal W-symmetry.

In general, the stress tensor of the UV theory is twisted by an abelian current in

such a way that the resulting ratio of UV and IR central charges agrees with the

ratio of the UV and IR AdS-radii. In conjunction with the fact that the number of

non-principal embeddings grows rapidly with N (as e
√
N), this makes non-principal

embeddings important to investigate. It has been noted that in the semiclassical

limit (fixed N and large Chern-Simons level), non-principal embeddings can lead to

non-unitary theories with negative norm states [40]. However, it is also possible to

arrive at semiclassical limits (large central charges) maintaining unitarity for certain

types of non-principal embeddings [41].

The paper is organized as follows: In Section 2 we lay out our notation and

conventions, and review some simple features of flows induced by higher spin chemical

potentials. The goal of Section 3 is to obtain the asymptotic symmetry algebra

for the spin-4 black hole in SL(4,R) Chern-Simons theory. This includes matching

of Chern-Simons equations of motion to the Ward identities of the deformed UV

CFT. In Section 4, we set up and analyze the thermodynamics of multiple black

hole branches in SL(4) and SL(5) Chern-Simons theory. Technical details of the

computations are relegated to Appendices A, B, C and D.

2 SL(N ,R)× SL(N ,R) Chern-Simons Connections

It is a remarkable fact that Einstein gravity in three dimensions, with a negative

cosmological constant, can be reformulated as SL(2,R) × SL(2,R) Chern-Simons

theory on a three-manifoldM [42, 43]. It has now been realized that, more generally,

SL(N,R)×SL(N,R) Cherns-Simons theory onM is an interacting theory of gravity

and a tower of higher spin fields on AdS3 [24, 25].

Introducing the coordinates (ρ, z, z̄) on M, asymptotically AdS3 backgrounds

in ordinary gravity correspond to flat connections in SL(2) × SL(2) Chern-Simons

theory of the form

A = L0 dρ+ (L1 e
ρ + · · · ) dz , Ā = −L0 dρ+ (−L−1 e

ρ + · · · ) dz̄ . (2.1)

3 These reduce to the BTZ black hole for zero higher spin chemical potential.
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where the ellipsis indicate subleading terms in the large ρ limit. We denote the

sl(2,R) generators as {L0, L±1}, satisfying,

[L1, L−1] = 2L0 , [L±1, L0] = ±L±1. (2.2)

The complex coordinates (z, z̄) are related to the boundary Euclidean time t and

spatial coordinate φ ' φ+ 2π as

z ≡ it+ φ , z̄ ≡ it− φ . (2.3)

There are several inequivalent ways of embedding sl(2) in sl(N), and each embedding

is naturally associated to a distinct AdS3 asymptotics, possibly dual to a distinct

conformal fixed point field theory. Of these embeddings, the so-called principal

embedding is special and the resulting theory can be viewed as Einstein gravity

on AdS3 coupled to higher spin fields with spins s = 3, 4, . . . , N . The principal

embedding results upon choosing the generators L0, L±1 appearing in eq. (2.1) to

form the N -dimensional irreducible representation of sl(2).

The work of [26] showed that even if one were to focus attention on the principal

embedding to formulate a higher spin theory of gravity on AdS3, with an asymptotic

WN×WN symmetry algebra, one may be forced to also consider theories arising from

non-principal embeddings of sl(2). At least, this is the case for the SL(3,R)×SL(3,R)

Chern-Simons theory. In particular, black hole solutions carrying a spin-3 charge

necessarily modify the AdS3 asymptotics by inducing a flow that connects to a new

UV fixed point whose symmetry algebra,W(2)
3 ×W

(2)
3 , is associated to a non-principal

embedding of sl(2) in sl(3).

Two questions naturally follow from the considerations above: (i) whether the

construction of higher spin black holes can be generalized to SL(N,R) Chern-Simons

theory, and, (ii) whether every such higher spin generalization involves an RG flow

between two CFTs with different W-algebras. Attempts to answer similar questions

have already been made in [34] and [33]. Our motivation is to focus on these issues

carefully, and then to further explore the thermodynamic phase structure of such

higher spin solutions, and possibly generalize the results of [37].

2.1 Higher spin chemical potentials and zero temperature flows

Following the conventions of [44] for the principal embedding of sl(2), we label the

generators of sl(N) as {L0, L±1} and {W (s)
m } with m = −(s − 1), . . . (s − 1), for all

s = 3, 4, . . . N :

[Li, Lj] = (i− j)Li+j , [Li,W
(s)
m ] = (i(s− 1)−m)W

(s)
i+m . (2.4)

The {Li} constitute the N -dimensional representation of sl(2), and the generators

W
(s)
m have weight−m with respect to L0. Matrix representations for all the generators

can be found as outlined in Appendix A.
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The asymptotically AdS Chern-Simons connections (A, Ā) can be re-expressed

in terms of ρ-independent flat connections (a, ā), where the dependence on the radial

coordinate is obtained via a gauge transformation generated by L0

A = b−1 ab+ b−1db , Ā = b ā b−1 + b db−1 , b = eL0ρ . (2.5)

A chemical potential µs for spin-s charge can be viewed as a deformation of the WN

CFT by the spin-s current operator Ws(z),

ICFT → ICFT +

∫
d2z
(
µsWs + µ̄sWs

)
, (2.6)

where we will assume µ̄s = µs. The constant Chern-Simons connections,

a ≡ az dz + az̄ dz̄ , ā ≡ āz dz + āz̄ dz̄ , (2.7)

are then changed accordingly to reflect the deformation by the spin-s current. In

particular, the equations of motion (flatness conditions) obeyed by the connections

must reproduce the Ward identities for various currents in the deformed CFT. This

procedure has been explicitly demonstrated for SL(3,R) in [26, 27, 30] and for the

SL(4,R) Chern-Simons connections in [33].

The upshot of these results is that in the presence of chemical potentials for

higher spin charges, the (zero temperature) Chern-Simons connections acquire both

holomorphic and anti-holomorphic components,

az = L1 , az̄ =
N∑
s=3

µsW
(s)
s−1 , (2.8)

āz̄ = −L−1 , āz =
N∑
s=3

(−1)(s−1) µsW
(s)
−s+1 ,

[az, az̄] = [āz, āz̄] = 0 .

By construction, these are constant, flat connections and encode the RG flows in-

duced by deformations of the conformal field theory by (N−2) higher spin conserved

currents. Since a spin-s current, Ws, is a local operator of dimension s ≥ 3, these are

irrelevant deformations of the CFT, a fact reflected in the ρ-dependent gauge fields

(A, Ā),

A = eρ L1 dz +

(
N∑
s=3

µsW
(s)
s−1 e

(s−1)ρ

)
dz̄ + L0 dρ , (2.9)

Ā = −eρ L−1 dz̄ +

(
N∑
s=3

(−1)(s−1) µsW
(s)
−s+1 e

(s−1)ρ

)
dz − L0 dρ .
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Higher spin chemical potentials modify the asymptotics of the original AdS3 space-

time, as would be expected for deformations of the CFT by irrelevant operators. The

spacetime metric is obtained from the gauge connections in a standard way,

ds2 =
1

4 εN
Tr
[
(A− Ā)2

]
, εN = TrL2

0 = 1
12
N(N2 − 1). (2.10)

With the higher-spin chemical potentials switched on, at zero temperature, we find,

ds2 = dρ2 + (dφ2 − dt2)

(
e2ρ +

N∑
s=3

e2(s−1)ρ µ2
s

t
(s)
s−1

4εN

)
. (2.11)

The numerical coefficients ts(s−1) are not important at this stage, and can be read off

from the expression for the Cartan-Killing form for SL(N,R) given in Appendix A

of [44].

