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1 Introduction

Imposing a gauge symmetry is a device to remove degrees of freedom. The simplest example

is the Abelian U(1) gauge symmetry of electromagnetism. Thanks to this symmetry, the

vector associated with a massless photon has two transverse polarizations only, while its

longitudinal polarization is absent from the spectrum of dynamical degrees of freedom.

Adding a mass term breaks the Abelian gauge symmetry, and makes the longitudinal

polarization a dynamical mode. In the limit of vanishing photon mass, the gauge symmetry

is recovered in its original form. Neglecting gravity, the longitudinal polarization remains

among the available degrees of freedom behaving as a free, massless scalar field that does

not interact with the transverse polarization modes.

But the degree of freedom eliminated by imposing an Abelian gauge invariance might

not be so undesiderable after all. In some circumstances it can have interesting cosmo-

logical applications, as for example to provide a natural candidate for dark energy. Is it

possible to break the Abelian gauge symmetry acting on a vector field, in such a way to get

a non-trivial theory for its transverse polarization? A motivation for asking this question

is an analogy with recent advances on massive gravity. In the dRGT model [1], a proper

decoupling limit of vanishing graviton mass leads to a rich theory for the graviton longi-

tudinal polarizations, corresponding to a combination of Galileon Lagrangians [2]. Thanks

to its connection with Galileons, dRGT massive gravity is an appealing set-up since it ad-

mits cosmological solutions describing accelerating universes in the vacuum [3, 4], exhibits

a consistent realization of the Vainshtein screening mechanism [5, 6], and keep quantum

corrections under control in the regime of interest [7, 8].1 See for example [12–14] for recent

general reviews on massive gravity.

1See however also the works [9–11] that identify problems when applying massive gravity for studying

both cosmology and static spherically symmetric configurations.
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As we will discuss in this paper, an analogous situation can be obtained in a simpler the-

ory of self-interacting spin one vector fields, with broken Abelian gauge symmetry. When

suitable derivative self-interactions are included, the dynamics of the vector longitudinal

degree of freedom is non-trivial. In an appropriate decoupling limit, the theory recovers

the Abelian gauge invariance, and the dynamics of the vector longitudinal polarization is

controlled by a combination of Galileon Lagrangians. The full theory away from the de-

coupling limit is consistent, in the sense that it does not propagate an additional ghostly

fourth mode. The system can be investigated in non-trivial regimes where the effects of

non-linear interactions become important. When coupled to gravity, it admits cosmological

solutions describing accelerating universes with no need of an additional energy momen-

tum tensor, providing a candidate for dark energy with a technically natural size for the

dark energy scale. Moreover, when adding on top of the vector content a combination

of perfect fluids with constant equation of state, the resulting cosmological expansion is

characterized by a Friedmann equation with peculiar properties and with potentially inter-

esting cosmological consequences. Indeed, we find that the vector can have an important

role in characterizing gravitational interactions around cosmological backgrounds, and the

cosmological expansion of our universe.

The vector with broken gauge symmetry we are considering is not necessarily the

photon. For simplicity, we can regard it as an additional field with no direct couplings to

Standard Model particles, although as we will briefly discuss the parameters in our scenario

might be accommodated to satisfy the existing bounds. In the past, many scenarios have

been considered for modifying General Relativity through the dynamics of vectors, with

important cosmological consequences for dark energy and dark matter. The first working

models were introduced in the early seventies by Will, Nordtvedt, Hellings [15, 16]; more

recently, well studied proposals have been the Einstein-Aether theory [17] and the TeVeS

covariantized version of MOND [18]. See [19] for a comprehensive review with a complete

list of references to the relevant literature. The novelty of our approach is the emphasis on

symmetry arguments for building our theory, so to obtain a compact structure for our La-

grangian that makes explicit connection with Galileons. This fact can allow us to keep our

set-up under control in strong coupling regimes, where potentially interesting effects occur.

The paper is organized as follows. We start in section 2 describing how our vec-

tor Lagrangian is built, and discussing its physical features including the connection with

Galileons. We continue with section 3, investigating applications to cosmology. We con-

clude in section 4.

