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Abstract. We describe a novel framework for modelling
railway interlockings which has been developed in con-
junction with railway engineers. The modelling language
used is CSP||B. Beyond the modelling we present a va-
riety of abstraction techniques which make the analysis
of medium to large scale networks feasible. The paper
notably introduces a covering technique that allows rail-
way scheme plans to be decomposed into a set of smaller
scheme plans. The finitisation and topological abstrac-
tion techniques are extended from previous work and are
given formal foundations. All three techniques are ap-
plicable to other modelling frameworks besides CSP||B.
Being able to apply abstractions and simplifications on
the domain model before performing model checking is
the key strength of our approach. We demonstrate the
use of the framework on a real-life, medium size scheme
plan.

1 Introduction

Formal verification of railway control software has been
identified as one of the “grand challenges” of Computer
Science [13]. This challenge comes in two parts. The
first addresses the question of whether proposed mathe-
matical models faithfully represent the railway domain;
verifications must translate to guarantees in the real
world. The second addresses the question of how to em-
ploy available technologies effectively; analyses must be
doable in practice and not just in theory.

In a series of papers [25,24,26,23] we have been de-
veloping a new modelling approach for railway inter-
lockings. This work is carried out in conjunction with
railway engineers drawn from our industrial partner. By

Send offprint requests to:

involving the railway engineers from the start, we ben-
efit twofold: they provide realistic case studies; and—
more importantly—they guide the modelling approach,
ensuring that it is natural to the working engineer and
incorporates all relevant concerns. Our approach thus
addresses the first part of the grand challenge.

We base our modelling approach on CSP||B [34],
which combines event-based with state-based modelling.
This reflects the double nature of railway systems, which
involves events such as train movements and—in the
interlocking—state based reasoning. In this sense, CSP||B
offers the means for the natural modelling approach we
strive for. The formal models are, by design, close to
the domain models; to the domain expert, this provides
traceability and ease of understanding. Our industrial
partners can use our modelling approach, and readily
recognise it to be fully faithful to their real world con-
cerns.

In addressing the second part of the grand challenge,
we face the wider challenge for formal methods of over-
coming state space explosion. Having rendered a real-
world problem into a modelling language, it remains a
mystery in general as to how to decompose a verifica-
tion problem into tractable pieces whose solutions can
be composed together to provide a solution to the ini-
tial problem. Our approach is to carry out abstractions
at the domain level, thus avoiding the lack of general
compositional techniques in modelling languages.

We have developed three abstraction techniques which
have proven successful in practice, both in isolation and
taken together:

1. finitisation reduces the number of trains that need
to be considered in order to prove safety for an un-
bounded number of trains;

2. covering decomposes the network into a set of sub-
networks in a compositional fashion: proving correct-
ness results for the sub-networks suffices to infer the
correctness of the whole network; and



2 Phillip James et al.: Techniques for modelling and verifying railway interlockings

3. topological abstraction reduces the number of tracks
in the topology of the network, so as to minimise
the size and complexity of the network prior to its
analysis.

The second abstraction technique is a particular strength
of our approach. Winter [38] theorized on the possibil-
ity of such compositional proof strategies for the railway
domain, but to our knowledge there has since been no
practical solution. This is the notable contribution of
this paper which has not been presented in our previ-
ous work. The other techniques in this paper build upon
their presentation in [24]. Firstly, we further reduce the
number of trains that need to be considered during anal-
yses. Secondly, we improve upon the topological abstrac-
tion technique as a consequence of having more detailed
CSP||B models in this paper.

The verification that we focus on in this paper is the
safety verification of three safety conditions: collision-
freedom, runthrough-freedom and no-derailment. Our ver-
ification extends beyond checking the correctness of the
configuration data of an interlocking. We address be-
havioural safety since we concern ourselves with train
movements in our CSP||B models. Nonetheless, our mod-
elling abstracts from the realtime behaviour of the inter-
locking and of the network as a train passes through it.

The paper is organised as follows. In Section 2, we
introduce the traditional engineer’s view of railway con-
cepts, including a presentation of a complex real-life ex-
ample which we shall use as a case study. We also out-
line three safety conditions that we will concentrate on
verifying. In Section 3, we outline our approach to ver-
ification in general terms independent of any modelling
language, as well as then outline a domain-specific mod-
elling language on which we will base our modelling. In
Section 5, we present our specific modelling language
CSP||B, and apply this language to the railway domain
in Section 6.

Having outlined the modelling framework, the next
three sections of the paper outline our abstraction tech-
niques: Section 7 presents finitisation, Section 8 presents
covering and Section 9 presents topological abstraction.
In Section 10, we present experimental results demon-
strating the effectiveness of the abstractions. In Sec-
tion 11, we discuss related approaches to the railway
verification problem. Finally, in Section 12, we recap our
achievements and outline directions of future research.

2 Railway systems

Together with railway engineers, we have developed a
common view of the information flow in railways. In
physical terms, a railway consists of (at least) the four
different components shown in Figure 1.

– The Controller selects and releases routes for trains.

Trains

Track equipment

Interlocking

Controller

?

?

?

6

6

6Signal aspect

Signal and
point settings

Route request,
Route release

Current movement

Track occupation

Request response,
Release response

Fig. 1: Information flow.

– The Interlocking serves as a safety mechanism with
regards to the Controller and, in addition, controls
and monitors the Track equipment.

– The Track equipment consists of elements such as
signals, points, and track circuits. Signals can show
the aspects green or red ; points can be in normal
position (leading trains straight ahead) or in reverse
position (leading trains to a different line); and track
circuits detect if there is a train on a track.

– Finally, Trains have a driver who determines their
behaviour.

For the purposes of modelling, we have made the simpli-
fication to only consider two aspect signalling, we do not
consider the additional aspects of caution or speed lim-
its. We also make the assumption that track equipment
reacts instantly and is free of defects. We furthermore
assume that trains are shorter than the track segments
in the network. In [15], we address the question of how
to extend our modelling framework in order to deal with
deal with lengths of track segments and trains.

The information flow shown in Figure 1 is as follows:
the controller sends a request message to the interlock-
ing to which the interlocking responds; the interlock-
ing sends signalling information to the track equipment
and receives information from track sensors on whether
a track element is occupied. The interlocking and the
trains interact indirectly via the track equipment only.
The interlocking serves as the system’s clock: in a cycle
the status of all the track sensors are read then the in-
terlocking reacts to all of them with one change of state.
Routes cannot be in conflict since requests to select and
release routes are sequentialised. In our modelling we
will abstract away from modelling the track equipment
explicitly.

In this paper, we analyse a track layout based on Lan-
gley Station, a nontrivial station just to the west of Lon-
don which is used by over 700,000 people each year [31],
and considered to be a medium size station in the UK.
Figures 2 and 3 depict the scheme plan for the station
comprising of a track plan, a control table, and release
tables. The track plan is publicly available from [29];
however, as signalling rules are confidential, our control
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Fig. 2: Track plan based on Langley Station.

Route Normal Reverse Clear

R10 DA,DB,DC
R12A P101,P202 DC,DD,DE,DF
R12B P204,P304,P305 P101,P202,P203,P303 DC,DD,UE,UF,DRF,DRG,DRH,DRI,DRJ
R14 P102,P205 DF,DG,DH
R26A P204,P205,P206,P304,P306 UL,UK,UI,UJ,UH,UG
R26B P206,P306,P305,P402 UL,UK,DRL,DRK,URG,URF,URE
R24 P203,P202,P201,P101,P301 UG,UF,UE,UD,UC,UB
R22 UB,UA
R30 DRA,DRB,DRC
R32A P301,P302,P303,P304,P203,P204,P401 DRC,DRD,DRE,DRF,DRG,DRH,DRI,DRJ
R32B P301,P302,P303,P203,P401 P204,P205,P102,P304 DRC,DRD,DRE,DRF,DRG,DRH,UI,UJ,DG,DH
R34 P305,P306,P206 DRJ,DRK,DRL,DRM
R46 P402,P305, URH,URG,URF,URE
R44A P401,P302,P304 URE,URD,URC,URB
R44B P401,P302,P301,P201 URE,URD,DRE,DRD,UD,UC,UB
R42 URB,URA

P101 Occupied

R12A DE
R12B UE
R24 UD

P102 Occupied

R14 DH
R32B DH

P201 Occupied

R24 UC
R44b UC

P202 Occupied

R12A DE
R12B UF
R24 UD
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R12B DRF
R24 UE
R32A DRG
R32B DRG
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R26A UH
R26B DRH
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R14 DH
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R32B DG
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R24 UA
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R32A DRF
R32B DRF
R44A URC
R44B DRD

P303 Occupied

R32A DRG
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R34 DRK
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R32A DRF
R32B DRF
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R26B URF
R46 URF

Fig. 3: Control Table and Release Tables for Langley Station Track Plan.

and release tables are of our own design, though they
have been attested by our industrial partners as being
realistic.

We explain our modelling approach here with refer-
ence to our Langley Station example. In general, we ad-
here closely to the established principles laid out in [30].
Following the approach of Bjørner [4], we view a track
plan as being built from tracks, connectors, signals and
points. Each track is associated with two connectors (or
three if the track contains a point). Two tracks are at-
tached together if they share a connector. Each track
is also associated with a direction consisting of a (di-
rected) pair of their associated connectors (or two pairs
if the track contains a point). Thus a pair (c1, c2) in the

direction of a track indicates that trains can travel on
that track from c1 to c2, c1 being the connector linking
the track to the previous track and c2 being the connec-
tor linking the track to the subsequent track. For exam-
ple, the Langley station track plan of Figure 2 consists
of 49 tracks (e.g., the tracks EN 1 and DA), 61 connec-
tors (e.g., the connector c2 attaching the track EN 1 and
DA), 16 signals (e.g., S10 and S12), and 16 points (e.g.,
P101 and P102). Note that the tracks include entry and
exit tracks on which trains can “appear” and “disap-
pear” (e.g., EN 1, EX 1). These two kinds of tracks are
specially treated during verification.

An interlocking system gathers train locations, and
sends out commands to control signal aspects and point
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positions. The control table determines how the station
interlocking system sets signals and points. For each
route of a signal, there is one row describing the con-
dition under which the signal can show proceed. There
are two rows for signal S12: one for route R12A and one
for route R12B where, for example, signal S12 can only
show proceed when points P101 and P202 are in the nor-
mal (straight) position and tracks DC ,DD ,DE ,DF are
all clear.

The normal direction of a point in a track plan is
indicated by an uninterrupted line (from connector c5 to
connector c6), the reverse direction with an interrupted
line (from connector c5 to connector c12).

Note that we do not assume that trains are equipped
with an Automatic Train Protection system which pre-
vents trains from moving over a red light; thus overlaps
are needed, e.g., the overlap for Route R12A is DF , and
hence DF is included in the control table. Trains are as-
sumed to overrun a red signal by maximally one track.
In case that such an overrun has happened, trains are
assumed to halt.

The interlocking also allocates locks on points to par-
ticular route requests to keep them locked in position,
and releases such locks when trains have passed. For ex-
ample, the setting of Route R12A obtains a lock on point
P101, and sets it to normal. The lock is released after
the train has passed the point. This mechanism allows
for the implementation of flank protection. The release
tables store the relevant track, which is the track after
the point.

In this setting, we consider three safety properties:

1. collision-freedom excludes two trains occupying the
same track;

2. runthrough-freedom says that whenever a train enters
a point, the point is set to cater for this; e.g., when a
train travels from track DF to track DG , point P102
is set so that it connects DF and DG (and not UJ
and DG);

3. no-derailment says that whenever a train occupies a
point, the point does not move.

The correct design for the control table and release tables
is safety-critical: mistakes can lead to a violation of any
of the three safety properties.