The metric (2.11) represents a flow between two different AdS geometries. Specif-

ically, for non-vanishing µN , it interpolates between an AdS3 with unit radius (

eρ � 1) and one with radius 1
N−1

(eρ � 1). Along this flow the system passes by

other putative fixed points dual to AdS3 geometries with radii 1
s−1

, for every non-zero

µs. It is not a priori obvious what the properties of CFTs dual to these new AdS3

geometries are. It has been shown for the specific case of SL(3,R), that deforma-

tion by the spin-3 current leads to a UV conformal fixed point with W(2)
3 symmetry

[26, 27, 37].

Applying simple scaling arguments to the metric (2.9) for large ρ, we learn that

the flow is generated by deforming the putative UV fixed point (dual to AdS3 with

radius 1
N−1

) by a tower of relevant operators with dimensions

∆UV =
N + s− 3

N − 1
, s = 3, 4, . . . , N . (2.12)

Interestingly, in the large-N limit these operators form a continuum with 1 < ∆UV <

2.

It would be natural to assume that the new putative fixed points in the UV should

be related to non-principal embeddings of sl(2) in sl(N), generalizing the picture for

N = 3. However, certain doubts about the possibility of such an interpretation have

been raised (see e.g.[33]). Discussion of this point will be crucial to our analysis.

2.2 Non-principal embeddings

The asymptotic UV form of the connections (2.9) with only a single chemical po-

tential µs are related to a non-principally embedded sl(2) in sl(N) with generators

{L̂±1, L̂0}. The step generators are related to the two elements W
(s)
±(s−1) which take
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the form [44] (a ‘∗’ indicates a non-zero matrix entry),

W
(s)
−s+1 =


0 · · · ∗ · · · 0

0 0 · · · ∗ 0

0 0 0 · · · ∗
...

...
...

. . .
...

0 0 0 · · · 0

 , W
(s)
s−1 =


0 0 0 · · · 0

· · · 0 0 · · · 0

∗ · · · 0 · · · 0
... ∗ ...

. . .
...

0 0 ∗ · · · 0

 . (2.13)

The relation with the sl(2) embedding is that, up to an overall conjugation,

L̂1 = W
(s)
s−1 , L̂−1 = UW

(s)
−s+1U

−1 , (2.14)

where U is a particular element of the Cartan subgroup U = diag(λ1, . . . , λN) needed

to ensure that the commutator of L̂1 with L̂−1 has the correct form.

In general different embeddings of sl(2) in sl(N) are classified by the partitions of

N [40, 44, 47, 48]. While the principal embedding corresponds to the partition (N),

the more general embeddings with L̂1 = W
(s)
s−1 correspond to other partitions of the

form (pn1
1 , p

n2
2 ). Below, we will restrict attention to the case with s = N , i.e. when

the CFT is deformed by a chemical potential for the highest spin current (s = N).

This has the advantage of being technically simpler, but nevertheless illustrates the

more general features that we wish to understand. In this case, the relation with the

sl(2) has L̂±1 = W
(N)
±(N−1). The partition in this case is (2, 1N−1) and the branching

of the adjoint of sl(N) in terms of a direct sum of irreducible representations of the

sl(2) is

N2 − 1
(2,1N−1) → 3 + 2(N − 2) · 2 + (N − 2)2 · 1 (2.15)

The embedding defines the semi-simple decomposition of the algebra as

sl(N) → sl(2) ⊕ sl(N − 2) ⊕ u(1) , (2.16)

and thus the asymptotic symmetries should include sl(N−2) and u(1) affine algebras.

With only a spin-N chemical potential, µ, the UV asymptotics is controlled by

az̄ ∼


0 . . . 0 0

0 0 . . . 0

0 0 0 . . .

µ 0 0 0

 , āz ∼


0 0 0 µ

. . . 0 0 0

0 . . . 0 0

0 0 . . . 0

 . (2.17)

These are proportional to the generators W
(N)
N−1 and W

(N)
−N+1, respectively. For this

case, the ρ-dependent gauge connection has the form (after a coordinate rescaling),

A =
(
W

(N)
N−1 e

ρ + . . .
)
dz + 1

N−1
L0 dρ , (2.18)

Ā =
(
−W (N)

−N+1 e
ρ + . . .

)
dz̄ − 1

N−1
L0 dρ .
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Here we encounter the crucial point: the connections involve L0, which differs from

the generator of the two dimensional representation of sl(2), namely L̂0:

1
N−1

L0 = 1
2

diag(1 , N−3
N−1

, . . . ,−N−3
N−1

, −1) , L̂0 = diag(1
2
, 0, 0, . . . , 1

2
) . (2.19)

Therefore, as implied by the AdS radii, the central charges of the UV and IR con-

formal points are related by

cUV =
1

(N − 1)2
cIR , (2.20)

whereas one would have expected the ratio of the UV and IR central charges to

be given by the ratio of the quadratic Casimirs of the representations, namely

Tr(L̂2
0)/Tr(L2

0) = 6/(N(N2 − 1)). Only for the specific case of N = 3, do both

expressions yield the same result, cUV = cIR/4. This observation suggests that the

asymptotic symmetry algebra implied by the Chern-Simons connection (2.18) needs

to be carefully examined. In fact L0 differs from the two dimensional generator L̂0

by a re-scaling and some U(1) element, say J0,

1

N − 1
L0 = L̂0 + J0 . (2.21)

Although this is puzzling at first sight, such a shift can be easily accounted for in

the CFT by an “improved” stress tensor,

T → T̃ = T + ∂J0 , (2.22)

where J0 is an abelian current with zero mode J0. In such a situation, the conformal

transformations are actually generated by a twisted stress tensor T̃ which has a

different central charge as compared to the “canonical” stress tensor. We will show

below, by explicit evaluation of the asymptotic symmetry algebra for the (2, 1, 1)

embedding in sl(4), the emergence of precisely such a twisted stress tensor in the

W-algebra of the UV CFT. In the general case, it is worth noting that the element

L0 provides a consistent gradation of the whole algebra

[L0,W
(s)
m ] = −mW (s)

m (2.23)

and for the non-principal embedding with L̂1 = W
(s)
s−1 one has

1

s− 1
L0 = L̂0 + J

(s)
0 , (2.24)

where J
(s)
0 is some Cartan element and one expects that the stress tensor of the UV

fixed point is similarly improved with cUV = cIR/(s− 1)2.
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3 Asymptotic UV Symmetry for SL(4,R) Black Hole

In this Section we focus on the spin-4 black hole solution in SL(4,R) Chern-Simons

theory. This solution was first obtained in [33], and many of its features pointed out.

Our motivation for revisiting this solution is two-fold. The black hole background

provides a flat connection whose asymptotics (IR and UV) have the form dictated by

eqs. (2.9) and (2.17). The spin-4 black hole is described by the constant connection

in the highest weight representation,

a = az dz + az̄ dz̄ (3.1)

az =
(
L1 − π

5k
LL−1 − π

12k
Q3W

(3)
−2 + π

18k
Q4W

(4)
−3

)
az̄ = µ

(
W

(4)
3 − 3π

5k
LW (4)

1 + π
2k
Q3W

(3)
0 + 3π

5k
Q4 L−1 +

(
3π2

25k2
L2 + π

6k
Q4

)
W

(4)
−1

− 2π2

25k2
LQ3W

(3)
−2 −

(
π2

12k2
Q3

2 + π3

125k3
L3 − 11π2

450k2
LQ4

)
W

(4)
−3

)
,

with a similar expression for the barred connection. Here Q3, Q4 are the spin-3 and

spin-4 charges respectively, and µ is a chemical potential conjugate to the spin-4

charge. The flatness of the connection, [az, az̄] = 0, implies that az̄ may be expressed

as a traceless function of az, and for the spin-4 black hole we have

az̄ = −41π
25k
Lµ az + µ

(
a3
z −

1

4
Tr a3

z

)
. (3.2)

The thermodynamic charges L, Q3 and Q4 are then related to traces of powers of the

holomorphic component of the connection A,

2πL =
k

2
Tr (az)

2 , (3.3)

−2π Q3 =
k

3
Tr (az)

3 ,

−2π Q4 + 41π2

25k
L2 =

k

4
Tr (az)

4 .