2 The set-up

Consider the following vector Lagrangian in Minkowski space (adopting the mostly plus

signature), for the moment ignoring any coupling with gravity

L = −
1

4
FµνF

µν +
3
∑

i=0

L(i) , (2.1)

– 2 –
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with Fµν = ∂µAν − ∂νAµ, and Aµ a vector field. The symmetry-breaking Lagrangians

L(i) we consider, besides the usual Proca mass term, are defined in terms of derivative

self-interactions of the vector as

L(0) = −m2AµA
µ , (2.2)

L(1) = −β2AµA
µ (∂ρA

ρ) , (2.3)

L(2) = −
β3
m2

AµA
µ [(∂ρA

ρ) (∂νA
ν)− (∂ρA

ν) (∂ρAν)] , (2.4)

L(3) = −
β4
m4

AµA
µ
[

− 2 (∂µA
µ)3 + 3 (∂µA

µ) (∂ρA
σ∂ρAσ) + 3 (∂µA

µ) (∂ρA
σ∂σA

ρ)

− ∂µA
ν ∂ν A

ρ ∂ρA
µ − 3 ∂µA

ν ∂ν A
ρ ∂µAρ

]

, (2.5)

and break the Abelian gauge symmetry Aµ → Aµ + ∂µξ. Here, m has dimension of a

mass, while the βi are dimensionless couplings. In what follow, we will assume a positive

m2. The suffix (i) in the Lagrangians indicates the number of derivatives in each term.

Notice that these interactions do not break Lorentz symmetry, in particular they do not

select any preferred frame. The Lagrangians L(i) are built by the following combinations

made with antisymmetric ϵ tensors in four dimensions

L(i) ∝ AµA
µ
(

ϵα1 ...αiγi+1 ... γ4ϵ
β1 ...βiγi+1 ... γ4 ∂β1A

α1 . . . ∂βi
Aαi

)

. (2.6)

These derivatives self-interactions are chosen in such a way as to lead to a consistent set-up,

in the sense that a fourth ‘ghost-mode’ cannot be excited. Indeed, due to the antisymmetric

properties of the ϵ tensor, the Lagrangians L(i) do not contain contributions containing

time derivatives of the time component A0 of the vector (up to total derivatives): hence

the equation of motion for this component is a constraint equation. Let us be more explicit

with respect to this point. We decompose the vector in time and spatial components as

Aµ = (A0, Ai). Among the various terms associated with the contractions of the indexes

in eq. (2.6), we can single out the ones that contain time derivatives of the A0 vector

component, that result

L(i) ∝
(

−A2
0 +A2

i

)

∂0A
0
(

ϵ0 ...αiγi+1 ... γ4ϵ
0 ...βiγi+1 ... γ4 ∂β1A

α1 . . . ∂βi
Aαi

)

+ . . . (2.7)

where the dots on the right correspond to the remaining terms that do not contain ∂0A0.

Integrating by parts eq. (2.7), we find up to total derivatives

L(i) ∝ −2 (∂0Ai)A
iA0

(

ϵ0 ...αiγi+1 ... γ4ϵ
0 ...βiγi+1 ... γ4 ∂β1A

α1 . . . ∂βi
Aαi

)

+ . . . (2.8)

Notice that, in performing the integration by parts, the time derivative ∂0 does not act on

the pieces inside the parenthesis of eq. (2.7), since by antisymmetry the ϵ-tensors cancel

such contributions. Hence we end with a Lagrangian where time derivatives of A0 are

absent, and contain only single (time or spatial) derivatives of the other components of

the vector: the corresponding equations of motion, then, cannot contain higher derivatives

of the fields involved. If such fields have kinetic terms with correct sign (as ensured in

Minkowski space by the condition m2 > 0, as we will see in what follows), then the system

is free of ghosts.

– 3 –
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On the other hand, the Lagrangians Li break the Abelian gauge symmetry: the theory

contains three dynamical modes, the usual transverse plus the longitudinal polarization of

the vector. As we will see, the latter degree of freedom, when m2 > 0, is well behaved. So,

we end up with a consistent theory with three healthy modes around Minkowski space.

In what follows, we would like to investigate the interesting dynamics of the vector

longitudinal polarization associated with the previous Lagrangians.

2.1 Vector field produced by a static source

For simplicity, in this subsection we include (besides the standard kinetic term) the La-

grangians L(0), (1) only. Hence the Lagrangian on which we now focus our attention is

LT = −
1

4
FµνF

µν −m2AµA
µ − βAµA

µ (∂ρA
ρ) . (2.9)

To gain some initial flavor of the physical effects associated with the non-linear self-

couplings of the vector, let us analyze a static system of a charged density with associated

current Jµ = (ρ, 0, 0, 0), minimally coupled to the vector with a term Aµ Jµ in flat space.