3 Verification workflow

In Figure 4 we depict the verification workflow employed
by our approach. Starting from a scheme plan of a rail-
way system represented in a Domain Specific Language
(DSL) [21,8] – bottom left – we transform this scheme
plan into a concrete specification SPC – bottom right.
This may be in any of a number of specification lan-
guages (e.g., CASL, CSP, Timed CSP, CSP||B, etc.) de-
pending on the approach. However, regardless of the for-
malism, the specification will inevitably be too complex

�
�

�
�Scheme plan

�
�

�
�

Abstract
Scheme plan

�
�

�
�Specification

(SPC )

�
�

�
�

Abstract
Specification

(SPA)

-transformation

-transformation

6

abstraction

abstraction
correctness

Fig. 4: Verification workflow.

for analysis. To remedy this, some form of abstraction
is applied to the scheme plan to produce an abstract
scheme plan – top left – which is then transformed into
an abstract specification SPA – top right. With appro-
priate abstraction correctness results, verification proofs
carried out on the abstract specification SPA imply the
relevant correctness of the concrete specification SPC .
For example, we have used this approach with topo-
logical abstractions in the context of CASL [14] and
CSP||B [24]; with a covering abstraction in the context
of CSP [22]; and with a finitisation abstraction in the
context of Timed CSP [12].

4 A railway DSL

Here, we present a general (mathematical) model of rail-
way networks inspired by the work of Bjørner [4]. We
implemented this model in our tool OnTrack [17] which
also includes an automated transformation of this model
into a CSP||B specification.

A railway network is provided by a scheme plan SP =
(Top,CT,RTs) which is comprised of a track plan Top
defining the topology of the railway network; a control
table CT; and a set RTs of release tables. Note that our
model is a loose specification of a railway scheme plan.
For our purposes, this under-specification has proven to
be sufficient.

4.1 Topology

Let Track and Point denote two disjoint, finite sets of
tracks and points, respectively. Tracks and points are
collectively referred to as units, and we let Unit = Track]
Point. There is a set Connector whose elements serve as
glue between nodes. A track t , having two endpoints,
has two distinct connectors whereas a point p, having
three endpoints, has three distinct connectors; we write
connectors(u) to denote the set of all connectors of a
unit u. A pair (c1, c2) ∈ Connector × Connector indi-
cates that a train can travel on a unit u from c1 to c2,
where c1, c2 ∈ connectors(u). In our setting, a track t
can be passed in one direction only; in contrast, a point
p is associated with two directions where opposing direc-
tions and movement between two specific branches are
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A

B C

Fig. 5: A point example.

excluded, e.g. in Figure 2 movement between connec-
tor c6 and c12 is not permitted. The two positions that
a point can have are called normal and reverse where
directions(p) = normal(p)] reverse(p). The direction of
a unit can be read as the “intended use” of the unit,
which the signal engineer provides when designing the
routes, the control table, and release tables. Given a di-
rection d = (c1, c2) ∈ directions(t) of a track or point t ,
we denote from(d) = c1, to(d) = c2.

A path P = 〈(u1, d1), . . . , (uk , dk )〉, k ≥ 1, in a rail-
way topology is a non-empty sequence of units and their
directions without direct repetitions: to(di) = from(di+1)
and ui 6= ui+1 for all 1 ≤ i < k . As usual, hd(P) = u1

and last(P) = uk , and u ∈ P if u = ui for some 1 ≤
i ≤ k . When the connectors are clear, we also write
〈u1, . . . , uk 〉 for P .

Note that the composition of two paths is not neces-
sarily a path as direct repetitions are excluded. A typi-
cal example is shown in Figure 5. Here, 〈A,C 〉 is a path
and 〈C ,B〉 is a path, however 〈A,C ,C ,B〉 is not a path.
Note however that any non-empty subsequence of a path
is a path.

For convenience, we define two functions successor :
Unit → ℘(Unit) and predecessor : Unit → ℘(Unit) as
follows:

– successor(u) = {x ∈ Unit | ∃ c1, c2, c3 ∈ Connector :
〈(u, (c1, c2)), (x , (c2, c3))〉 is a path}, and

– predecessor(u) = {x ∈ Unit | ∃ c1, c2, c3 ∈ Connector :
〈(x , (c1, c2)), (u, (c2, c3))〉 is a path}.

Units without predecessors are called entries, units
without successors are called exits. In the context of this
paper, we consider only track plans where entries and
exits are tracks, and denote the set of entry and exit
tracks as

– Entry = {t ∈ Track | predecessor(t) = ∅} and
– Exit = {t ∈ Track | successor(t) = ∅}.

We assume a set Signal of signals, along with a labelling
function signalAt : Signal → Track indicating tracks at
which signals are placed. Each track may be labelled by
at most one signal: for each t ∈ Track, signalAt(s) = t
for at most one s ∈ Signal. Signals are placed at the
end of a track in order to protect the successor track.
We require that there is a signal at every entry track.
Without such an entry signal, trains could unrestrictedly
enter the scheme plan. This would cause collision on the
successor of an entry track. Note that the typing of the

u0 u1 uk−1 uk

u0 u1 uk exit

route

route

Fig. 6: An illustration of the route definition.

function signalAt ensures that signals are never placed
at a point – which follows standard practice in railway
engineering.

As we deal with open railway topologies, we need
to give two different definitions of what a route is: the
first definition caters for the case in which the route is
completely within the railway topology, while the second
definition caters for the case in which a route ends at
the border of the topology – see Figure 6. A path r =
〈u1, . . . , uk 〉 is a topological route if one of the following
holds:

– there is a unit u0 such that

〈u0, u1, . . . , uk 〉

is a path in which u0 and uk−1 are labelled with
signals but there are no signals on u1, . . . , uk−2. In
this case, uk is called the overlap of r ; or

– there are units u0 and uk+1 such that

〈u0, u1, . . . , uk , uk+1〉

is a path, u0 is labelled with a signal, there are no
signals on u1, . . . , uk , and uk+1 is an exit track.

In both cases, we define topoUnits(r) = {u1, . . . , uk} and
topoSignal(r) = s where signalAt(s) = u0. Finally, we
let TopoRoute denote the set of all topological routes in
the railway topology, so that topoUnits : TopoRoute →
℘(Unit) and topoSignal : TopoRoute→ Signal.

4.2 Control table

The control table determines the logic for controlling
signals and points in the railway network. It specifies
conditions when routes can be set which effectively leads
to the control of signals’ aspects and of points’ positions.

Let Route be a set of route names and topoRoute :
Route → TopoRoute a function associating topological
routes to route names. The function topoRoute is not
necessarily surjective as there can be topological routes
which a signaller cannot control. E.g., in Figure 3, the
control table does not include a route corresponding to
the topological route in Figure 2 from the signal S12 to
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the exit track EX 1 – from track DB down to track DRG
(points P101, P202, P203 and P303 all in reverse posi-
tion) and then again up to track DH (points P304, P204,
P205 and P102 all in reverse position). We allow for sev-
eral entries in the control table that are associated with
one topological route. The function signal : Route →
Signal gives the entry signal of the corresponding topo-
logical route, i.e., signal(r) = topoSignal(topoRoute(r)).
The function units : Route → ℘(Unit) gives the set of
units of the corresponding topological route, i.e.,

units(r) = topoUnits(topoRoute(r)).

The control table specifies, for each route r ∈ Route:
a set clear(r) of tracks and points to be clear; a set
normal(r) of points to be in the normal position; and
a set reverse(r) of points to be in the reverse position.
Informally, when all units in clear(r) are unoccupied, all
points in normal(r) are in the normal position, and all
points in reverse(r) are in the reverse position, route
r can be set which effectively changes the aspect of
signal(r) to “proceed”.

Note that there are in general no restrictions on how
a control table looks, i.e., signalling engineers are allowed
to write down anything. We define the clear , normal and
reverse tables to be the columns of a control table.

4.3 Release tables

Each point is associated with a release table which speci-
fies when to remove a lock from this point. Release tables
are mappings release : Point→ ℘(Route×Unit). Given an
entry (r , t) ∈ release(p), informally, when a train reaches
the unit t , the lock r is released from the point p, i.e.,
the point can be moved again, provided there is no other
lock on it.

4.4 Well-formedness conditions

We postulate some conditions on a scheme plan for-
mulated in our DSL. These conditions ensure a mini-
mal consistency between the signalling of routes in the
control and release tables on the one hand, and their
topological extent as defined by the railway topology on
the other hand. These conditions allow for simple static
checks.

Definition 1. A scheme plan is well-formed if the fol-
lowing conditions hold:

1. (Release-Table condition) Locks of a route can only
be released by a train movement on that route:
∀ r ∈ Route, p ∈ Point, t ∈ Track :

(r , t) ∈ release(p)⇒ t ∈ units(r).
2. (Clear-Table condition) The clear table of a route

contains at least the tracks of this route:
∀ r ∈ Route : {t | t ∈ units(r)} ⊆ clear(r).

3. (Normal/Reverse-Table condition) Every point on a
route is in either the normal table or the reverse table
of that route:
∀ r ∈ Route : {p ∈ Point | p ∈ units(r)}

⊆ normal(r) ∪ reverse(r).
4. (Route condition) Topologically different routes that

share some points are distinguishable by at least one
point position of these shared points:
∀ r1, r2 ∈ Route :

r1 6= r2 ∧ sharedPoints(r1, r2) 6= ∅ ⇒
∃ p ∈ sharedPoints(r1, r2) :
p ∈ reverse(r1) ∩ normal(r2) ∨
p ∈ reverse(r2) ∩ normal(r1)

where
sharedPoints(r1, r2) = units(r1) ∩ units(r2) ∩ Point.

All scheme plans that we looked at together with our
industrial partners were fulfilling these conditions.

5 Background to CSP||B

The CSP||B approach allows us to specify communicat-
ing systems using a combination of the B-Method [1]
and the process algebra CSP (Communicating Sequen-
tial Processes) [11]. The specification of a combined com-
municating system comprises two separate specifications:
one given by a number of CSP process descriptions and
the other by a collection of B machines. Our aim when
using B and CSP is to factor out as much of the “data-
rich” aspects of a system as possible into B machines.
The B machines in our CSP||B approach are classical
B machines, which are components containing state and
operations on that state. The CSP||B theory [34] allows
us to combine a number of CSP processes Ps in par-
allel with machines Ms to produce Ps ‖ Ms which is
the parallel combination of all the controllers and all
the underlying machines. Such a parallel composition is
meaningful because a B machine is itself interpretable
as a CSP process whose event-traces are the possible ex-
ecution sequences of its operations. The invoking of an
operation of a B machine outside its precondition within
such a trace is defined as divergence [27]. Therefore, our
notion of consistency is that a combined communicating
system Ps ‖ Ms is divergence-free. We do not consider
deadlock-freedom in this paper as it is concerned with
liveness, and the focus of the paper is on safety.

A B machine clause declares a machine and gives it
a name. The variables of a B machine define its state.
The invariant of a B machine gives the type of the
variables, and more generally it also contains any other
constraints on the allowable machine states. There is an
initialisation which determines the initial state of the
machine. The machine consists of a collection of opera-
tions that query and modify the state. Operations take
one of two forms:
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preconditioned operation – pre P then S end: if this is
called when P holds then it will execute S , otherwise
it will diverge.

guarded event – select P then S end: this will exe-
cute S when P holds, and will block when P is false.

Besides this kind of machine we also define static
B machines that provide only sets, constants and prop-
erties that do not change during the execution of the
system.