As pointed out in [36], the relation between thermodynamic charges and the traces of

the connection is quite general and one may define the charges for a given SL(N,R)

gauge field in terms of the traces Tr (apz) , p = 2, 3, . . . , N .

The values of the thermodynamic charges as a function of temperature and

chemical potential are fixed by the smoothness condition on the holonomy of the

gauge field around the thermal circle [26, 29, 30]. We will return to this when we

discuss the thermodynamics of higher spin black holes. For now, our main focus is

establishing the W-algebra of the UV conformal fixed point associated to the spin-4

black hole solution.
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3.1 UV Ward identities

In the original works [26, 27] the general form of the Chern-Simons connection de-

scribing a higher spin black hole was used to obtain the Ward identities of the CFT

deformed by a chemical potential for a higher spin current. The basic strategy is to

consider a more general ansatz for the black hole gauge connection in the highest

weight representation, allowing all the parameters (thermodynamic charges and po-

tentials) to acquire dependence on the boundary coordinates (z, z̄). The equations

of motion satisfied by these, following from the flatness of the connection, can then

be matched onto the Ward identities for the currents of the appropriate W-algebra

in the CFT deformed by a higher spin chemical potential.

In order to perform this analysis for the UV fixed point implied by the black hole

gauge connection, after a co-ordinate rescaling (a constant gauge transformation) we

write the SL(4,R) gauge field (3.1) in the general form,

a =
(

1
6
W

(4)
3 +

2∑
`=−3

w`W
(4)
` +

2∑
`=−2

v`W
(3)
` + u0 L0 + u−1 L−1

)
dz̄ (3.4)

+
(
λL1 + λ−1 L−1 + λ−2W

(3)
−2 + λ−3W

(4)
−3

)
dz .

The analysis for the barred gauge field ā proceeds identically, so we restrict attention

to the unbarred sector. The constant gauge transformation in question is generated

by L0, so that a→ e−ΛL0 a eΛL0 with eΛ = (6µ)−1/3 and

λ = (6µ)−1/3 . (3.5)

Rewriting the connection (3.1) in this form, allows to switch our perspective from the

IR to the UV. In particular, for large radial coordinate ρ, the az̄ component provides

an AdS3 “background” of radius 1/3, whilst az acts as a relevant “deformation”.

The parameters appearing in the gauge field are related simply to those in (3.1) via

rescalings by powers of µ.

If we allow all deformation parameters in (3.4) to depend on the boundary co-

ordinates (z, z̄), the flatness conditions

da + a ∧ a = 0 , (3.6)

are satisfied if certain constraints are imposed on the deforming parameters,

∂̄λ = 0 , w2 = v2 = v1 = u0 = 0 , (3.7)

λ−1 = 2λw1 ; λ−2 = −λ v0 ; λ−3 = 5
9
λu−1 ,
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which then lead to nine independent Ward identities for nine currents,

∂u−1 = 2λ ∂̄w1 , ∂v0 = −3λ v−1 , ∂v−1 = λ(−4v−2 + 32
5
v0w1) , (3.8)

∂v−2 = 2λ
(
w1 v−1 + 3

5
v0w0 − ∂̄v0

)
, ∂w0 = λ

(
10
9
u−1 − 4w−1 + 8w2

1

)
,

∂w1 = −3λw0 , ∂w−2 = 4
3
λ
(
u−1w1 + 4w1w−1 − 4v2

0 − 6w−3

)
,

∂w−1 = 6λw0w1 − 5λw−2 , ∂
(
w−3 − 3

20
w2

0 − 1
3
v2

0 + 2
5
w1w−1

)
= 5

9
λ∂̄u−1 .

In the absence of the deformation λ (which is required to be holomorphic in z),

all nine currents are anti-holomorphic. The deformation introduces a holomorphic

dependence in the currents and the Chern-Simons equations of motion can be viewed

as anomalous Ward identities, induced by the deforming relevant operator in the UV

CFT. The precise form of the above equations is determined by the OPEs between

currents and the deforming operators.

Our task now is to demonstrate that the parameters above can indeed be mapped

uniquely to a set of currents generating a W-algebra associated to the (2, 1, 1) non-

principal embedding. This identification of the currents will proceed in steps:

• First, we will make explicit the form of an SL(4,R) gauge field in terms of

asymptotic symmetry currents which generate the W(2,1,1)
4 symmetry algebra,

associated to the (2, 1, 1) embedding.

• Using an SL(4,R) gauge transformation, we will cast the UV portion of the

black hole connection in the form which allows immediate identification of

the mapping between the parameters ui, vi, wi and the currents of the W(2,1,1)
4

algebra.

• Finally, we will show that the Chern-Simons equations of motion (3.8) precisely

reproduce the Ward identities for the W(2,1,1)
4 currents, with a unique choice

for the relevant operator perturbing the UV fixed point.

3.2 Asymptotic algebra for the (2, 1, 1) embedding

We begin by deriving theW-algebra by considering an sl(4,R) connection represent-

ing AdS3 in the “standard” (2, 1, 1) embedding:

AAdS = L̂1 e
ρ dz + L̂0 dρ , ĀAdS = −L̂−1 e

ρ dz − L̂0 dρ , (3.9)

L̂1 ≡ 1
6
W

(4)
3 , L̂−1 ≡ 1

6
W

(4)
−3 , L̂0 = diag

(
1
2
, 0, 0,−1

2

)
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Note that this gauge field is different from (2.18) which describes the asymptotics

of the black hole. The generator of ρ-translations in that case is L0 which differs

from L̂0 by a certain U(1) generator. Nevertheless, as we show below, the asymp-

totic symmetry algebras for the two gauge connections are essentially the same. To

determine the asymptotic symmetry algebra for the AdS background represented by

eq. (3.9), we adapt the procedure outlined in [25] (see also [41]). In this approach,

an asymptotically AdS connection must satisfy:4

(A− AAdS)
∣∣
ρ→∞ = O(1) , (Ā− ĀAdS)

∣∣
ρ→∞ = O(1) . (3.10)

The most general SL(4,R) Chern-Simons connection, in the (2, 1, 1) embedding, is

(at a constant z̄ slice)

Az =
1∑

n=−1

Ln(z) L̂n e
nρ + J(z) J +

1∑
A=−1

JA(z) JA +
∑

m=±1
2
,a,b=±

Gabm (z)Gab
m e

mρ

Az̄ = 0 , (3.11)

and similarly for the barred connection. The 15 generators of sl(4) are split into a

triplet {Ln}, four doublets {Gab
m} and four singlets {J, JA} of sl(2):

15→ 3 + 4 · 2 + 4 · 1 . (3.12)

The explicit form for these generators is summarized in eq. (B.2) (Appendix (B)).