We would like to write the equations corresponding to a vector field configuration produced

by such a body. We focus on static configurations: Aµ = Aµ(0, x⃗), and split the vector

potential in components as Aµ = (A0, Ai). The equations of motion for the vector degrees

of freedom are

−∇⃗2A0 = ρ− 2m2A0 − 2βA0 ∂iAi , (2.10)

2m2Ai = ∇⃗2Ai − ∂i∂jA
j + β ∂i

(

−A2
0 +A2

j

)

− 2βAi ∂jAj , (2.11)

with ∇⃗2 ≡ δij∂i∂j . The main difference with respect to the gauge invariant (and Proca)

cases is that the β contribution renders the A0 equation dependent on the quantity ∂iAi.

Taking the divergence of eq. (2.11), we find

2m2 ∂iAi = −β∇2A2
0 − 2β (∂iAi ∂jAj − ∂iAj ∂jAi) . (2.12)

In looking for a static field configuration, we separate the spatial vector components in

transverse and longitudinal parts, Ai = AT
i + ∂i χ with ∂iAT

i = 0. We focus here on a

simplifying Ansatz setting to zero the transverse polarizations AT
i = 0. Hence we end up

with the coupled equations for A0 and χ

−∇⃗2A0 = ρ− 2m2A0 − 2βA0 ∇⃗2χ , (2.13)

∇⃗2χ = −
β

2m2
∇⃗2A2

0 −
β

2m2

[

(

∇⃗2 χ
)2

− (∂i∂j χ)
2
]

. (2.14)

Notice that, although the longitudinal polarization χ is not directly coupled to the source,

nevertheless it ‘feels’ it via the non-linear term in eq. (2.13). Let us make the further sim-

plifying Ansatz of spherical symmetry, where all the functions depend only on the distance

r from the origin, and the previous two equations (2.13)–(2.14), after some manipula-

tions, read

−
d

dr

(

r2A′
0

)

= r2 ρ− 2m2 r2A0 + 2βA0
d

dr

(

r2χ′) , (2.15)

χ′ =
2β

m2

χ′2

r
+

βA0A′
0

m2
, (2.16)
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where a prime indicates derivative along r. Eq. (2.16) is a second order algebraic equation

for χ′, whose solution provides a relation between χ and A0 (we focus only on the branch

that decays for large values of r):

χ′ =
m2 r

4β

(

1−

√

1−
8β2A0A′

0

m4 r

)

. (2.17)

This relation can be substituted in eq. (2.15) to obtain a non-linear differential equation

that govern the behavior of the ‘electric field’ produced by the source. At large distances

from the source, where A0 is small, eq. (2.17) can be expressed as

χ′ ≃
β

m2
A0A

′
0

and one finds that both A0 and χ acquire a Yukawa-like suppression (we normalize to unity

the charge of the source):

A0 ≃
e−

√
2mr

r
, (2.18)

χ ≃
β e−2

√
2mr

2m2 r2
. (2.19)

Notice that χ decays more rapidly than A0. We call rm ≡ 1/
(√

2m
)

the distance at

which the Yukawa-like behavior due to the vector mass becomes important in determining

the profile for A0: well below this radius, the solution for the vector potential, eq. (2.18),

can be approximated by a power-law. In this regime r ≪ rm, one can identify another

characteristic distance, corresponding to the ‘strong coupling’ scale at which the argument

in the square root in eq. (2.17) becomes appreciably different than one: this scale is given by

rs ≡
√
β

m
. (2.20)

By choosing β sufficiently small, rs can be made parametrically smaller than rm. The

regime rs ≪ r ≪ rm is interesting since the non-linear contributions weighted by β in

eq. (2.15) can be neglected, as well as the mass term, and the power-law configurations

A0 ∼ 1/r, χ ∼ r2s/r
2 are solutions for the equations of motion. It is an intermediate

regime in which, although χ acquires a non-trivial profile due to the non-linear interactions

weighted by β, its effect is too weak to appreciably influence the configuration for A0. It

would be interesting to numerically investigate the full strong coupling regime r ≪ rs, in

particular to understand whether interesting screening effects on this vector set-up appear,

similarly to what happens for the gravitational Vainsthein effect [20].