The language we use to describe the CSP processes
for B machines is as follows:

P ::= c?x !y → P(x ) P1 2 P2 P1 u P2

if b then P1 else P2 end N (exp)

P1 ‖ P2 P1 A‖B P2 P1 ||| P2

The process c?x !y → P(x ) defines a channel communi-
cation where x represents all data variables on a channel,
and y represents values being passed along a channel.
Some of these channels match with operations in a cor-
responding B machine with the signature x ←− c(y).
Therefore the input y of the B operation c corresponds
to the output from the CSP, and the output x of the B
operation to the CSP input. Here we have simplified the
communication to have one output and one input but
in general there can be any number of inputs and out-
puts. The external choice, P1 2 P2, is initially prepared
to behave either as P1 or as P2, with the choice being
made on occurrence of the first event in the environ-
ment. The internal choice, P1 u P2, is similar, however,
the choice is made by the process rather than the en-
vironment. Another form of choice is controlled by the
value of a boolean expression in an if expression. The
synchronous parallel operator, P1 ‖ P2, executes P1 and
P2 concurrently, requiring them to synchronize on all
events. The alphabetized parallel operator, P1 A‖B P2,
requires synchronisation only in A∩B , allowing indepen-
dent performance of events outside this set. The inter-
leaving operator, P1 ||| P2, allows concurrent processes
to execute completely independently. Finally, N (exp) is
a call to a process where N is the process name and exp
is an expression.

For reasoning of CSP||B models we require the fol-
lowing notation. A system run σ (of a CSP||B model) of
length n ≥ 0 is a finite sequence

σ = 〈s0, e1, s1, e2, . . . , en , sn〉

where the si , i = 0 . . .n, are states of the B machine,
and the ei , 1 ≤ i ≤ n, are events. Here we assume that
s0 is a state after initialisation. Given a system run σ,
we can extract its trace of events:

events(σ) = 〈e1, . . . , en〉.

DSL CSP||B
Unit Track
Point ran(homePt)
Track Track – ran(homePt)
name of Point Point
normal normalTable
reverse reverseTable
clear clearTable
release releaseTable

Point→ ℘(Route× Unit) Track↔ (Route× Point)

Fig. 7: Relationship between DSL terminology and CSP||B
terminology.

6 Modelling railway systems in CSP||B

As outlined in [25], CSP||B caters for the double nature
of railways by addressing the state and data aspects sep-
arately: the interlocking as the “data-rich” component is
modelled as a single, dynamic B machine, the Interlock-
ing machine. It represents the centralized control logic
of a rail node, which reacts to its environment without
taking any initiative. The Interlocking machine offers to
perform events in the form of operations to the two ac-
tive system components: the controller and the trains,
both of which are modelled as CSP processes. The full
CSP||B model is given in Appendix A.

To tailor the CSP||B model to the ProB [19] tool
which we are using for analysis, we put the DSL model
of Section 3 into a particular form. For example, in the
DSL the release table is given by release : Point →
℘(Route × Unit). However, when considering the move-
ment of trains it is more efficient to capture the infor-
mation indexed by the track, so the locks released on
any particular move are given directly by the position
the train has moved to. In the B description we use the
name releaseTable for explicitness. The relationship be-
tween the DSL terminology and the CSP||B terminol-
ogy is given in Figure 7. The main difference is the use
of Point as the name of the point (e.g., P101) rather
than the unit associated with it (e.g., DD), and the use
of Track to cover both kinds of units. However, this is
mainly a matter of convenience and it is straightforward
to translate between the two approaches. For the pur-
poses of this paper we consider tracks to be unidirec-
tional.

The Trains and Controller processes run indepen-
dently of each other, on the CSP level expressed with
an interleaving operator – see Figure 8 (lines 20 and
21). It is a decision of the controller which routes are re-
quested to be set or to be released (lines 2-4). Similarly,
it is a decision of the train to move through a red light
by maximally one track and subsequently stop or to wait
for a signal change (lines 13-15). This logic is sometimes
referred to as the driving rules of a train.
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1 RW CTRL =
2 2r∈ROUTE (request!r?b → RW CTRL)
3 2

4 2r∈ROUTE (release!r?b → RW CTRL)
5 TRAIN OFF(t) =
6 2entryPos∈ENTRY (enter !t!entryPos?ans → . . .
7 TRAIN CTRL(t, pos) =
8 pos /∈ EXIT ∧ pos ∈ SIGNALHOMES &
9 nextSignal!t?aspect →

10 if aspect == green then
11 move!t.pos?newp → TRAIN CTRL(t,newp)
12 else
13 move!t.pos?newp → Stop
14 2

15 TRAIN CTRL(t, pos)
16 2

17 pos /∈ EXIT ∧ pos /∈ SIGNALHOMES &
18 move!t.pos?newp → TRAIN CTRL(t,newp)
19 2 . . .
20 ALL TRAINS = |||t∈TRAIN TRAIN OFF(t)
21 CTRL = RW CTRL ||| ALL TRAINS

Fig. 8: CSP control processes for Controller and Trains.

The Interlocking machine captures information about
the location of trains on tracks using the function pos :
Train → AllTrack where pos(t) gives the location of the
train t . The position of a train consists of exactly one
track. It is here we assume that the train’s length is
smaller than that of a track.

The set AllTrack represents all the tracks and the spe-
cial nullTrack which denotes a non valid track used for
modelling runthrough. The machine also captures the
current information about successor tracks through a
dynamic function nextd : AllTrack → AllTrack which is
dependent upon the position of the points. Furthermore,
the machine captures information about signal settings
using the function signalStatus, last moved points us-
ing the set movedPoints and point settings using the
sets normalPoints and reversePoints. Finally, the cur-
rent locks on points are modelled using currentLocks.
The initial state of the model sets all tracks to being
empty, all signals to red, all points to the normal po-
sition and no locks are made on points. This dynamic
state is then updated and queried, respectively, in the
six operations of the Interlocking machine.

Figure 9 shows the full B code of a typical operation
of the Interlocking machine. It describes how a release
request from the controller is processed. The release is
granted provided a number of conditions is fulfilled (the
signal of the route is green, line 6, there are points locked
for the route, line 8, etc.). In such a case, a number of
state changes are made (the signal of the route is set
to red, line 16, etc.) and the controller is notified with
a “yes” (line 20). Otherwise, the state does not change
and the controller is notified with a “no”. Note, that the
a signal of a route may also be set to red when a train
occupies the first track section of the route, in order to
avoid several trains to enter the route.

Figure 10 shows the overall architecture of our mod-
elling. The CSP controller and the Interlocking machine

1 bb ←− release(route) =
2 PRE route ∈ ROUTE THEN
3 LET emptyTracks = TRACK \ ran(pos) IN
4 IF
5 /* the signal of the route is green */
6 signalStatus(signal(route)) = green∧
7 /* points locked for the route */
8 currentLocks[route] = lockTable[route]∧
9 /* the route is clear */

10 clearTable(route) ⊆ emptyTracks∧
11 /* no train on track preceding the route
12 (ie, nothing going through red light) */
13 homeSig(signal(route)) ∈ emptyTracks
14 THEN
15 /* signal of route to red */
16 signalStatus(signal(route)) := red ||
17 /* release locks associated with route */
18 currentLocks := route −C currentLocks ||
19 /* release is successful */
20 bb := yes
21 ELSE
22 bb := no
23 END
24 END
25 END

Fig. 9: Release operation from Interlocking.
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Fig. 10: Architecture.

are independent of any particular scheme plan. They are
supported by a Topology, a ControlTable, a ReleaseTable,
and a Context machine. These four machines encode the
scheme plan and are the parameters in our generic ap-
proach. Seen as B machines, these four supporting ma-
chines are stateless. A typical example from the Con-
trolTable machine which splits up the modelling of a con-
trol table into two relations and one function is given as
follows:

normalTable ∈ Route↔ Point ∧
reverseTable ∈ Route↔ Point ∧

clearTable ∈ Route→ P(Track)

A predicate is used to define the relationship between
the Interlocking machine and the CTRL process relates
the train parameter t and the train position pos of the
TRAIN CTRL process to the pos function within the
Interlocking machine. This control loop invariant pred-
icate must hold at each recursive call, and hence the
system is divergence-free.
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The Interlocking machine uses guarded events to model
the safety properties. The guards are enabled in unsafe
states which will violate our safety properties. Use of
these guarded events does not impact on the divergence
freedom requirement of a CSP||B model since they have
no affect on the state and do not themselves diverge.

In Section 2 we introduced the collision freedom prop-
erty. In our B machine we encode an operation which
captures the notion of a collision, as follows:

1 collision =
2 SELECT
3 ∃ t1, t2 ∈ Train : t1 6= t2 ∧
4 ({pos(t1)} ∩ {pos(t2)}) \ (Exit ∪ Entry) 6= ∅
5 THEN skip
6 END;

Here collision is detected when two different trains
t1 and t2 occupy the same track segment (different from
the Exit and Entry tracks). This is recognised in the pos
function which maps trains to the track segments they
occupy; the collision condition will be enabled when the
two trains are at the same position.

Collision freedom can then be established by model
checking the validity of the following CTL formula:

AG(not(e(collision)))

This formula is false if collision is enabled. In the CTL
variant of ProB AG , stands for “on all paths it is glob-
ally true that”, and e(a) stands for “event a is enabled”.

7 Finitisation

In this section, we develop a theory of how to reduce
the problem of verifying of scheme plans for safety (i.e.,
freedom from collision, derailment, and runthrough) for
any number of trains to that of a two-train scenario.
We introduced this idea first for run-through freedom
in [24]. Here, we give full proofs on a slightly more in-
volved CSP||B model and generalise it to collision free-
dom and derailment freedom.

Finitisation requires scheme plans to fulfil a number
of well-formedness conditions as outlined in Section 4.4.
In Section 7.1 we establish a reduction theorem (The-
orem 3) for such well-formed scheme plans w.r.t. the
number of trains involved in a system run. If we are only
interested in the movements of a finite set of trains in a
given system run – say in the movements of two trains
which collide in this system run – then we can define a
new system run with “exactly the same movements” for
just this selected set of trains.

Finitisation works for well-formed scheme plans as it
is possible to simulate the influence that one train can
have on other trains by suitable route request and release
commands. The validity of this finitisation argument for
safety is demonstrated in Section 7.2.

Given a scheme plan SP , and an unlimited collection
Train of trains, we write CSP ||B(SP , Train) for the in-
stantiation of our generic CSP||B model with SP and
Train. Note that CSP ||B(SP ,Train) in general is an infi-
nite state system due to the inclusion of train identifiers
into events and states. We call our theory “finitisation”,
as it reduces the safety problem over an infinite state
system to a safety problem over a finite state system,
namely to CSP || B(SP ,Train) where the set Train of
trains contains two elements only.

7.1 A reduction theory

We start the development of our reduction theory with
a simple observation on our CSP||B models. If a signal
shows green in a state of a system run, then there exists a
uniquely determined route for which, in the past, a route
request must have been granted by the interlocking.

Theorem 1. Let σ be a system run of CSP ||B(SP ,Train)
for a scheme plan SP and a set Train of trains. Prior to
any state in which a signal sig ∈ Signal shows green,
there is a uniquely determined event in σ of the form
request .r .yes for some r ∈ Route which caused that sig-
nal to become green. We sometimes speak of the uniquely
determined route r that has been granted.

Proof. By definition of the B machine Interlocking , a
signal is set to green only by the event request (i.e.,
when a route is successfully requested). Conversely, a
signal is set to red only by the events move and release
(i.e., when a train passes a signal and when a route is
successfully released). Analysing a system run where sig
is green in the last state yields that the route is uniquely
determined. 2

In the following we show that for every system run
σ involving a set A ] B of trains there exists a system
run σ′ which involves trains only from A, and where
the trains from A move identically to σ. In particular:
if trains from A collide in σ, then they collide in σ′; if
a train in A derails in σ, then it derails in σ′; and if
a train has a runthrough in σ, then the same happens
in σ′. We obtain σ′ constructively from σ by defining
a replacement function on events. To this end, we first
identify those events which are related to B .