The four sl(2) singlets {JA, J} generate an SL(2)′×U(1) symmetry. We now impose

the asymptotically AdS requirement by setting to zero the coefficients of all genera-

tors with positive weight under L̂0, and by fixing the coefficient of L̂1 to unity5,

L1 = 1 , Gab1/2 = 0 . (3.13)

The constraint L1 = 1 is first class and generates gauge transformations which can be

used to set L0 = 0. So we may take the gauge-fixed, asymptotically AdS connection

to be,

Az = L̂1 e
ρ + J(z)J+

1∑
A=−1

JA(z) JA +
∑
a,b=±

Gab(z)Gab
−1/2 e

−ρ/2+L̂−1 L(z) e−ρ , (3.14)

4The following formulae are true for the embedding associated to L̂1 = W
(N)
N−1. For a more

general embedding, L̂1 = W
(s)
s−1 it is necessary to take L̂−1 = UW

(s)
−s+1U

−1 where U is an element

of the Cartan subgroup, such that {L̂±1} are generators of sl(2). Then the equation for the barred

connection must be generalized slightly to include a gauge transformation (UĀU−1−ĀAdS)
∣∣
ρ→∞ =

O(1).
5It is not a priori clear how to directly apply the same procedure to a connection representing

the flow in eqs. (2.17) and (3.4), because dilatations (ρ-translations) are generated by 1
3L0, instead

of L̂0 and hence the ρ-dependence is different from eq. (3.14).
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leaving nine undetermined functions which will eventually be identified with symme-

try currents. In explicit matrix form, the asymptotically AdS, Chern-Simons gauge

field is determined by the connection

az = eρL̂0Aze
−ρL̂0 , az =



1
2
J G++ G−+ L

0 −1
2
J + 1

2
J0 J− −G−−

0 −J+ −1
2
J− 1

2
J0 G+−

1 0 0 1
2
J


(3.15)

The asymptotic symmetries of this background are those SL(4,R) gauge transfor-

mations which preserve the form of the gauge-fixed connection i.e. the gauge fixed

connection, whilst not invariant, retains its specified form. The most general in-

finitesimal SL(4,R) gauge transformations, holomorphic in z, are given by

Az → Az + ∂zΛ + [Az,Λ] , (3.16)

Λ =
1∑

n=−1

εn(z) L̂n + γ(z) J +
1∑

A=−1

ηA(z) JA +
∑

m=±1/2,a,b=±

χabm(z)Gab
m .

These transformations preserve the form of the AdS connection only if the gauge

parameters satisfy certain relations,

ε0 = −ε′1 , (3.17)

ε−1 = 1
2
ε′′1 − Lε1 + 1

2
G−− χ++

+ + 1
2
G−+ χ

+−
+ − 1

2
G+− χ

−+
+ − 1

2
G++ χ

−−
+ ,

χ−+
− = −χ−+ ′

+ + ε1 G−+ + J− χ++
+ − 1

2
J0 χ

−+
+ − Jχ−+

+ ,

χ+−
− = −χ+− ′

+ + ε1 G+− − J+ χ
−−
+ + 1

2
J0 χ

+−
+ + Jχ+−

+ ,

χ−−− = −χ−− ′+ + ε1 G−− + J− χ+−
+ − 1

2
J0 χ

−−
+ + Jχ−−+ ,

χ++
− = −χ++ ′

+ + ε1 G++ − J+ χ
−+
+ + 1

2
J0 χ

++
+ − Jχ++

+ .

Hence there are nine independent gauge transformations generated by gauge parame-

ters ε1, γ, ηa, χ
ab
+ which preserve the form of the asymptotically AdS connection. It is

straightforward to deduce the variations of all currents under the independent gauge

transformations. The variations of the currents are listed in eqs. (C.1)-(C.4). The
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gauge transformations of the currents completely determine the asymptotic symme-

try algebra since the Poisson brackets of the charges can be read off directly from

the above transformations. Specifically, the symmetry variation of any phase space

functional is given by [25]

δΛF = {Q(Λ), F} , Q(Λ) ≡ − k

2π

∫
dφTr (aφ Λ+) , (3.18)

where Λ+ picks out the components of Λ with non-negative weights with respect to

L̂0, and it is understood that the charges are computed on a constant time slice.

Explicitly, we obtain

Q(Λ) = − k
2π

(
G++ χ

−− + G+− χ
−+ − G−+ χ

+− − G−− χ++ + L ε1 + J γ

+1
2
J0 η0 − J+ η− − J−η+

)
. (3.19)

The resulting Poisson brackets for theW-algebra generated by the currents are listed

in (C.7). It is important to note that to recover the correct dependence of the central

charge on the Chern-Simons level, we must correctly normalize the currents, which

we can do by performing the rescalings

L → −2π
k
L , Gab → −2π

k
Gab , J± → −2π

k
J± , J0 → −4π

k
J0 , J→ −2π

k
J .

It also becomes clear from the Poisson brackets that in order for the spin-3
2

currents

to have a regular tensor transformation law, the naive stress tensor L needs to be

modified,

L → T = L − 2π
k

(
1
2
J2 + J 2

0 − J+ J−
)
. (3.20)

We recognize this modification as the Sugawara form for the stress tensor of the

sl(2)′ ⊕ u(1) affine algebra. Since we are working in a semiclassical limit (k → ∞),

terms non-linear in the currents appear with a power of k−1, and in addition we

can ignore normal ordering effects from such terms. The Poisson brackets imply the

following non-trivial OPEs for the currents of the W(2,1,1)
4 -algebra:

T (z)T (0) ∼ 3k

z4
+

2

z2
T +

1

z
∂T , T (z)Gab(0) ∼ 3

2z2
Gab +

1

z
∂Gab ,

(3.21)

T (z)JA(0) ∼ 1

z2
JA +

1

z
∂JA , T (z) J(0) ∼ 1

z2
J +

1

z
∂J ,
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J0(z)J0(0) ∼ − k

2z2
, J+(z)J−(0) ∼ k

z2
− 2

z
J0 , J0(z)J±(0) ∼ ±1

z
J±(0) ,

J(z) J(0) ∼ − k

z2
, G±∓(z)G±±(0) ∼ 2

z2
J± +

1

z
∂J± ∓

2

k z
JJ± ,

J(z)Ga±(0) ∼ ∓Ga±
z

, J0(z)G±a(0) ∼ ± 1

2z
G±a , J∓(z)G±a(0) ∼ ± 1

2z
G∓a ,

G−∓(z)G+±(0) ∼ 2k

z3
+

2

z2
(J0 ∓ J) +

2

z

(
∂J0 ∓ ∂J + 1

2
T
)

+ k−1 1

z

(
2J+J− − 2J 2

0 ± JJ0 − 3
2
J2
)
.

The currents of the W-algebra comprise of the stress tensor T , four sl(2)′ ⊕ u(1)

currents and four spin-3
2

currents Gab. The central charge is ĉ = 6k, which is

precisely what we expect from a two dimensional embedding of sl(2). The levels

of the U(1) currents J0 and J are negative, and the OPEs contain non-linear terms

that are suppressed by k−1 in the large-k regime, which is also the regime in which the

classical Chern-Simons description is valid. The algebra agrees with the semiclassical

limit of the result quoted in [41].