2.2 Relation with scalar Galileons

That some interesting non-linear regime exists nearby a source is suggested by observing

that the non-linear equations (2.13)–(2.14) preserve a (spatial) Galileon symmetry in the

longitudinal polarization, χ → χ + a + bixi, and Galileon systems are known to exhibit

a screening Vainshtein mechanism [2] in gravitational set-ups. Indeed, our motivation for

– 5 –
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presenting the non-linear coupled equations sourced by a static charge was precisely to

point out this fact. We now investigate in more detail how the vector Lagrangian (2.9)

is connected with Galileons. We adopt the Stückelberg formalism, trading everywhere Aµ

for Aµ + 1/
(√

2m
)

∂µφ: the resulting Lagrangian is invariant under the gauge symmetry

Aµ → Aµ − ∂µξ, φ → φ +
√
2m ξ. The scalar field φ plays the same physical role as

that of the longitudinal vector polarization. The use of the Stückelberg approach renders

clearer the interactions among the different degrees of freedom. The total Lagrangian

reads, assuming m2 > 0 to avoid ghost instabilities,

LT = −
1

4
FµνF

µν −
1

2

(√
2mAµ + ∂µφ

)(√
2mAµ + ∂µφ

)

−
β

√
8m3

(√
2mAµ + ∂µφ

)(√
2mAµ + ∂µφ

) (√
2m ∂νA

ν + ∂ν∂
νφ
)

. (2.21)

To isolate the (self-)interactions of the Stückelberg field φ we take the ‘decoupling’ limit

m → 0, β → 0,
β

m3
= fixed =

√
2

Λ3
G

, (2.22)

leading to

Ldec = −
1

4
FµνF

µν −
1

2
∂µφ∂

µφ−
1

2Λ3
G

(∂µφ∂µφ) ∂ν∂
νφ . (2.23)

The result of taking such a decoupling limit is a theory with two different symmetries:2

a free vector Lagrangian that satisfies the Abelian gauge symmetry, plus a cubic Galileon

scalar Lagrangian controlled by the strong coupling scale ΛG, and respecting a Galileon

symmetry π → π + b + aµxµ. This feature makes stable the size of the parameters m

and β, since keeping them small is technically natural in the ’t Hooft sense [21]. It would

also be interesting to analyze in detail the issue of quantum corrections to this set-up.

In particular, to try to understand whether additional operators — that would spoil the

structure of our Lagrangian — can be kept under control when working in some strong

or intermediate coupling regimes, in analogy with what happens for Galileons or massive

gravity [7, 8]. Related to this, it would be interesting to understand whether conformal

versions of this vector Lagrangian can be constructed, using for example the methods

of [22], to find relations with conformal Galileon theories [2].

Moreover, the connection we found with Galileons provides another perspective on

why the theory under consideration is consistent (ghost free) around Minkowski space, and

promises to lead to interesting cosmological applications as accelerating configurations.

2.3 Coupling to gravity

Coupling our theory to gravity presents the very same issues one meets in the covarianti-

zation of scalar Galileon theories. In order not to propagate ghosts, we require that our

set-up does not lead to derivatives higher than two in the equations of motion for vector and

2Analogous arguments straightforwardly apply also to the complete set of interactions L(i) in eq. (2.1),

leading to higher order scalar Galileon Lagrangians.

– 6 –
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gravitational degrees of freedom. Applying for example the approach developed in [23, 24],

one finds a consistent covariantization of the Lagrangian densities L(1), L(2):

Lcov
(1) = −β1AµA

µ (∇ρA
ρ) , (2.24)

Lcov
(2) = −

β2
m2

AµA
µ

[

(∇ρA
ρ) (∇νA

ν)− (∇ρA
ν) (∇ρAν)−

1

4
RAσA

σ

]

, (2.25)

with ∇µ the usual covariant derivative in curved space, and R is the Ricci scalar. Notice

that the vectors couple non-minimally to gravity, thanks to the coupling with the Ricci

scalar in eq. (2.25). For our purposes, we will not need to covariantize L(3): this is left for

future work. It is simple to check that in an appropriate decoupling limit (as discussed in

subsection 2.2) the previous formulae reduce to the covariantized cubic and quartic scalar

Galileon Lagrangians. It would be interesting to analyze whether the vector interactions

can contribute to a gravitational Vainshtein mechanism around a spherically symmetric

source, as investigated for a scalar-vector set-up in [25].

Armed with these results, we will now focus on the action

S =

∫

d4x
√
−g

[

M2
Pl

2
R−

1

4
FµνF

µν −m2AµA
µ + Lcov

(1) + Lcov
(2)

]

(2.26)

with the aim to study its cosmological implications.