Definition 2. Given a set B of train identifiers, we de-
fine the set E (B) of events of B as

E (B) = {enter .b | b ∈ B} ∪
{exit .b | b ∈ B} ∪
{nextSignal .b | b ∈ B} ∪
{move.b.cp.np | b ∈ B ∧ cp,np ∈ AllTrack}

The next step is to define the replacement function
which is dependent on the current state.

replaceB (S , e) =
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• e, if e /∈ E (B);
• release.r .yes, if e = move.b.cp.np for some

b ∈ B and ∃ s ∈ Signal such that
– homeSig(s) = cp,
– signalStatusS (s) = green,
– ∃!r ∈ Route : signal(r) = s, and
– currentLocksS (r) = lockTable(r);

• idle, otherwise.

Note that, in the above definition, when we replace
a forward move event move.b.cp.np in front of a green
signal by a route release event release.r .yes, Theorem 1
guarantees the existence of such a unique route r .

In order to cater for this model transformation, we
enriched our CSP||B model with an event idle that does
nothing. On the CSP side, this means the addition of a
new process IDLE = idle → IDLE to the controller; on
the B side, this means the addition of a new operation
idle = movedPoint := ∅.. This process is only needed
for the justification of our model transformation, it is
not required for the verification of safety.

Removing the trains in the set B from a system
run also affects the states of the B machine. For exam-
ple, one component of a B machine state S is the map
posS : Train → AllTrack which stores for each train the
track it occupies and the direction it moves. Recall from
Section 6 that AllTrack contains the special nullTrack
for modelling runthrough. If we remove the trains in B ,
we would hope that for the corresponding state T the
following relation holds:

posT = posS |(Train\B).

That is, the mapping posT should be the same as posS
but be defined over the restricted domain Train\B . The
correspondence between states may, however, be more
than just a projection onto the remaining trains. This
consideration motivates the following definition.

Definition 3. Let S and T be states of the B machine
of CSP || B(SP ,Train) and let B ⊆ Train be a set of
trains. State T is in B-correspondence to state S , writ-
ten T ≤B S , iff the following nine conditions are fulfilled.

f.1: posT = posS |(Train\B).
f.2: nextdT = nextdS .
f.3: signalStatusT = signalStatusS .
f.4: normalPointsT = normalPointsS .
f.5: reversePointsT = reversePointsS .
f.6: movedPointsT = movedPointsS .
f.7: ∀ r ∈ Route .

currentLocksT [{r}] = currentLocksS [{r}] or
currentLocksT [{r}] = ∅.

(The run without the trains of B either has the same
locks for a route or none at all.)

f.8: ∀ s ∈ Signal . if signalStatusS (s) = green then there
is a unique r ∈ Route such that

signal(r) = s,
currentLocksS (r) = lockTable(r), and
currentLocksT (r) = lockTable(r).

(If a signal is green, then there exists exactly one
route associated with that signal which is set.)

f.9: ∀ b ∈ B , r ∈ Route . if posS (b) ∈ units(r) then
currentLocksT (r) = ∅.
(The locks of any route that contains a track seg-
ment occupied by a train b ∈ B in state S have been
released in state T .)

With the above correspondence in place, we want to
establish the following simulation properties:

(a) For states S and T with T ≤B S , if event e is enabled
in S , then replaceB (S , e) is enabled in T ;

(b) furthermore, the states S ′ and T ′ which result from
performing these events are themselves in B corre-
spondence, i.e., T ′ ≤B S ′.

The following diagram illustrates this situation:

S e S ′

≤
B

≤
B

T replaceB (S , e) T ′

We establish these two properties under a condition on
the set B . We say that the trains in B never cause a
collision in a system run, if in this run the collision event
is never enabled with a train t ∈ B as a witness, i.e., if
there is no state in which ∃ t1, t2 ∈ Train : t1 6= t2 ∧
({pos(t1)} ∩ {pos(t2)}) \ (Exit ∪ Entry) 6= ∅ ∧ (t1 ∈ B ∨
t2 ∈ B).

Lemma 1. Given a scheme plan SP and a set Train
of trains containing B ⊆ Train, if σ is a system run of
CSP || B(SP ,Train) in which trains in B do not cause
a collision, then replaceB (σ) is a system run of the B
machine of CSP ||B(SP ,Train \ B).

Proof. The proof is by induction on the length of σ. The
base case is trivial, and the induction cases are generally
unproblematic. 2

Lemma 1 allows us to extend the function replaceB
to system runs σ = 〈S0, e1,S1, . . . , ek ,Sk 〉 as follows.

replaceB (σ) = 〈T0, replaceB (S0, e1), . . . ,
Tk−1, replaceB (Sk−1, ek ),Tk 〉

Here T0 = S0 (the initial state). Lemma 1 guarantees
that for all 1 ≤ i ≤ k , replaceB (Si−1, ei) is enabled in
Ti−1 and leads to Ti with Ti ≤ Si .

With this result in place, we show that the events of
replaceB (σ) give a trace of the CSP controller.

Lemma 2. Given a scheme plan SP and a set Train
of trains containing B ⊆ Train, if σ is a system run of
CSP ||B(SP ,Train), then events(replaceB (σ)) is a trace
of the CSP controller CTRL(SP ,Train \ B).

Proof. Using process algebraic laws, one shows that pro-
jections of the trace events(replaceB (σ)) are traces of the
individual processes out of which the controller process
CTRL(SP ,Train \ B) is built. 2
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Combining these two lemmas gives the following re-
sult.

Theorem 2. Given a scheme plan SP and a set Train
of trains containing B ⊆ Train, if σ is a system run of
CSP || B(SP ,Train) in which trains in B do not cause
a collision, then replaceB (σ) is a system run of CSP ||
B(SP ,Train \ B).

Proof. Let σ be a system run of CSP ||B(SP ,Train). By
Lemma 1 we know that replaceB (σ) is a run of the B ma-
chine M of CSP ||B(SP ,Train \B), and in particular we
have that events(replaceB (σ)) ∈ traces(M ). By Lemma 2
we know that replaceB (σ) ∈ tracesCTRL(SP ,TRAIN ).
Thus, by the semantics of CSP||B, replaceB (σ) is a sys-
tem run of CSP ||B(SP ,Train \ B). 2

7.2 Verification for safety

Safety in the models is dependent on the number of
trains which are introduced into the model. This mo-
tivates the following definition.

Definition 4. Let

ERROR = {collision, derailment , runthrough}
be the set of error events of interest.

– A scheme plan SP is n-e-free (for n ∈ N>0 and e ∈
ERROR) iff e is never enabled in any state of any
σ ∈ CSP ||B(SP ,Train) with |Train| = n.

– A scheme plan SP is safe iff it is n-e-free for all
n ∈ N>0 and e ∈ ERROR.

We can now turn Theorem 2 into a proof method.
The following Corollary is the basis of finitisation.

Corollary 1. A scheme plan SP is safe if it is 2-collision-
free, 1-derailment-free and 1-runthrough-free.

Proof. Assume that SP is not safe, i.e., that it is not
n-e-safe for some n ∈ N>0 and e ∈ ERROR. This means
that there is a run σ of CSP ||B(SP ,Train) with |Train| =
n such that e is enabled in some state of σ.

Let σ = 〈S0, e1,S1, . . . , ek ,Sk 〉. Without loss of gen-
erality, let us assume that

(C1) e is enabled in Sk ; and
(C2) ∀ e ′ ∈ ERROR : e ′ is not enable in S0, . . . ,Sk−1.

We consider each error type in turn.

Case 1: e = collision.
– By (C1), ∃ t1, t2 ∈ Train, t ∈ Track such that t =
posSk

(t1) ∧ t = posSk
(t2);

– by (C2), ek is a move of t1 or t2;
– trains in Train \ {t1, t2} do not cause collision in σ;
– by Theorem 2, replaceTrain\{t1,t2}(σ) is a run of
CSP ||B(SP , {t1, t2});
– Tk ≤Train\{t1,t2} Sk , where Tk is the last state in
replaceTrain\{t1,t2}(σ);
– By (f.1), t = posTk

(t1) ∧ t = posTk
(t2);

– collision is enabled in Tk ;
– SP is not 2-collision-free.

Case 2: e = derailment .
– By (C1), ∃ t ∈ Train, p ∈ movedPointsSk

such that
homePt(p) = posSk

(t);
– by (C2), ek is a request .r .yes;
– trains in Train do not cause collision in σ;
– by Theorem 2, replaceTrain\{t}(σ) is a run of CSP ||
B(SP , {t});
– Tk ≤Train\{t} Sk , where Tk is the last state in
replaceTrain\{t}(σ);
– By (f.6) and (f.1), p ∈ movedPointTk

∧ homePt(p) =
posTk

(t);
– derailment is enabled in Tk ;
– SP is not 1-derailment-free.

Case 3: e = runthrough.
– By (C1), ∃ t ∈ Train such that nullTrack = posSk

(t);
– By (C2), ek is a move of t ;
– trains in Train do not cause collision in σ;
– by Theorem 2, replaceTrain\{t}(σ) is a run of CSP ||
B(SP , {t});
– Tk ≤Train\{t} Sk , where Tk is the last state in
replaceTrain\{t}(σ);
– By (f.1), nullTrack = posTk

(t);
– runthrough is enabled in Tk ;
– SP is not 1-runthrough-free. 2

Corollary 1 works with different numbers of trains:
two trains are needed in the case of collision, one train
is needed otherwise. In order to be able to check safety
for all three properties in one go, we prove the following.

Theorem 3. If a scheme plan SP is n-e-free then SP
is k-e-free for any k < n.

Proof. If SP is not k -e-safe, then there exists a run
σ ∈ CSP ||B(SP ,Train) with |Train| = k such that e is
enabled in some state of σ. But σ is also a run of CSP ||
B(SP ,Train′) where Train ⊆ Train′, with

∣∣Train′∣∣ = n. 2

8 Covering

In the following, we develop a theory of covering a scheme
plan with a set of smaller sub-scheme plans in such a way
that safety of all sub-scheme plans implies safety of the
original scheme plan.

The fundamental idea of covering is that any viola-
tion of a safety property happens at a specific location.
We can say, at which (set of) locations L a collision, a
runthrough, or a derailment happens in the track plan.
A set of locations L can be influenced in two different
ways: (i) a train reaches a location in L or (ii) a train re-
leases a lock of a point which lies on a route towards L.
In Section 8.1 we provide a construction that, given a
set L, computes a set L∞ which is closed under both
influences listed above and includes L. The construction
is described using our DSL for the Railway Domain, see
Section 4. Thus, it is part of the domain. Consequently,
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the construction is open for re-use in any modelling for-
malism.

In Section 8.2 we prove in the context of our CSP||B
modelling that safety of all sub-scheme plans implies
safety of the original scheme plan. First we prove: for
any run σ in the CSP||B model of the original scheme
plan and for any set L there is a corresponding run
σL in the CSP||B model of the sub-scheme plan con-
structed for L. From this result, we prove as corollary: if
the CSP||B models of the sub-scheme plans are safe for
all sets L to be considered for a specific safety property,
then the CSP||B model of the original scheme plan is
safe as well. Our proofs in Section 8.2 are tightly bound
to the language CSP||B, however, in the context of mod-
elling scheme plans in CSP [22], we proved as well that
the covering construction of Section 8.1 allows composi-
tional verification.

8.1 Domain inherent covering construction

Given a scheme plan SP = (Top,CT,RTs) as described
in Section 4 and a set L ⊆ Track \ (Entries ∪ Exits)
of “critical tracks”, we describe the construction of a
scheme plan SPL = (TopL,CTL,RTsL). The scheme plan
SPL will be used to investigate safety at tracks in L.

In a first step, we consider all tracks over which a
train can travel on the topology towards a track in L.
Figure 11 provides an illustration for all notions intro-
duced below.

First, we give a construction that collects the tracks
of L together with all tracks over which a train can travel
on the topology towards a track in L:

Cone(L) = {u ∈ Unit | ∃ path p : hd(p) ∈ Entries,
last(p) ∈ L, u ∈ p}.

One can think of each element of L as the apex of a
cone and of Cone(L) as the union of these cones – see
Figure 11 (a).