3.3 Matching black hole parameters to W-algebra currents

Having determined the explicit form of theW-algebra corresponding to the standard

(2, 1, 1) embedding, we turn our attention to the black hole gauge connection. We

first note that the anti-holomorphic component, az̄ of eq. (3.4) can be put in the

form of eq. (3.15), using an SL(4,R) gauge transformation:

az̄ → Ω−1 (az̄ + ∂z̄) Ω , Ω =
1

10


1 0 −4

√
3w1 −3w0

0 1 0 4
√

3w1

0 0 1 0

0 0 0 1

 , (3.22)

which results in a dictionary between the parameters of the black hole gauge connec-

tion and the W-algebra currents, that we quote in eq. (D.1). With these identifica-

tions in place the SL(4,R) Chern-Simons equations (3.8) can be rewritten in terms of

anti-holomorphic W-algebra currents. Noting that precisely the same identifications

hold for the Chern-Simons connection in the barred sector, we list the equations

obeyed by the holomorphic currents which acquire anti-holomorphic pieces due to
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the UV deformation,

∂̄T̃ = 1
3
λ ∂O , ∂̄J+ = 4λJ0 , ∂̄J =

√
3λ (G++ − G+−) (3.23)

∂̄O = −50
3
λ ∂J+ , ∂̄J0 = −1

2
λ
(
O − 6J− + 8J 2

+

)
∂̄J− = −λ

{√
3(G−− + G−+) + 16

3
(∂J+ + 2J0J+)

}
√

3 ∂̄ (G++ − G+−) = −λ
{

2
√

3 (G−− − G−+) + 12 JJ+

}
√

3 ∂̄ (G−+ − G−−) = −2λ
{

8√
3

(G++ − G+−) J+ + 3 (2J0J + ∂J)
}

where the improved stress tensor T̃ and the operator O are defined as

T̃ = T + 1
3
∂J0 , O =

√
3 (G++ + G+−) + 2J− + 8

3
J 2

+ . (3.24)

This “improved” stress tensor is forced upon us as the natural combination that ap-

pears in the dictionary (D.1) between the parameters of the black hole connection and

theW-algebra currents. All currents are holomorphic in the absence of the deforma-

tion parameter λ. To summarize, we have re-expressed the Chern-Simons equations

of motion in terms of currents of the W(2,1,1)
4 -algebra. It remains to show that these

equations are precisely Ward identities in the theory obtained by perturbing the UV

fixed point by the relevant operator O.

3.4 Matching to W(2,1,1)
4 Ward identities

We have seen that the asymptotic form of the SL(4,R) Chern-Simons connection

(2.8) describes the introduction of a chemical potential for spin-4 charge in the W4

CFT. The corresponding deformation is irrelevant from the perspective of this (IR)

conformal fixed point. The connection, however, describes a flow to a new (UV)

AdS geometry. From the background metric, we infer that the RG flow results from

perturbing the UV fixed point by an operator of dimension 4/3 as measured by the

stress tensor whose zero mode is L̂0 + 1
3
J0. Therefore, by inspecting the W(2,1,1)

4

algebra above, we conclude that the UV stress tensor appropriate for describing the

RG flow background is

T̃ = T + 1
3
J ′0 . (3.25)

There are precisely three operators with dimension 4/3 (as measured by T̃ ) at the
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UV fixed point, hence we write the perturbing operator as

O = g+ G++ + g− G+− + g1 J− + g2 J 2
+ . (3.26)

Once the UV field theory is deformed by this operator,

IUV → IUV + λ

∫
d2z

(
O(z) + O(z̄)

)
, (3.27)

all CFT currents obey “Ward identities” that are completely determined by their

Poisson brackets/OPEs with the deforming operator O. Currents which were holo-

morphic at the fixed point acquire anti-holomorphic pieces (and vice-versa) along

the flow, governed by their respective OPE’s with O. Making use of the identity

∂z̄
(

1
z

)
= 2πδ2(z, z̄), to linear order in λ, using the OPEs for the W-algebra, we find

the Ward identities of the perturbed UV conformal fixed point:

〈∂̄T̃ 〉 =
λ

3
〈∂O〉 , 〈∂̄J+〉 = 2λ g1 〈J0〉 , 〈∂̄J〉 = λ〈(g+ G++ − g− G+−)〉 ,

〈∂̄O〉 = −2λ 〈(g1g2 + g+g−) ∂J+〉 , 〈∂̄J0〉 = −1
2
λ 〈
(
O − 3g1 J− + 3g2 J 2

+

)
〉 ,

〈∂̄J−〉 = −λ 〈(g+ G−+ + g− G−− + 2g2 ∂J+ + 4g2 J0J+)〉 , (3.28)

〈∂̄(g+ G++ − g− G+−)〉 = −λ〈{4g+g− JJ+ − g1 (g+G−+ − g−G−−)}〉 ,

〈∂̄(g+G−+ − g−G−−)〉 = −2λ〈{g+g−(∂J + 2JJ0) + g2J+(g+G++ − g−G+−)}〉 .

Comparing with the Chern-Simons equations of motion we immediately notice beau-

tiful agreement once the deformation parameters are fixed to

g+ = g− =
√

3 , g1 = 2 , g2 =
8

3
. (3.29)

Using the OPEs (3.21) the central charge as measured by the improved stress tensor

T̃ is given by

cUV =
20 k

3
. (3.30)

On the other hand, the central charge of the W4 CFT in the IR is given by

cIR = 12 kTr(L2
0) = 60k . (3.31)

Therefore, cUV/cIR = 1/9, as expected from the ratio of the respective AdS-radii

(2.20). Note that this does not violate the c-theorem because Lorentz invariance is

not preserved by the flow.
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3.5 Summary

In this section we have demonstrated by explicit computation, that the Chern-Simons

connection representing a spin-4 black hole in SL(4,R) Chern-Simons theory, also

describes a flow between two CFT’s characterized by different W-algebras. In par-

ticular, we have shown that the UV conformal fixed point has aW-algebra associated

to the (2, 1, 1) non-principal embedding of sl(2) in sl(4). Crucially, conformal trans-

formations of this UV CFT are generated by a twisted stress tensor T̃ . Our analysis

strongly suggests that an analogous picture will continue to be valid for general higher

spin black holes in SL(N,R) and that these will correspond to flows between CFT’s

associated to the principal and some non-principal embedding of sl(2) in sl(N).

4 Thermodynamics

We have presented evidence that some of the key features of higher-spin black hole

backgrounds in AdS3, originally found in [26] for SL(3,R) Chern-Simons theory, can

be naturally generalized to SL(N,R) theories with N > 3. In particular the black

holes with higher spin charge continue to be embedded within flows between CFT’s

characterized byW-algebras corresponding to different embeddings of sl(2) in sl(N).

It is now interesting to ask whether the thermodynamics of these black holes and in

particular the interplay between multiple branches of solutions [37] also generalizes

in a simple way.

Thermodynamic action: Our approach towards the thermodynamics will first

follow the general idea outlined in [36], which was explicitly applied to spin-three

black holes in [37]. As pointed out in [28] this so-called “holomorphic” formulation

of thermodynamics differs from the “canonical” formulation followed in [49] and [28].

In order to be identified with black holes, the sl(4) connections in eq. (3.1),

must also satisfy a smoothness condition in Euclidean signature. In particular, the

holonomy of the gauge field around the Euclidean thermal circle must be trivial.