3 Applications to cosmology

We consider a homogeneous FRW metric with flat spatial curvature

ds2 = −dt2 + a2(t) δij dxi dxj (3.1)

with a the scale factor, and H = ȧ/a the corresponding Hubble parameter. The vector po-

tential is Aµ = (A0, Ai). The spatial vector components are decomposed in Ai = AT
i +∂i χ

with ∂iAT
i = 0. We investigate homogeneous configurations. We consider a background

vector profile with only the time-component turned on: Aµ = (A0(t) , 0 , 0 , 0). We avoid

to turn on spatial components for the vector to avoid anisotropies and the corresponding

generic instabilities pointed out in [26]. The equation of motion for A0 is a constraint

equation, since the Lagrangian does not depend on time derivatives of A0, and reads

A0

(

m2 − 3β1A0H + 9
β2
m2

A2
0H

2

)

= 0 .

We can identify various branches of solutions: one is the trivial A0 = 0, while the

most interesting ones for us are

A±
0 (t) =

β1 ±
√

β2
1 − 4β2

6β2

m2

H(t)
, (3.2)

=
c±m2

H(t)
. (3.3)

– 7 –
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These branches require β2
1 ≥ 4β2 to have a real square root. In the second line we defined

the dimensionless parameters c± built in terms of β1, β2. From now on, for definiteness,

we will focus on the case β1 ≥ 0, β2 ≥ 0. Using the non-trivial solutions (3.3) for A0, one

finds that the content of the energy momentum tensor has a perfect fluid structure, with

vector energy density and pressure given by

ρV =
c2±
(

9β2c2± − 2
)

m6

2H2
, (3.4)

pV =
c2±
(

2− 9β2c2±
)

m6

2H2
+

c3± (9β2c± − 2β1) Ḣ

H4
. (3.5)

It is simple to show that, in order to have a positive vector energy density, ρV ≥ 0, one

has to focus on the positive branch of solutions in eq. (3.2), that require a non-vanishing

β2. The Friedmann equation reads

H2 =
c2±
(

9β2 c2± − 2
)

m6

6H2M2
Pl

, (3.6)

that is solved for a constant Hubble parameter. A real solution for the scale factor can

be found focussing on the positive branch of eq. (3.2), where the (square of the) Hubble

parameter results

H2 =

(

c+√
6

√

9β2 c2+ − 2

)

m3

MPl
(3.7)

and is well defined when β2
1 > 9β2/2, a condition that we will impose from now on. The

overall dimensionless coefficient in front of the right hand side of the previous equation —

call it cβ — simplifies in the small β2 limit, reducing to cβ ≃ β2
1/
(

108β3
2

)1/2
.

Hence, the dynamics associated with the new vector interactions is able to drive cosmo-

logical acceleration with a constant (de Sitter) equation of state. At the background level,

such cosmological acceleration is identical to the one driven by a positive ‘cosmological

constant’ of size

Λ4
V = 6 cβ m

3MPl (3.8)

where the quantity ΛV has the dimension of a mass, and allows us to write more concisely

H2 = Λ4
V /(6M

2
Pl). In order to be able to drive a de Sitter expansion with the current

value for the Hubble parameter, the mass parameter m should be chosen to be of order

m ≃ c−1/3
β 10−13 eV . (3.9)

The current limit on the photon mass is mγ ≤ 10−18 eV [27], that could be satisfied by

taking a sufficiently small value for cβ. Small values for our parameters are technically nat-

ural in the ’t Hooft sense, since as sending m (and the βi) to zero one recovers Abelian and

Galileon symmetries. Hence, although we are keeping our discussion completely general,

one might think to use the photon itself as the self-interacting vector we are investigating.

Let us point out that the non-linear vector interactions we are analyzing, with their asso-

ciated strong coupling effects, can considerably affect the existing bounds: see [28] for a

critical discussion on photon mass limits.

– 8 –
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It would also be interesting to study in detail the dynamics of cosmological pertur-

bations around the time dependent configurations we have presented. We leave this task

for future work, but let us mention that we checked that, after including the contributions

from the homogeneous background, the effective mass parameter for the transverse vector

fluctuations AT
i does maintain the correct sign around this cosmological solution.

Let us investigate a bit further the background homogeneous cosmology in our set-up.