Then, we define the set of all topological routes that
share a unit with L:

Routes(L) = { r ∈ TopoRoute |
∃ u ∈ L : u ∈ topoUnits(r)}

The Region of L consists of those units which are on
a route directly leading to L – see Figure 11 (b):

Region(L) = Cone(L) ∩ (
⋃

r∈Routes(L)

topoUnits(r))

We close the region by adding suitable entry and exit
units:

Entries(L) =
(
predecessor(Region(L)) \ Region(L)

)
∩ Cone(L)

Exits(L) = {u ∈ successor(Region(L)) \ Region(L) |
∃ path p :

hd(p) ∈ Entries(L) ∧ last(p) = u}

where the successor and predecessor functions are ap-
plied point-wise to the set. The ClosedRegion – see Fig-
ure 11 (c) – finally is

ClosedRegion(L) = Region(L) ∪ Entries(L) ∪ Exits(L)

We illustrate this construction by an example:

Example 1 (Closed region of track DF ). For track DF
of the scheme plan shown in Figure 2, we compute:

– Cone({DF}) = {EN 1,DA,DB ,DC ,DD ,DE ,DF},
– Routes({DF}) =
{〈DC ,DD ,DE ,DF 〉, 〈DF ,DG ,DH 〉},

– Region({DF}) = {DC ,DD ,DE ,DF},
– Entries({DF}) = {DB},
– Exits({DF}) = {DG ,UE}, and
– ClosedRegion({DF}) =
{DB ,DC ,DD ,DE ,DF ,DG ,UE}.

Note that we include the units of two routes into the
Routes of DF . This is the case as trains are allowed to
overrun a red signal by one track; thus〈DC ,DD ,DE ,DF 〉
is included. UE is an exit as there is a path from the en-
try DB to UE .

In the second step, we take the release tables into
account for our construction. Here, we want to include
all tracks that can release a point in ClosedRegion(L).

Given a route r ∈ Routes(L), the signal topoSignal(r)
can control further routes which not necessarily share a
unit with L. In order to collect these routes, we define

Signals(L) = {s ∈ Signal | ∃ r ∈ Routes(L) :
topoSignal(r) = s}

and

RouteNames(L) = {r ∈ Route | signal(r) ∈ Signals(L)}

Note that RouteNames(L) consists of names defined in
the control table rather than of topological routes.

We are now ready to define the influence zone on a
track by closing under topological influence and point
releases. To this end, we define the following iteration:

– We set L0 = L.
– For i ≥ 0, let

Li+1 = Li ∪ {t ∈ Unit \ ClosedRegion(Li) |
∃ p ∈ Point ∩ Region(Li),
∃ r ∈ RouteNames(Li) :

(r , t) ∈ release(p)}

Here, we increase the set Li of critical tracks by those
tracks in the release tables RTs which refer to a point
in Region(Li) and belong to a route which is con-
trolled by a signal in Signals(Li).

Let L∞ be the smallest fixed point of the iteration, i.e.,
the first appearance of Li = Li+1. As the topology con-
sists of finitely many tracks and points, the iteration
terminates.
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Fig. 11: Influence region (all track directions are left-to-right).

TrackL = {t ∈ ClosedRegion(L∞) | t ∈ Track}
∪ {p ∈ Point | p ∈ Exits(L∞)}
∪ {p ∈ Region(L∞) | p ∈ Point ∧

predecessor(p) ∪ successor(p)
6⊆ ClosedRegion(L∞)}

PointL = {p ∈ Point | p ∈ ClosedRegion(L∞) \ TrackL}
UnitL = TrackL ∪ PointL
ConnectorL = Connector
SignalL = {s ∈ Signal | signalAt(s) ∈ ClosedRegion(L∞)}
signalAtL(s) = signalAt(s)
RouteNamesL = RouteNames(L∞)
clearL(r) = clear(r) ∩ Region(L∞)
normalL(r) = normal(r) ∩ PointL
reverseL(r) = reverse(r) ∩ PointL
releaseL(p) = release(p) ∩

(RouteNamesL × ClosedRegion(L∞))

Fig. 12: The scheme plan SPL = (TopL,CTL,RTsL).

Example 2 (Continuation of Example 1). P101 is the
only point in Region(L0). In the release table of P101,
we find {(R12A,DE ), (R12B ,UE )} ⊆ release(p101) for
route names in RouteNames(L0) = {R12A,R12B ,R14}.
Thus, DE and UE are the potential candidates to be
added to L0. As DE ,UE ∈ ClosedRegion(L0), we have
L1 = L0.

Note that EntriesL ⊆ Track thanks to the condition
that signals are never located at points. To increase the
readability of our proofs in the next section, concerning
Exits(L) we add the slightly weaker exit condition: for
any point p ∈ Exits(L) it holds that p shares exactly one
connector with Region(L).

Given a set L∞ for which the exit conditions holds,
we construct a new scheme plan SPL = (TopL,CTL,RTsL)
as given in Figure 12. The tracks of SPL are all the tracks
in the closed region of L∞ together with those points of
the closed region which are used in one direction only
and thus can be turned into tracks. The points of SPL

are all points within the closed region of L∞ which have
not been turned into tracks. For ease of construction
we keep the old set of connectors. The connectivity of
the new topology is given by choosing appropriate con-

nectors and directions for the tracks in TrackL and the
points in PointL.

For t ∈ TrackL, we define:

– If t ∈ Track, nothing changes, i.e., c1L(t) = c1(t) and
c2L(t) = c2(t); and directionsL(t) = directions(t).

– If t ∈ Point such that t ∈ Exits(L∞) we know that t
shares only one connector, say c, with Region(L∞).
In this case we turn the point into a track. We keep
the connector where the point joins Region(L∞) and
allow travel out of the region, i.e., we set c1L(t) =
c and chose for c2L(t) one of connectors(t) \ {c};
directions(t) = (c1L(t), c2L(t)).

– If t ∈ Point with t ∈ Region(L∞) such that one arm
of t ends outside, i.e., predecessor(t)∪ successor(t) 6⊆
ClosedRegion(L∞), we turn the point into a track.
We keep those connectors which are on a path to-
wards a unit in L∞ and allow travel along this path.
Let c ∈ connectors(t) be the connector leading out
of the region, i.e., for all u ∈ ClosedRegion(L∞)\{t}:
c /∈ connectors(u). Then, choose as c1L(t) one of
connectors(t)\{c} and define c2L(t) to be the one el-
ement in connectors(t)\{c, c1L(t)}; set directionsL(t)
= directions(t) ∩ {(c1L(t), c2L(t)), (c2L(t), c1L(t))}.

For p ∈ PointL nothing changes, i.e., c1L(p) = c1(p),
c2L(p) = c2(p) and c3L(p) = c3(p); and directionsL(p) =
directions(p).

8.2 Correctness proof of covering in CSP||B

Our encoding method for scheme plans into CSP||B is
generic, i.e., given a scheme plan SP, we obtain an en-
coding CSP ||B(SP). Similarly, given a set L of critical
units, we obtain an encoding CSP ||B(SPL) of the above
constructed scheme plan SPL. In the following, we show
that any run σ on CSP || B(SP) corresponds to a run
σL on CSP || B(SPL), where σL is obtained from σ by
renaming of events and abstraction on the B states.

For ease of readability, we present our correctness
proof for convex scheme plans SPL only. SPL is convex,
if in SP trains cannot travel from a unit u ∈ Exits(L) to
a unit v ∈ Entries(L). In our proof practice, all scheme
plans SPL have turned out to be convex. The results
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presented can easily be adapted to non-convex plans by
either changing the construction of the closed region or
by adding a renaming function on train identifiers that
gives a fresh identifier to a train that enters the units
of SPL a second time. Both changes, however, lead to a
plethora of notations that obscure the proof idea.

8.2.1 Run construction

Let SP be a scheme plan, let L be a set of critical units,
and let σ be a run on CSP || B(SP). On the states of
the B machine we define a function πL to project states
of CSP || B(SP) into states of CSP || B(SPL). Let S be
a state of CSP || B(SP), then the projection of S on
CSP ||B(SPL) is a state T , written as πL(S ) = T where:

cv1: posT = posS ∩ (Train× AllTrackL)
cv2: nextdT = nextdS ∩ (UnitL × AllTrackL)
cv3: signalStatusT = signalStatusS ∩ (SignalL × Aspect)
cv4: normalPointsT = normalPointsS ∩ PointL
cv5: reversePointsT = reversePointsS ∩ PointL
cv6: movedPointsT = movedPointsS ∩ PointL
cv7: currentLocksT = currentLocksS ∩(RouteL×PointL)

This projection has some simple but important proper-
ties:

– emptyTracksT = emptyTracksS ∩ AllTrackL and
– unlockedPointsT = unlockedPointsS ∩ PointL.

In the following, we construct a sequence σL that we
will prove to be a run of CSP ||B(SPL). The sequence σL
is defined using the function replace(S , e). replace takes
a state S of the B machine and an event e as arguments,
and returns an event. The result of this function is de-
fined according to the table in Figure 13: we match the
structure of e against the patterns given in the first col-
umn – e being an event of the CSP||B encoding of our
scheme plan – evaluate the condition – stated in our DSL
– in order to obtain the replacement event e ′. Roughly
speaking, we keep all events that are within the scope of
the scheme plan SPL, replace all events out of the scope
of the scheme plan SPL with idle.

Given a run σ = 〈S0, e1,S1, . . . ,Sk−1, ek ,Sk 〉, k ≥
0, we extend the above functions πL and replaceL to
sequences:

replaceL(σ) = 〈πL(S0), replaceL(S0, e1), . . .
πL(Sk−1), replaceL(Sk−1, ek ), πL(Sk )〉

Then, we define σL = replaceL(σ). Note, that states in
σL are gained by projection. This is in contrast to our
construction for finitisation. The difference between the
constructions is that in the case of finitisation we have a
relation between states, while in the case of covering we
project states from the original run.

8.2.2 Proving the run in CSP||B

It remains to show that σL is actually a system run on
CSP ||B(SPL). To this end we want to mimic train move-
ments on the original scheme plan by entering of a train

into the scheme plan SPL – see the last row of the table
in Figure 13, condition cp /∈ UnitL,np ∈ EntryL. This
is only possible for runs where the pre-conditions of the
enter operation in the B machine are true, i.e., the fol-
lowing enter property holds. For all tracks t ∈ EntryL,
events e = move.id .x .t ∈ σ, id ∈ Train, x ∈ Track, states
S ∈ σ where S is the state before e in σ, we have:

({t} ∪ successor(t)) ∩ dom(ran(posS )) = ∅,

i.e., there is no train on t or the successor of t .

Lemma 3. Given a scheme plan SP, a set L of crit-
ical units and a run σ ∈ CSP || B(SP) with the enter
property, then

1. σL is a run of the B machine of CSP ||B(SPL).
2. events(σL) is a trace of the CSP controller of CSP ||

B(SPL).

Proof. The proof is by induction on the length of σ and
case distinction on the operations. The result w.r.t. the
CSP controller uses process algebraic laws to decompose
the controller and then explicitely shows that (projec-
tions) of the given trace are in the trace sets of the com-
ponents. 2

Corollary 2. Given a scheme plan SP, a set L of crit-
ical units and a run σ ∈ CSP || B(SP) with the enter
property, then σL is a run of CSP ||B(SPL).

Proof. By Lemma 3 and the definition of the semantics
of CSP||B. 2

8.2.3 Application to safety

It remains to utilize the above result for compositional
reasoning concerning safety:

Corollary 3. Let SP be a scheme plan, then the follow-
ing holds:

1. If CSP || B(SPL) is collision free for all L = {u}
where u ∈ Unit \ (Entries∪Exits), then CSP ||B(SP)
is collision free.