This is analogous to the requirement of regularity of the Euclidean black hole metric

in ordinary gravity [26, 27, 44]. The smoothness condition in turn implies that the

holonomy of the gauge field should lie in the center of the gauge group, which then

constrains the eigenvalues of the connection at. To describe a higher spin black hole

which is connected smoothly to the usual BTZ black hole at µ = 0, we require

exp

(∮
β

at

)
= exp (2πiL0) , at ≡ i(az + az̄) (4.1)

This condition fixes the eigenvalues of the matrix βat, to match those of the dilatation
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generator L0 ≡ diag( 3
2
, 1

2
, −1

2
, −3

2
), so that

Tr(a2
t ) = −20π2T 2 , Tr(a3

t ) = 0 , det(at) = 9π4T 4 . (4.2)

Requiring that the holonomies be fixed, automatically guarantees that the first law

of thermodynamics is obeyed by the solutions [28, 29]. In the approach of [36] the

on-shell Euclidean action of the Chern-Simons theory reads

Ion−shell =
ik

4π

∫
dt dφ [ Tr(at aφ) − Tr(āt āφ) ] . (4.3)

This is purely a boundary contribution (in the so-called angular quantization picture)

since the bulk Chern-Simons action simply vanishes on-shell. On the other hand, a

free variation of the Chern-Simons bulk and boundary terms yields

δI = − ik
4π

∫
T2

dt dφ [ Tr (aφ δat − at δaφ) − (a→ ā) ] (4.4)

where the variation includes the effect of changing the modular parameter of the

boundary torus, or the inverse temperature β. Assuming a non-rotating configu-

ration, explicit evaluation of this using the connections (3.1) (or those in [37] for

SL(3,R)) shows that I does not transform as a thermodynamic grand potential.

δI = −8πQ4 β dµ− 4πdQ4 (βµ)− dβ (Ion−shell β
−1) . (4.5)

This can, however, be fixed by a Legendre transform of I,

I → I + 4πQ4 (βµ) . (4.6)

It is now straightforward to deduce that the correct thermodynamical action which

yields the expected variations with respect to the inverse temperature β and the

chemical potential µ,

∂Ith

∂β
= 4πL , ∂Ith

∂(βµ)
= − 4π Q4 , (4.7)

is given by,

Φ ≡ β−1 Ith = −4πL + 12πµQ4. (4.8)

Φ is the grand potential, and we have assumed that the barred and unbarred sectors

contribute equally to the total energy and spin-four charge, for the non-rotating

configuration. From this we deduce the thermodynamic entropy

S =
1

T
(8πL − 16π µQ4) . (4.9)
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We may also readily verify, that the formulae for the entropy and the grand potential

can be directly deduced from the Chern-Simons connections as

Φ = −kTr
(
a2
z + 3

2
az az̄

)
, (4.10)

S = 2ik β Tr(at az) = 2k β Tr
(
a2
z + az az̄

)
.

This expression for entropy was pointed out in [28, 29]. In particular, in [29], it

was shown that this entropy formula (for non-rotating solutions) can be obtained by

evaluating the Chern-Simons action “off-shell” on appropriately regularized singular

connections, i.e. those with non-trivial holonomy around the Euclidean time circle.

Note that our expressions for the entropy and the energy differ from those in

the canonical formulation where the energy includes terms non-linear in L. In the

holomorphic formulation we adopt, the energy is naturally defined as the expectation

value of the Hamiltonian of the undeformed theory.

4.1 Holonomy conditions and phase structure

In [37], the potentially rich thermodynamic phase structure of the spin-3 black hole

solutions in SL(3,R) Chern-Simons theory was shown. The main feature was the

existence of multiple branches of black hole solutions of which only one is smoothly

connected to the BTZ black hole at µ = 0. Perhaps the most remarkable feature of

the thermodynamics of spin-3 black holes is that the BTZ branch ceases to exist be-

yond a critical value of the chemical potential (at fixed temperature).6 At this critical

point, the BTZ branch merges with a thermodynamically unstable branch. Finally,

the physics at ultra-high temperature (or fixed temperature, ultra-high chemical po-

tential) is remarkably well described by the thermodynamics of a UV CFT withW(2)
3

symmetry.

It is now easy to verify whether this thermodynamic phase structure generalizes

in a simple way to SL(N,R) theories with N = 4, 5. Black hole solutions require

trivial holonomy of the Chern-Simons connection (3.1) around the time circle. For

N = 4, we obtain three algebraic equations for the three charges L, Q3 and Q4. The

equations have multiple roots, with six real branches (out of a total of 27 roots).

Remarkably, the phase diagram bears a strong similarity to the SL(3,R) theory.

Once again, the BTZ branch ceases to exist beyond a critical value of
√
µT .

6One possible resolution is that beyond this point one must allow for complex roots of the

holonomy conditions, since SL(3,C) is the true gauge group of the Euclidean theory. In that case

the BTZ-branch continues to exist beyond this critical chemical potential, as a complex saddle

point, until eventually at some higher µ there is a first order transition to the phase that dominates

in the UV.
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Figure 1: Energy and the grand potential for the six branches corresponding to spin-4

black holes in SL(4,R) Chern-Simons theory.

Performing the analogous excercise for SL(5,R) Chern-Simons theory, we find

a much larger number of roots, ranging between 46 real roots for small T and 18

real branches for larger temperatures (at fixed µ). The universal features of the
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Figure 2: Energy versus temperature for real branches corresponding to spin-5 black

holes from SL(5,R) Chern-Simons theory.

solutions are self-evident. In particular, the disappearance of the BTZ-branch is

a robust feature. The other striking feature is the rapid growth in the number of

solutions with N . This is due to the fact that there are N − 1 holonomy conditions

on the N − 1 thermodynamical charges and the order of the polynomial equations

arising from the holonomy conditions effectively grows as ∼ N2 for large N . It

would be a very interesting excercise to uncover the large-N scaling of the number

of real branches and whether the rapid growth of this number has implications for

the presence or absence of phase transitions in the theory with an infinite tower of

higher spin fields.
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4.2 Thermodynamics of the UV fixed point

Finally we turn to a non-trivial consistency check of the picture we have presented

thus far. This is provided by the construction of a thermodynamical action for the

UV fixed point in terms of the appropriate variables for that theory. This is once

again analogous to, and a generalization of the situation with the spin-3 black hole,

discussed in [37]. To obtain the UV thermodynamics, we rewrite the flat connections,

after a constant gauge transformation (rescaling),

â =
(

1
6
W

(4)
3 + w1W

(4)
1 + w−3W

(4)
−3 + w−1W

(4)
−1 + v−2W

(3)
−2 + (4.11)

+ v0W
(3)
0 + u−1 L−1

)
dz̄ + λ

(
L1 + 2w1 L−1 − v0W

(3)
−2 + 5

9
u−1W

(4)
−3

)
dz ,

where we have swapped the z and z̄ coordinates. Now we can compute the complete

variation of the action and deduce thermodynamic quantities following the steps

already outlined above. We calculate the variation of the Chern-Simons action (4.4)

after a suitable Legendre transform, using the equations of motion (3.8) and the

relation between Chern-Simons variables and W-algebra currents (D.1), and we find,

δÎ = −4π 〈T̃ 〉 dβ − 4π 〈O〉 d(λβ) . (4.12)

〈T̃ 〉 and 〈O〉 are the expectation values of the UV stress tensor and the deforming

current ((3.20),(3.24)), obtained from the asymptotic symmetry algebra and the

Ward identities. Therefore the energy as measured with respect to the UV fixed

point coincides with the expectation value of the stress tensor obtained using different

methods, and λ can be viewed as a chemical potential for the conserved current

O (scaling dimension 4
3
). Note that in Euclidean signature, the energy density is

proportional to −〈T̃ 〉. The grand potential for this ensemble is

Φ̂ = 4π 〈T̃ 〉 + 4πλ 〈O〉 = −kTr
(
â2
z + 3

2
âz âz̄

)
. (4.13)

Before we leave the discussion of the thermodynamics, the outstanding issue that

we do not solve here is to provide a definition of the free energy which interpolates

smoothly between the IR and UV definitions we have provided above in (4.10) and

(4.13), respectively.