We will see that vectors can have an interesting role in characterizing the cosmological

evolution. On top of the vector content previously analyzed, we include additional matter

content in the form of perfect fluids with constant equation of state, with total energy

density ρ, for simplicity not directly coupled to the vector. The first Friedmann equation

now reads

H2(τ) =
ρ

3M2
Pl

+
Λ8
V

36H2(τ)M4
Pl

(3.10)

with Λ4
V the effective cosmological constant induced by the vector, as defined in equa-

tion (3.8). The second contribution is peculiar, since it contains an H2 in the denominator.

Eq. (3.10) can be solved expressing the Hubble parameter in terms of the remaining quan-

tities: the branch of solutions corresponding to a real H is

H2 =
ρ+

√

ρ2 + Λ8
V

6M2
Pl

. (3.11)

Such ‘Friedmann-like’ equation has a non-standard structure, due to the square root in the

right hand side. Interestingly, it admits solutions also for a negative energy density ρ (for

example, a ρ dominated by a negative bare cosmological constant) in absence of spatial

curvature.

The standard form of the Friedmann equation — in absence of a cosmological constant

— is obtained in the limit ρ ≫ Λ4
V . In the opposite limit, ρ ≪ Λ4

V , we expand (3.11)

obtaining

H2 =
ρ

6M2
Pl

+
Λ4
V

6MP l2
+

ρ2

12Λ4
V M2

Pl

+ . . . (3.12)

The linear term in ρ differs from the standard form for the Friedmann equation due to the

factor of two in the denominator. This suggests that, in this small ρ limit, the effective

Newton constant in this cosmological background is half the one in Minkowski space, in

other words M cosm
Pl =

√
2MMink

Pl . (We checked that the same behavior occurs for the sec-

ond Friedmann equation, governing the second time derivative of the scale factor.) Hence,

vector degrees of freedom play a relevant role in characterizing gravitational interactions

and cosmological evolution around non-trivial backgrounds, since they ‘renormalize’ the

value of the Newton constant. This fact could also be argued from the structure of our

covariantized action in equation (2.25), where we learn that vectors are non-minimally

coupled with the Ricci scalar. This implies that the dimensionful coefficient in front of

the Ricci scalar in the action — that sets the strength of gravitational interactions — can

depend on the vector background. It would be very interesting to directly calculate the

gravitational force between test bodies in these cosmological configurations, to understand

more explicitly the role of vectors in determining the gravitational force.
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4 Discussion

In this work we discussed a consistent theory for a self-interacting vector field that breaks

an Abelian symmetry, in such a way to obtain an interesting dynamics for the vector longi-

tudinal polarization. In an appropriate decoupling limit, the dynamics of the longitudinal

scalar mode is controlled by Galileon Lagrangians. The full theory away of the decoupling

limit is consistent in the sense that it does not propagate a ghostly fourth mode. The sys-

tem can be investigated in non-trivial regimes where the effects of non-linear interactions

become important. When coupled with gravity it admits a de Sitter branch of cosmological

solutions characterized by a technically natural value for the Hubble parameter. We stud-

ied the homogeneous cosmological evolution when additional matter in the form of perfect

fluids is included in the energy momentum tensor. The resulting cosmological expansion is

characterized by a Friedmann equation with peculiar properties and with potentially inter-

esting cosmological consequences. Indeed, we found that the vector can have an important

role in characterizing gravitational interactions around cosmological backgrounds, and the

cosmological expansion of our universe.

As mentioned above, the non-linear self-interactions for the transverse vector polariza-

tions are controlled by Galileon combinations; hence, strong coupling effects can play a role

in physically interesting situations. The relation with Galileon and Abelian symmetries in

appropriate limits renders the theory technically natural, allowing to keep the size of the

available parameters under control. It would be interesting to further explore our theory

in non-linear regimes to understand whether the particular structure we have chosen for

our Lagrangian remains valid when quantum corrections are taken into account. Also,

on a more phenomenological side, it will be important to investigate in more details the

accelerating cosmological configurations we have determined, in particular the stability of

fluctuations around them.

While in this work we did not specify the microscopic nature of the vector, it will

be interesting to explore more in detail whether the photon can play its role. We have

explained that current photon mass limits can be satisfied by a suitable and technically

natural choice of the available parameters. On the other hand, it is very likely that the

non-linear interactions we have analyzed considerably affect the existing bounds. Besides

cosmology, it would also be interesting to investigate whether our interactions can be ob-

tained via a Higgs mechanism, and whether they can be realized in some specific condensed

matter physics set-up where Abelian symmetries are spontaneously broken.
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