2. If CSP ||B(SPL) is runthrough free for all L = {u}
where u ∈ Point, then CSP || B(SP) is runthrough
free.

3. If CSP || B(SPL) is derailment free for all L = {u}
where u ∈ Point, then CSP || B(SP) is derailment
free.

Proof. Ad 1., collision freedom: assume that
CSP || B(SP) 6|= AG(¬ e(collision)). Then, according
to Corollary 1, there exists a shortest run σ of CSP ||
B(SP) involving only two distinct trains id1 ∈ Train
and id2 ∈ Train such that the last state of σ, say S ,
enables the collision operation. Let u = posS (id1) be
the track or point where the collision occurs. Note that
u /∈ Entry ∪ Exit thanks to the precondition of the B
event collision. By construction of SP{u}, u cannot be
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e Condition e ′

enter .id .p
p ∈ UnitL e
p /∈ UnitL idle

exit .id .p
p ∈ UnitL exit .id .p
p /∈ UnitL idle

request .r .yes
r ∈ RouteL e
r /∈ RouteL idle

request .r .no true idle

release.r .yes
r ∈ RouteL e
r /∈ RouteL idle

release.r .no true idle

nextSignal .id .as
posS (id) ∈ TrackL nextSignal .id .as
otherwise idle

move.id .cp.np

cp ∈ UnitL,np ∈ UnitL move.id .cp.np
cp ∈ ExitL,np /∈ UnitL exit .id .cp
cp /∈ UnitL,np ∈ EntryL enter .id .newp
otherwise idle

Fig. 13: Definition of the replaceL function on events for covering.

an entry track of SP{u} or the successor of an entry
track of SP{u}. Therefore, σ has the enter property.
By Corollary 2, we know that σ{u} is a run of CSP ||
B(SP{u}). By construction of σ{u}, its last state is T =
π{u}(S ). By definition of π{u}, equation cv1, we have
posT (S ) = posS \{id 7→ t | t /∈ Unit{u}}. As u ∈ Unit{u},
posT (id1) = posT (id2), i.e., trains id1 and id2 collide in
the run σ{u} of CSP ||B(SP{u}).

Ad 2., runthrough freedom: assume that in the model
CSP ||B(SP) 6|= AG(¬ e(runthrough)). Then, according
to Corollary 1, there exists a shortest run σ of CSP ||
B(SP) involving only one train such that the last state
of σ, say S , enables the runthrough operation. For this
train with id ∈ Train it holds that posS (id) = nullTrack
in S , i.e., train id has run through a point which was not
set for the train’s direction. The last move of id in σ is of
the form e = move.id .cp.nullTrack . Let S ′ be the state
before e in σ and let cp = posS ′(id). Then, nextdS ′(cp)
is not defined. Thus, successor(cp) ∈ Point. As any con-
nector can belong to at most two units, successor(cp) is
uniquely defined. Let p be this point successor(cp). Let
σ′ be the prefix of σ up to S ′ e S ′′. The run σ′ has the
enter property because at most one track is occupied
in any state of σ. By Corollary 2, we know that σ{u}
is a run of CSP ||B(SP{u}). By definition of π{p}, part
cv1, we have posT ′′ = posS ′′ \ {id 7→ d | t /∈ Unit{u}}),
therefore posT ′′(id) = nullTrack , i.e., train id has run
through the point p which was not set for the train’s
direction.

Ad 3., derailment freedom: assume that in the model
CSP ||B(SP) 6|= AG(¬ e(derailment)). Then, according
to Corollary 1, there exists a shortest run σ of CSP ||
B(SP) involving only one train such that the last state
of σ, say S , enables the derailment operation. I.e., for
the train with id ∈ Train it holds in S :

posS (id) ∈ homePoint(movedPoints)

i.e., train id has derailed at the point u = posS (id).
The run σ has the enter property because at most one

track is occupied in any state of σ. Thus, by Corollary 2,
we know that σ{u} is a run of CSP ||B(SP{u}). By con-
struction of σ{u}, its last state is T = π{u}(S ). By defi-
nition of π{u}, part cv1, we have posT (S ) = posS \{id 7→
d | t /∈ Unit{u}}. As u ∈ Unit{u}, posT (id) = posS (id).
By definition of π{u} part 6, we have movedPointsT =
movedPointsS \ {p | p /∈ PointL}. As u ∈ Point{u}, we
have u ∈ movedPointsT . This means train id has de-
railed. 2

Remark 1 (Localised safety). We work here with the safety
properties as originally defined in Section 6. In our proof
practice, this approach has been always successful. How-
ever, it is possible to define localised safety properties.
For instance, one can define the localised safety property
“no collision at unit u”. The corollary above can be es-
tablished with such localised safety properties which are
weaker than the ones we work with.

9 Topological abstraction

In the following we define a theory for the abstraction of
a scheme plan in such a way that safety of the abstraction
implies the safety of the concrete scheme plan. This is
motivated by [24] where we introduced an abstraction
technique which allows the transformation of complex
CSP||B models of scheme plans into less involved ones.

In this paper, as described in Section 3, the topology
of the railway network has been enriched with connectors
in order to be able to capture the dynamic direction of
the points; therefore the CSP||B models are also more
detailed. This means that we need to define an improved
notion for the abstraction of scheme plans which reflects
the fact that the topology of the railway network now
contains connectors.
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In this section the complex CSP||B models are formal
representations of concrete scheme plans SP, referred
to as SPC = CSP || B(SP), whereas the less involved
CSP||B models are referred to as SPA. More formally,
consider two scheme plans SPC and SPA. An abstrac-
tion (abst , absc) from SPC to SPA consists of

– a total function
abst : AllTrackC → AllTrackA

satisfying
abst [TrackC ] = TrackA,
abst(e) = e for e ∈ ENTRYC ∪ EXITC , and
abst(nullTrack) = nullTrack ;

and
– a partial function

absc : AllConnectorC → AllConnectorA
satisfying

absc(C 0) = C 0 and
absc [ConnectorC ] = ConnectorA

such that the following 18 properties are satisfied:

a.1: EntryA = EntryC (= Entry)
a.2: ExitA = ExitC (= Exit)
a.3: PointA = PointC (= Point)
a.4: ∀ p : Point . (homePtA(p) = abst(homePtC (p)))
a.5: if 〈t1, t2〉 is a path in SPC , then abst(t1) = abst(t2)

or 〈abst(t1), abst(t2)〉 is a path in SPA

a.6: ∀ at : TrackA . abs−1[{at}] is connected.
a.7: if 〈at1, at2〉 is a path in SPA, then ∃ t1, t2 : TrackC .

t1 ∈ abs−1[{at1}], t2 ∈ abs−1[{at2}] and 〈t1, t2〉 is a
path in SPC .

a.8: ∀ p : Point . dynamicDirectionA(p)
= absc(dynamicDirectionC (p),

where absc(c1, c2) = (absc(c1), absc(c2))
a.9: SignalA = SignalC
a.10: ∀ s : Signal . (homeSigA(s) = abst(homeSigC (s)))

(= homeSig)
a.11: if 〈t1, t2〉 is a path in SPC , and signalAtC (s) = t1

for some signal s, then 〈abst(t1), abst(t2)〉 is a path
in SPA

a.12: RouteA = RouteC (= Route)
a.13: ∀ r : Route .

(abs−1t [clearTableA(r)] = clearTableC (r))
a.14: ∀ e : Entry .

(abs−1t [entryTableA(e)] = entryTableC (e))
a.15: normalTableA = normalTableC (= normalTable)
a.16: reverseTableA = reverseTableC (= reverseTable)
a.17: releaseTableA =

{(abst(t), (r , p)) | (t , (r , p)) ∈ releaseTableC})
a.18: if 〈t1, t2〉 is a path in SPC , and

t2 ∈ dom(releaseTableC ) then 〈abst(t1), abst(t2)〉 is a
path in SPA

Conditions a.1, a.2, a.3, a.9 and a.12 simply state
that the entry and exit tracks, points, signals and routes
remain unchanged in an abstraction. The only condition
that makes use of the absc function is a.8, which ensures
that the direction of the points are maintained in an

abstraction. All the other conditions map tracks, points
and signals through the abstraction function abst . Con-
ditions a.5, a.6 and a.7 are the interesting ones because
these are the ones that constrain how tracks can collapse
and how abstract and concrete paths map to each other.
Finally, conditions a.13–a.18 ensure that the abstracted
topology is correctly reflected in the control and release
tables.

Theorem 4 provides the justification that it is enough
to model check the abstract scheme plan SPA to ensure
that the required safety properties of the interlocking
system hold, and then infer that the same properties
hold for the concrete scheme plan SPC .

Theorem 4. If there is an abstraction from SPC to
SPA, then:

1. if SPA is collision-free, then SPC is collision-free;
2. if SPA is derailment-free, then SPC is derailment-

free; and
3. if SPA is runthrough-free, then SPC is runthrough-

free.

Proof. (sketch) The conditions a.1–a.18 on the abst and
absc functions are sufficient to ensure that concrete tran-
sitions can be matched with abstract ones. In more de-
tail, any move that changes state—clearing a region;
passing a signal; releasing a lock—will be matched by
an abstract move given in Figure 14 (or idle if the train
remains on the same abstract track); and conditions for
granting and releasing routes are matched.

The proof proceeds by setting up a linking relation
between CSP||B (SPC ) and CSP||B (SPA) to show that
concrete runs are matched by abstract runs. Two states
are linked if their signals, points and locks all match, and
if the abstract train positions match the concrete train
positions under abst . Given a matching pair of states,
a concrete event transition to a concrete state can be
matched by an abstract event transition to a matching
abstract state. The proof establishes this by a case anal-
ysis on the events.

This means that any concrete run can be matched
by an abstract run. Hence any concrete run containing
collision, derailment or runthrough can be matched by
an abstract run containing the same event. It follows that
if no abstact run contains such events, then no concrete
run can contain them either. 2

If we consider SPC to be the station based on Lang-
ley as shown in Figure 2 there are no opportunities for
abstraction to reduce tracks which satisfy the above con-
ditions. This is not unusual in practice for large scheme
plans since there are limited opportunities to perform
abstraction due to the lack of sequences of collapsible
sequential tracks, i.e., ones that do not contain signals
and are not used in the release tables. However, the ben-
efit of our abstraction technique becomes clear when we
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eC Condition eA

move.id .currp.newp
abst(currp) = abst(newp) idle
abst(currp) 6= abst(newp) move.id .abst(currp).abst(newp)

move.id .currp.nullTrack move.id .abst(currp).nullTrack

e e ∈ { enter , exit , request , release
collision, derailment , runthrough}

e

Fig. 14: Topological abstraction: relating concrete to abstract events.

apply this technique after we apply the covering tech-
nique, introduced in Section 8. After applying the cover-
ing technique the set of sub-scheme plans derived from
SPC will each contain many opportunities for abstrac-
tion. This is because some points in a sub-scheme plan
are only considered in one direction, and so are treated
as tracks. This gives rise to sequences of tracks which can
then be collapsed. For example, Figure 15 illustrates an
example sub-scheme plan for Langley, which focuses on
track UC and contains the opportunity to abstract tracks
UE/EF and DRD/DRE. It shows that abst(DRD) =
abst(DRE ) = a DRD , abst(UE ) = abst(UF ) = a UE ,
and maps t to a t for all other track names t . absc is
the corresponding mapping on connectors. Figure 16 il-
lustrates the abstraction for this sub-scheme plan.

10 Experiments

In this section we outline various experimental results
carried out on our models. We use the CTL model checker
provided by ProB tool [32] (version 1.3.6-final) – on
a standard PC with a quad-core 3.2GHz CPU and 8GB
memory – to check the validity of the following CTL
formula:

AG
(
not
(

e(collision) ∨ e(runthrough)
∨ e(derailment)

) )
This formula is false if one of our ERROR events is en-
abled. In the CTL variant of ProB, AG stands for “on
all path it is globally true that”, and e(a) stands for
“event a is enabled”.