5 Discussions and Conclusions

The goal of this work was to analyze in detail the asymptotic symmetries of higher

spin black hole solutions in SL(N,R) Chern-Simons theory. Although we restricted

attention to the case with highest spin chemical potential for simplicity, our analysis

– 23 –



confirms the general expectation that these solutions should correspond to flows

linking a WN CFT to one with a non-principal W-algebra. To be more specific,

we conjecture that the UV limit associated to the element W
(s)
s−1 will involve the

W-algebra for the sl(2) embedding with L̂1 = W
(s)
s−1. The only subtlety in this

identification is that the stress tensor of the UV fixed point must be appropriately

twisted by U(1) currents which always arise in non-principal embeddings of sl(2) in

sl(N).

The most interesting question is whether an analogous study can be performed

for black hole solutions in hs[λ] Vasiliev theory which is related by the proposal of

Gaberdiel and Gopakumar to a ’t Hooft large-N limit of the WN minimal models.

Higher spin black hole solutions in this theory, constructed perturbatively in the

chemical potential [34], do alter the asymptotics in the same way as in SL(N,R)

Chern-Simons theories. It would definitely be interesting to understand if these

imply an RG flow between a WN minimal model and another (unitary) CFT. Non-

principal embeddings of certain kinds (e.g. the next-to-principal embedding) have

been argued to have semiclassical limits which are unitary [41]. In any case, it

appears that SL(N) Chern-Simons theories in the semiclassical limit (fixed N , large

k) yield results related by analytic continuation to the hs[λ] theory or the unitary

WN models in the ’t Hooft limit [16, 50]. Therefore, it is plausible that a similar

picture is realized for RG flows within this framework.

The analysis of the thermodynamics of multiple branches of black hole solutions

in the large-N limit is another fascinating question for the future. We have already

seen that the number of solutions to the holonomy equations increases rapidly withN .

Since the BTZ-branch of solutions disappears for high temperatures (as a real solution

to the holonomy conditions) this is accompanied by putative discontinuous phase

transitions [37]. The discretuum of solutions at large-N may well be responsible for

smoothing out and eliminating such discontinuities as seen at zero chemical potential

[51]. Conical defect states [44, 52] carrying higher spin charge, are also likely to play

an important role in this limit.

There are very close and interesting parallels between the RG flows associated

to higher spin black holes as we have described and the theory of generalized KdV

hierarchies [53, 54]. The latter are naturally associated to the affine generalisation

of g = sl(N) realized as a loop algebra ĝ = sl(N)⊗ C[ξ, ξ−1].7 The connection with

the RG flows is that the Chern-Simons equation-of-motion is a flatness condition

for the gauge connection (az, az̄) which can be interpreted as the Lax equation of

the hierarchy associated to the pair of “flows” (z, z̄). In the context of the inte-

grable hierarchies, a central role is played by a particular Heisenberg subalgebra of

ĝ. These are maximal abelian subalgebras of the affine algebra which are classified

7We denote the spectral parameter as ξ to avoid confusion with the spacetime variable z.
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by conjugacy classes of g. In the present context, we need to take the Heisenberg

subalgebra associated to the Coxeter element of the Weyl group of sl(N) which in

the N -dimensional representation take the form

Λ(s,n) = ξn
(
W

(s)
s−1 + ξYs−1−N

)
, (5.1)

where Ys−1−N is a particular element with [L0, Ys−1−N ] = (s − 1 − N)Ys−1−N de-

termined by the condition that [Λ(s,n),Λ(s′,n′)] = 0. The basic Lax operator of the

hierarchy is

L = ∂z + q + Λ(1,0) . (5.2)

The flows of the hierarchy are then given by

∂L

∂t(s,n)
= [L,A(s,n)] , (5.3)

The definition of q and A(s,n) above is described fully in [53], however, in the present

context we can identify q + Λ(1,0) = az (with ξ = 0). The RG flow when a given µs
is turned on is then associated to a particular flow of the hierarchy with z̄ = t(s,0)

and A(s,0) = az̄ (again with ξ = 0). The fact that the equations are integrable

means that there are an infinite number of conserved quantities which in turn means

that the Ward identities of the 2d QFT that interpolates between the UV and IR

CFTs can be written as an infinite set of conservation equations. This implies that

the non-relativistic interpolating QFT is integrable. Another important property of

the integrable hierarchy is that the equations can be written in Hamiltonian form for

each element of the Heisenberg subalgebra [54]. The corresponding Poisson structure

associated to the flow t(s,0) is then naturally identified with the generalizedW-algebra

for the non-principal embedding with L̂1 = W
(s)
s−1.
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A Conventions

We follow the conventions adopted in [44] for defining and obtaining matrix rep-

resentations of sl(N,R) elements. After taking {L0, L±1} to be the N -dimensional

representations of sl(2), the explicit form for the other generators can be deduced

using

W (s)
m = (−1)s−m−1 (s+m− 1)!

(2s− 2)!
[L−1, [L−1, . . . [L−1︸ ︷︷ ︸

s−m−1 terms

, Ls−1
1 ] . . .]] (A.1)

B Decomposition of sl(4) Algebra

The sl(4) generators branch into irreducible representations of sl(2) as,

15→ 3 + 4 · 2 + 4 · 1 . (B.1)

and the algebra naturally decomposes as sl(4) → sl(2) ⊕ sl(2)′ ⊕ u(1). Explicitly,

under this branching, the 15 generators of sl(4) are:

sl(2) : L̂0 = 1
3
L0 + 1

3

(
1
2
W

(4)
0 − 1

10
L0

)
, L̂±1 = −1

6
W

(4)
±3 , (B.2)

sl(2)′ : J0 = 1
10
L0 − 1

2
W

(4)
0 , J± = 1

5
L±1 − 1

2
W

(4)
±1 ,

u(1) : J = 1
2
W

(3)
0 ,

G+±
1/2 = 1

2
√

3

(
−W (4)

2 ± 1
2
W

(3)
2

)
, G−±−1/2 = 1

2
√

3

(
W

(4)
−2 ± 1

2
W

(3)
−2

)
,

G∓±±1/2 = ± 1
2
√

3

(
W

(3)
±1 −W

(4)
±1 − 3

5
L±1

)
, G±±∓1/2 = ± 1

2
√

3

(
3
5
L∓1 +W

(4)
∓1 +W

(3)
∓1

)
.

The generators Gab
m are labelled by their weights m = ±1

2
, a = ±, b = ± with respect

to L̂0, J and J0, respectively. The algebra of these generators is the global part of

the W(2,1,1)
4 algebra.

C Variations of SL(4,R) Currents

We list below the transformation laws for the currents under infinitesimal SL(4,R)

transformations that preserve the form of the asymptotically AdS background in the
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(2, 1, 1) embedding. In all equations below we drop the subscript on χab+ . The non-

trivial gauge transformations are:

Variations of L:

δεL = −1
2
ε′′′1 + 2L ε′1 + ε1 L′ , (C.1)

δχ++L = −3
2
χ++ ′G−− +

(
−1

2
G ′−− − G−−

(
J− 1

2
J0

)
− G+− J−

)
χ++,

δχ−+L = 3
2
χ−+ ′G+− +

(
1
2
G ′+− + G+−

(
J + 1

2
J0

)
− G−− J+

)
χ−+ ,

δχ+−L = −3
2
χ+− ′G+− +

(
−1

2
G ′−+ + G−+

(
J + 1

2
J0

)
− G++ J−

)
χ+−,

δχ−−L = 3
2
χ−−

′ G++ +
(

1
2
G ′++ − G++

(
J− 1

2
J0

)
− G−+ J+

)
χ−− .

Variations of U(1) current:

δγJ = γ′ (C.2)

δχ++J = G−− χ++ , δχ−−J = G++ χ
−− ,

δχ+−J = −G−+ χ
+− , δχ−+J = −G+− χ

−+ .