After summarising our proof method, we report on
safety verification results for two case studies: a simple
station which we have studied previously, and the com-
plex Langley Station. Though we do not do so here, the
production of counter example traces for a single, un-
safe CSP||B model is possible and is discussed in detail
in [25].

10.1 Proof method using abstractions

Utilising our three abstraction principles, we apply the
following proof method to analyse a scheme plan SP for
safety: for all units u ∈ Unit of a scheme plan SP ,

1. we first construct the scheme plan SP{u} and encode
it as a model CSP ||B(SP{u});

Track # states # trans Track # states # trans

AA 73 391 AE 1050 6579
AB 450 2579 AF 1240 7739
AC 448 2499 BC 448 2499
AD 1736 13707 BD 1736 13707

Fig. 18: Verifying the Station example via finitisation and
covering.

2. we then apply a topological abstraction function abs
to obtain abs

(
CSP ||B(SP{u})

)
;

3. we then prove that abs
(
CSP ||B(SP{u})

)
is safe for

two trains using the ProB model checker.

In case that the proof in step 3 is successful for all u ∈
Unit , the design SP is guaranteed to itself be safe.

This procedure is sound: by Theorem 4 on topological
abstraction we know that CSP ||B(SP{u}) is safe for two
trains for all u ∈ Unit ; by Corollary 1 and Theorem 3
concerning finitisation we have that CSP ||B(SP{u}) is
safe for any numbers of trains for all u ∈ Unit ; and by
Corollary 3 on covering we have that CSP ||B(SP) is safe
for any number of trains. As we argue that our CSP||B
modelling is faithful, we conclude that SP is safe.

10.2 Verifying a simple station example

In [24] we studied the simple station case study presented
in Figure 17.

We reconsider this example here to text the effec-
tiveness of our abstraction techniques. However, unlike
in [24], here we consider overlaps (i.e., the ability of
trains to overrun red lights) which were not permitted in
the earlier study due to the assumed use of Automatic
Train Protection (ATP).

Overall, an example of this small size and low com-
plexity can be directly verified without applying covering
and topological abstraction. The successful verification
using finitisation to two trains but without covering and
without topological abstraction takes 1m56s and pro-
duces a state space containing 8394 states and 83279
transitions.

We have also verified the station example using our
proof method as outlined in Section 10.1. Figure 18 gives
an overview of the state space required to verify each
sub-scheme plan. The table shows that the number of
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URD URE
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Fig. 15: Langley Concrete Sub-Scheme Plan SPC (resulting from covering for track UC ).

a UA a UB

S22

a UC

P201

a UD a UE a UG

S24

UH

P301

DRD

a URC

P401

a URD a URE

S44

a URF

Fig. 16: Langley Abstract Sub-Scheme Plan SPA.

ENTRY

S10

AA

P101

AB

BC

S112

BD

AC

S12

AD

P102

AE AF Exit

Control table

Route Normal Reverse Clear

R10A P101 AA, AB, AC, AD

R10B P101 AA, AB, BC, BD

R12 P102 AD, AE, AF

R112 P102 BD, AE, AF

Release tables
P101 Occupied P102 Occupied
R10A AC R12 AF
R10B BC R112 AF

Fig. 17: Station scheme plan.

states and transitions required for each of the 8 sub-
plans is much smaller than the number of states and
transitions required for the whole scheme plan. The total
time to complete the verification of all these sub-plans
is 1m11s, i.e., 39% faster than verifying the full scheme
plan. Furthermore, if we consider the total number of
states verified, we can see that in total our new method
inspects 7181 states, which is fewer than the number of
states needed for the verification of the full scheme plan.

10.3 Verifying the Langley-based example

Direct verification (with finitisation) of the full scheme
plan for Langley is not possible due to the complexity
of the scheme plan, which consists of 49 tracks (includ-
ing 4 entries and 4 exists), 16 points, 12 signals and 16
routes. However, the proof method from Section 10.1
enables its successful verification. Figure 19 summarises
the number of states and transitions that are to be con-
sidered for the verification of each of the 41 sub-scheme
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Track # states # trans Track # states # trans

DA 92 339 DRA 92 339
DB 104 385 DRB 104 385
DC 272 2123 DRC 272 2123
DD 330 1883 DRD 2948 30249
DE 328 1819 DRE 2948 30249
DF 1096 8643 DRF 3664 37667
DG 25296 301089 DRG 3824 39287
DH 29162 357085 DRH 6238 64049
UA 122 457 DRI 6770 69449
UB 3329 27479 DRJ 16874 207501
UC 2798 23137 DRK 2696 21917
UD 2638 21837 DRL 2176 17965
UE 2176 17965 DRM 150 565
UF 2176 17965 URA 122 457
UG 1336 10539 URB 1096 8643
UH 440 2479 URC 984 7755
UI 105208 1519773 URD 330 1883
UJ 105208 1519773 URE 92 517
UK 330 1883 URF 3411 27973
UL 99 517 URG 3163 25969

URH 92 339

Fig. 19: Verification results via finitisation and covering.

State range # sub-plans ∼verification time

0− 1500 21 ∼ 10 seconds

1500− 10000 15 ∼ 1 minute

10000− 50000 3 ∼ 30 minutes

50000+ 2 ∼ 2 hours

Fig. 20: Categories of sub-plan verifications with respect to
state space sizes.

Track # states reduction # trans reduction

DG 23677 6.4% 288001 4.3%
DRJ 8430 50.0% 103557 50.0%
UI/UJ 96374 8.4% 1394281 8.3%

Fig. 21: Improving verification with topological abstraction.

plans of the Langley example, though without topologi-
cal abstraction.

In Figure 20 we categorise our verification in terms
of the numbers of states involved. Over half (51.2%) of
the 41 proofs are trivial and can be conducted within
∼ 10 seconds, whilst 15 of the 41 (36.6%) take around
∼ 1 minute to complete. The remaining 5 (12.2%) of
the proofs require longer to complete, with sub-plans for
UI and UJ being particularly large and taking up to 2
hours each to complete. This is due to UI and UJ being
part of a large number of routes, which give rise to large
influence zones.

In order to consider the effect of topological abstrac-
tion, we demonstrate its application to sub-plans of the
Langley Station example. Figure 21 gives an illustra-
tion of the reduction in terms of sizes of state spaces

gained from applying topological abstraction to these
sub-scheme plans. Our results shows that a reduction
of up to 50% is possible. In the examples considered,
topological abstraction reduces the number of tracks by
about the same amount.

Overall, our experiments demonstrate that the proof
methodology from Section 10.1:

– reduces the verification time significantly for rail net-
works of small size and low complexity; and

– enables verification for rail networks of large size and
high complexity.

11 Related Work

The railway interlocking problem has long been studied
by the Formal Methods community, and our work builds
upon prior approaches to the modelling and verification
of railways. Prominent studies from the B community in-
clude [20,33,3] whilst [35,28] are classical contributions
from process algebra and [10] uses techniques from Al-
gebraic Specification. On a lower abstraction layer, [7,
18,16,5] verify the safety of interlocking programs with
logical approaches.

11.1 Modelling comparison

Our modelling is most related to Winter’s approach in
CSP [37], Abrial’s modelling in Event-B [2] and Hax-
thausen’s modelling using RAISE and the SAL model
checker in [9]. Haxthausen also notes the importance of
a DSL in [9] and the techniques have been applied to
the Stenstrup Station real-world example. The author
has successfully developed a toolset supporting the au-
tomated, formal modelling and verification of product
line of relay interlocking systems based on the use of the
SAL model checker. The author shares similar verifica-
tion goals of verifying the interlocking tables.

In the following we briefly discuss the approaches
of Winter and Abrial’s respective approaches and the
manner in which we consider our approach to succeed in
combining the successful aspects of these whilst avoiding
their perceived deficiencies.

Winter [37] presents a generic, event-based railway
model in CSP as well as generic formulations of two
safety properties: CollisionFreedom and NoMovingPoints.
Overall, this results in a generic architecture and a nat-
ural representation of two safety properties. Traceabil-
ity, however, is limited. There are relations in the model
which are derived from the control table. For example,
the driving rule “trains stop at a red signal” is dis-
tributed over different parts of the model: it is a con-
sequence of the fact that (1) the event “move to the
first track protected by a signal” belongs to a specific
synchronization set and (2) a red signal does not offer
this event. Purely event-based modelling leads to such
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decentralized control. Consequently, the model has no
interlocking cycle.

Chapter 17 of the book by Abrial [2] gives an ex-
cellent detailed description and analysis of the railway
domain, deriving a total of 39 different requirements.
The modelling approach is generic, even though no con-
crete model is proven to be correct. Traceability in a
tower of specifications can be complex for various rea-
sons. For instance, a requirement can be the consequence
of invariants from different levels. The relation between
intended properties and the model remains an informal
one. This is in contrast to other approaches (including
Winter’s and our own) which directly represent the in-
tended property in the formal world and then prove that
the modelled property is a mathematical consequence of
the formal model. Furthermore, the approach is mono-
lithic: behaviour is not attached to different entities to
which they relate.

Winter et al. [38] allows a train to occupy two track
segments, which is a concession to the assumption made
elsewhere (including in our previous studies) that a train
can only occupy one track segment. However, we noted
in [15] that even this concession is too restrictive to be
realistic. The novelty of this paper here is the discharging
of the assumption that only a very few trains may enter
the network. This assumption is traditionally used to
keep the state space of the analyses under control, with
tools being stretched to allow the possibility of ever more
trains running through the network. Using our approach,
this assumption is no longer required, at least for safety
analysis.

11.2 Verification comparison

The focus of our paper has been on safety verification
using model checking in ProB. Model checking is be-
coming more recognised as an industrial technique [6]
and therefore it is important to discuss it in the con-
text of scalability. Ferrari et al. [7] state that model
checking large interlocking systems is infeasible with cur-
rent state-of-the-art model checkers, in particular SPIN
and NuSMV. However, Cimatti et al. [5] have demon-
strated considerable success using NuSMV on industrial
scale problems. James et al. [16] also demonstrate bet-
ter results and the feasibility of the lower level approach
involving program slicing. A detailed comparison with
these approaches is not appropriate since our approach is
at a higher level of abstraction. The justification for this
higher level of abstraction is that the industrial partners
wish to have feedback on interlocking systems already
during the design stage.

12 Conclusion

In this paper we have discussed an approach to safety
verifications within railway interlocking which has been

successfully deployed on live problems of substantial com-
plexity proposed for study by our industrial partners.
Highlights of our approach are: that it is usable by engi-
neers and not simply a theoretical study; that it makes
substantial network analyses tractable through effective
abstractions; and that it brings model checking down to
the design level—at which engineers work—rather than
embedded deep inside a theoretical model, thus allowing
for a “push button” approach to safety verification. Two
important lessons learnt through carrying out this work
are that language constructs need to be right for the do-
main in question, and that domain analyses provide the
most powerful abstractions. In our strategy for covering,
we divide the scheme plan into sub-plans and generate
a sub-plan for each unit. This results in a large num-
ber of sub-plans which may significantly overlap with
each other. We have not yet considered generating fewer
but larger sub-plans, which have a sequence of tracks as
a core. This would be an interesting avenue of further
work.

There are three additional avenues of further work
which come immediately to mind. Firstly, extending the
OnTrack tool set [17] to implement the covering tech-
nique and the improvements to the other abstraction
techniques is obviously desirable in order to progress
towards delivering a truly push-button technology; the
approach can then be readily applied to further sta-
tions and topologies. Our current work involves imple-
menting the covering technique within the OnTrack tool.
Secondly, extending the framework and the abstraction
techniques to permit bi-directional travel promises to be
straightforward but remains to be established. Finally,
there is a clear desire to adapt the approach to emerging
traffic management protocols, specifically ETCS (Euro-
pean Train Control System) [36]. The application of our
approach to ETCS Level 2 should be non-problematic,
given it continues to incorporate track boundaries, but
going beyond Level 2 will require greater effort.
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of the OnTrack tool which will be the basis of future
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A The CSP||B model

In the following, we give the full CSP||B model of the station example from Figure 17. It consists of four B machines
and one CSP controller.