Variations of SL(2)′ currents:

δη0J0 = η′0 , δη−J0 = 2J+ η− , δη+J0 = −2J− η+ , δχ−−J0 = −G++ χ
−− ,

δχ++J0 = −G−− χ++ , δχ+−J0 = −G−+ χ
+− , δχ−+J0 = −G+− χ

−+ . (C.3)

δη+J+ = η′+ − 2J0 η+ ; δη0J+ = J+ η0 ; δχ+−J+ = −G++χ
+− ; δχ++J+ = −G+−χ

++ .

δη−J− = η′− + J0 η− ; δη0J− = −J− η0 ; δχ−+J− = −G−−χ−+ ; δχ−−J− = −G−+χ
−− .

Variations of spin-3
2

currents:

δεG±+ = 3
2
G±+ ε′1 +

(
G ′±+ + G±+ J ∓ 1

2
G±+ J0 ± G∓+ J±

)
ε1 , (C.4)

δεG±− = 3
2
G±− ε′1 +

(
G ′±− − G±− J ∓ 1

2
G±− J0 ∓ G∓− J±

)
ε1 ,
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δχ++G++ = −χ++ ′′ + χ++ ′ (J0 − 2J) + χ++
(

1
2
J ′0 − J′ + J+ J− − 1

4
J 2

0 + JJ0 − J2 + L
)

δχ−+G++ = − 2J+χ
−+ ′ − (2JJ+ + J ′+)χ−+ (C.5)

δγG++ = −G++ γ δη0G++ = 1
2
G++ η0 δη+G++ = −G−+ η+

δχ−+G−+ = −χ−+ ′′ − χ−+ ′ (J0 + 2J) + χ−+
(
−1

2
J ′0 − J′ + J+ J− − 1

4
J 2

0 − JJ0 − J2 + L
)

δχ++G−+ = 2J−χ++ ′ + (2JJ− + J ′−)χ++

δγG−+ = −G−+ γ δη0G−+ = −1
2
G−+ η0 δη−G−+ = G++ η−

δχ−−G−− = −χ−− ′′ − χ−− ′ (J0 − 2J) + χ−−
(
−1

2
J ′0 + J′ + J+ J− − 1

4
J 2

0 + JJ0 − J2 + L
)

δχ+−G−− = 2J−χ+− ′ + (−2JJ− + J ′−)χ+−

δγG−− = G−− γ δη0G−− = −1
2
G−− η0 δη−G−− = G+− η−

δχ+−G+− = −χ+− ′′ + χ+− ′ (J0 + 2J) + χ+− (1
2
J ′0 + J′ + J+ J− − 1

4
J 2

0 − JJ0 − J2 + L
)

δχ−−G+− = −2J+χ
+− ′ + (2JJ+ − J ′+)χ−−

δγG+− = G+− γ δη0G+− = 1
2
G+− η0 δη+G+− = −G−− η+ .

C.1 Poisson brackets for the W(2,1,1)
4 algebra

Using the gauge variations of the currents, we arrive at the following set of Poisson

brackets which determine the W-algebra. In order to express our results in terms of

appropriately normalized currents, we have performed the rescalings

L → −2π
k
L , Gab → −2π

k
Gab , J± → −2π

k
J± , J0 → −4π

k
J0 , J→ −2π

k
J

(C.6)

{L(z),L(z′)} = −2L(z) δ′(z − z′) − L′ δ(z − z′) − k
4π
δ′′′(z − z′) , (C.7)

{L(z),G±+(z′)} = −3
2
δ′(z − z′)G±+(z) − 1

2
δ(z − z′)G ′±+(z)

−2π
k

(G±+ J ∓ G±+ J0 ± G∓+ J±) δ(z − z′) ,

– 28 –



{L(z),G±−(z′)} = −3
2
δ′(z − z′)G±−(z)− 1

2
δ(z − z′)G ′±−(z)

−2π
k

(−G±− J ∓ G±− J0 ∓ G∓− J±) δ(z − z′) ,

{L(z), J(z′)} = 0 , {L(z),J0,±(z′)} = 0 , {J(z), J(z′)} = k
2π
δ′(z − z′) ,

{J0(z),J0(z′)} = k
4π
δ′(z − z′) , {J0(z),J±(z′)} = ∓ k

2π
J± δ(z − z′) ,

{J+(z),J−(z′)} = − k
2π
δ′(z − z′) − 2J0 δ(z − z′) ,

{G±∓(z),G±±(z′)} = 2J±(z) δ′(z − z′) + J ′± δ(z − z′) ± 4π
k
JJ± δ(z − z′) ,

{G−∓(z),G+±(z′)} = − k
2π
δ′′(z − z′) + δ′(z − z′) (2J0(z)∓ 2J(z)) − δ(z − z′)L

+ δ(z − z′) (J ′0(z) ∓ J′(z)) + 2π
k
δ(z − z′) (J+ J− − J 2

0 ± 2j J0 − j2 ) ,

{J(z),Ga±(z′)} = ∓δ(z − z′)Ga,± , {J0(z),G±,a(z′)} = ±1

2
δ(z − z′)G±,a ,

{J∓(z),G±,a(z′)} = ±G∓,a δ(z − z′) .

These Poisson brackets define theW(2,1,1)
4 algebra. A final adjustment is necessary in

order to ensure that the currents have standard tensor-like transformation properties.

This is easily achieved by a shift of L which yields the correct stress tensor,

L → T = L − 2π
k

(
1
2
J2 + J 2

0 − J+ J−
)
. (C.8)

We then obtain the following Poisson brackets involving the stress tensor T ,

{T (z),Gab(z′)} = −3
2
δ′(z − z′)Gab(z) − 1

2
δ(z − z′)G ′ab(z) , (C.9)

{T (z), J(z′)} = −δ′(z − z′) J(z) , {T (z),JA(z′)} = −δ′(z − z′)JA(z) ,

{G−∓(z),G+±(z′)} = δ′′(z − z′) + δ′(z − z′) (2J0(z)∓ 2J(z)) − δ(z − z′)T (z)

+ δ(z − z′) (J ′0(z) ∓ J′(z)) + 2π
k
δ(z − z′) (2J+ J− − 2J 2

0 ± j J0 − 3
2
j2 ) .

The Poisson brackets above define the W-algebra associated to the non-principally

embedded Chern-Simons connection
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D Dictionary BetweenW (2,1,1)
4 Currents and Black Hole Con-

nection

The gauge transformation Ω (eq. (3.22)) on the generalized SL(4,R) black hole con-

nection (3.4), turns it into the general form shown in eq. (3.15) allowing us to read

off the parameters of the black hole background in terms of W-algebra currents,

v0 = −1
2
J , v−1 = 1

2
√

3
(G+− − G++) , v−2 = 1

12

(√
3G−− −

√
3G−+ − 2JJ+

)
w1 = 5

6
J+ , w0 = 5

9
J0 , w−1 = 1

2
J− − 1

6
J 2

+ − 1
2
√

3
(G+− + G++) ,

w−2 = 1
3
∂̄J+ − 1

9
J0J+ − 1

2
√

3
(G−− + G−+) ,

w−3 = −1
6
L+ 1

36
∂̄J0 + 1

18
J 3

+ + 1
216
J 2

0 + 1
6
√

3
(G+− + G++) J+ ,

u−1 = −1
5
J− − 4

15
J 2

+ −
√

3
10

(G+− + G++) . (D.1)

A further rescaling as indicated in eq. (C.6) is necessary in order to express the result

in terms of correctly normalized currents.
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