A.1 The Interlocking machine

MACHINE Interlocking

SEES

Context, Topology, ControlTable, ReleaseTable

SETS

ANSWERS = {yes,no}

VARIABLES

pos, nextd, signalStatus, normalPoints, reversePoints, movedPoints, currentLocks

INVARIANT

pos : TRAIN +-> ALLTRACK &

nextd : ALLTRACK +-> ALLTRACK &

signalStatus : SIGNAL --> SIGNALSTATUS &

normalPoints <: POINT &

reversePoints <: POINT &

normalPoints /\ reversePoints = {} &

normalPoints \/ reversePoints = POINT &

movedPoints <: POINT &

currentLocks : ROUTE <-> POINT &

currentLocks <: lockTable

INITIALISATION

BEGIN

pos := {} ||

signalStatus := SIGNAL * {red} ||

normalPoints := POINT ||

reversePoints := {} ||

movedPoints := {} ||

currentLocks := {} ||

nextd := { (t1 |-> t2) | #(c1,c2,c3). ( t1 /= t2 &

(c1,c2) : direction[{t1}] & (c1,c2) : staticDirection \/ dynamicDirection[POINT*{normal}] &

(c2,c3) : direction[{t2}] & (c2,c3) : staticDirection \/ dynamicDirection[POINT*{normal}] ) }

END

OPERATIONS

collision =

SELECT #(t1,t2).(t1 : TRAIN & t2 : TRAIN & t1:dom(pos) & t2:dom(pos) & t1 /= t2 &

({pos(t1)} - (EXIT \/ ENTRY)) /\ ({pos(t2)} - (EXIT \/ ENTRY)) /= {})

THEN skip

END;

derailment =

SELECT ran(pos) /\ homePoint[movedPoints] /= {}

THEN skip

END;

runthrough =

SELECT nullTrack : ran(pos)

THEN skip

END;

bb <-- enter(t,entryPos) =

PRE

t : TRAIN & entryPos : ENTRY

THEN

IF (t /: dom(pos) & entryTable(entryPos) /\ ran(pos) = {})

THEN

bb := yes ||

movedPoints := {} ||

pos(t) := entryPos



Phillip James et al.: Techniques for modelling and verifying railway interlockings 23

ELSE

bb := no

END

END;

exit(t,exitPos) =

PRE t : TRAIN & pos(t) = exitPos & exitPos : EXIT

THEN

movedPoints := {} ||

pos := {t} <<| pos

END;

s <-- nextSignal(t) =

PRE t : TRAIN & t : dom(pos) & pos(t) : ran(homeSignal)

THEN

movedPoints := {} ||

s := signalStatus(homeSignal~(pos(t)))

END;

bb <-- request(route) =

PRE route : ROUTE THEN

LET occTracks,emptyTracks BE occTracks = ran(pos) & emptyTracks = TRACK - occTracks IN

/* are the tracks for a route empty */

IF ((signalStatus(signal(route)) = red) & (clearTable(route) <: emptyTracks ))

THEN

LET unlockedPoints BE unlockedPoints = POINT - ran(currentLocks) IN

/* all points in right position or unlocked */

IF ((normalTable[{route}] <: normalPoints \/ unlockedPoints ) &

(reverseTable[{route}] <: reversePoints \/ unlockedPoints))

THEN

LET np, rp BE

np = (normalPoints \/ normalTable[{route}]) - reverseTable[{route}] &

rp = (reversePoints \/ reverseTable[{route}]) - normalTable[{route}]

IN

/* move points on the route that need to be moved */

movedPoints := (normalPoints - np) \/ (reversePoints - rp) ||

normalPoints := np ||

reversePoints := rp ||

/* for each point p of route, lock p */

currentLocks := currentLocks\/({route} <| lockTable) ||

/* set signal of route to greeen */

signalStatus(signal(route)) := green||

/* grant the request */

bb := yes ||

nextd := { (t1 |-> t2) | #(c1,c2,c3). ( t1 /= t2 &

(c1,c2) : direction[{t1}] & (c1,c2) : staticDirection \/

dynamicDirection[np*{normal} \/ rp*{reverse}] &

(c2,c3) : direction[{t2}] & (c2,c3) : staticDirection \/

dynamicDirection[np*{normal} \/ rp*{reverse}] ) }

END /* end let */

ELSE

/* refuse request */

movedPoints := {} ||

bb:= no

END /* end if */

END /* end let */

ELSE

/* refuse request */

movedPoints := {} ||

bb:= no

END /* end if */

END /* let */

END; /* end pre */
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newp <-- move(t,currp) =

PRE t : TRAIN & t : dom(pos) & currp = pos(t) THEN

movedPoints := {} ||

IF (pos(t) /: dom(nextd)) THEN

pos(t) := nullTrack ||

newp := nullTrack

ELSE

LET track BE track = nextd(pos(t)) IN

pos(t) := track ||

newp := track ||

IF (pos(t) : ran(homeSignal)) THEN

signalStatus(homeSignal~(pos(t))) := red

END ||

currentLocks := currentLocks - releaseTable[{track}]

END

END

END;

bb <-- release(route) =

PRE route : ROUTE THEN

movedPoints := {} ||

LET emptyTracks BE emptyTracks = TRACK - ran(pos) IN

IF

/* the signal of the route is green */

(signalStatus(signal(route)) = green) &

/* points locked for the route */

currentLocks[{route}] = lockTable[{route}] &

/* no train is in the track preceding the route (i.e. nothing close enough to go through the red light ) */

homeSignal(signal(route)) : emptyTracks

THEN

signalStatus(signal(route)) := red ||

currentLocks := {route} <<| currentLocks ||

bb := yes

ELSE

bb := no

END

END /* let */

END

END

A.2 The Context machine

MACHINE Context

SETS

TRACKSTATUS = {occ,empty};

ASPECT = {red,green};

ALLTRACK = {AA, AB, AC, AD, AE, AF, BC, BD, Entry, Exit, nullTrack};

ALLCONNECTOR = { C0, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12 };

SIGNAL = {S10, S12, S112};

TRAIN = {albert,bertie};

POINT = {P101,P102};

POINTPOSITION = {normal,reverse};

POINTSTATUS = {locked, unlocked};

ROUTE = {R10A, R10B, R12, R112 }

CONSTANTS

SIGNALSTATUS, CONNECTOR, TRACK, ENTRY, EXIT

PROPERTIES

SIGNALSTATUS = ASPECT &

CONNECTOR = ALLCONNECTOR - {C0} &

ENTRY = {Entry} &

EXIT = {Exit} &

TRACK = ALLTRACK - {nullTrack}

END
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A.3 The Topology machine

MACHINE Topology

SEES Context

CONSTANTS

signal, homeSignal, homePoint,

direction, staticDirection, dynamicDirection

PROPERTIES

signal : ROUTE --> SIGNAL &

signal = { (R10A |-> S10), (R10B |-> S10),(R12 |-> S12), (R112 |-> S112) } &

homeSignal : SIGNAL >-> TRACK &

homeSignal = { S10 |-> Entry, S12 |-> AC, S112 |-> BC } &

homePoint : POINT --> TRACK &

homePoint = { (P101 |-> AB), (P102 |-> AE) } &

direction : TRACK <-> CONNECTOR * CONNECTOR &

direction = { Entry |-> (C1,C2),

AA |-> (C2,C3), AB |-> (C3,C4), AB |-> (C3,C10), AC |-> (C4,C5),

AD |-> (C5,C6), AE |-> (C6,C7), AE |-> (C12,C7), AF |-> (C7,C8),

Exit |-> (C8,C9), BC |-> (C10,C11), BD |-> (C11,C12) } &

staticDirection : CONNECTOR <-> CONNECTOR &

staticDirection = {(C1,C2),(C2,C3),(C4,C5),(C5,C6),(C7,C8),(C8,C9),(C10,C11),(C11,C12)} &

dynamicDirection : POINT * POINTPOSITION --> CONNECTOR * CONNECTOR &

dynamicDirection = { (P101,normal) |-> (C3,C4),(P101,reverse) |-> (C3,C10),

(P102,normal) |-> (C6,C7), (P102,reverse) |-> (C12,C7)} &

ran(direction) = staticDirection \/ ran(dynamicDirection) &

staticDirection /\ ran(dynamicDirection) = {}

END

A.4 The Control Table machine

MACHINE ControlTable

SEES Context

CONSTANTS

entryTable, normalTable, reverseTable, clearTable, lockTable

PROPERTIES

entryTable: ENTRY --> POW(TRACK) &

normalTable : ROUTE <-> POINT &

reverseTable : ROUTE <-> POINT &

clearTable : ROUTE --> POW(TRACK) &

lockTable : ROUTE <-> POINT &

entryTable = { Entry |-> {Entry,AA} } &

normalTable = { R10A |-> P101, R12 |-> P102 } &

reverseTable = { R10B |-> P101, R112 |-> P102 } &

clearTable = { R10A |-> {AA,AB,AC,AD}, R10B |-> {AA,AB,BC,BD},

R12 |-> {AD,AE,AF}, R112 |-> {BD,AE,AF} } &

lockTable = { R10A |-> P101, R12 |-> P102, R10B |-> P101, R112 |-> P102 } &

lockTable = normalTable \/ reverseTable

END

A.5 The Release Table machine

MACHINE ReleaseTable

SEES Context

CONSTANTS

releaseTable

PROPERTIES

releaseTable : TRACK <-> (ROUTE*POINT) &

releaseTable = { AC |-> (R10A,P101),BC |-> (R10B,P101),AF |-> (R12, P102),AF |-> (R112,P102) }

END
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A.6 The CSP controller

datatype TRAIN = albert | bertie

datatype SIGNAL = red | green

datatype POS = AA | AB | AC | AD | AE | AF | BC | BD |

Entry | Exit | nullTrack

ALLTRACK = POS

TRACK = diff(ALLTRACK,{nullTrack})

ENTRY = {Entry}

EXIT = {Exit}

SIGNALHOMES = {Entry, BC, AC }

datatype ROUTE = R10A | R10B | R12 | R112

datatype ANSWERS = yes | no

channel enter: TRAIN.ENTRY.ANSWERS

channel exit: TRAIN.EXIT

channel nextSignal : TRAIN.SIGNAL

channel move : TRAIN.ALLTRACK.ALLTRACK

channel request : ROUTE.ANSWERS

channel release : ROUTE.ANSWERS

RW_CTRL =

([] r : ROUTE @ request!r?ans -> RW_CTRL)

[]

([] r : ROUTE @ release!r?ans -> RW_CTRL)

TRAIN_OFF(t) =

[] entryPos : ENTRY @

enter!t!entryPos?ans ->

(if (ans == yes) then

TRAIN_CTRL(t,entryPos)

else

TRAIN_OFF(t))

TRAIN_CTRL(t,pos) =

(member(pos,EXIT) & exit.t.pos -> STOP)

[]

(not(member(pos,EXIT)) and

not(member(pos,SIGNALHOMES)) &

move.t.pos?newp -> TRAIN_CTRL(t,newp)

)

[]

(not(member(pos,EXIT)) and

member(pos,SIGNALHOMES) &

nextSignal!t?aspect ->

(if (aspect==green) then

move.t.pos?newp -> TRAIN_CTRL(t,newp)

else

((move.t.pos?newp -> STOP) |~| TRAIN_CTRL(t,pos))

)

)

ALL_TRAINS = ||| t : TRAIN @ TRAIN_OFF(t)

channel collision, runthrough, derailment

ERR = (collision -> ERR) [] (runthrough -> ERR) [] (derailment -> ERR)

CTRL = RW_CTRL ||| ALL_TRAINS ||| ERR

MAIN = CTRL


