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Estimation of non-crossing quantile regression

curves

Yuzhi Cai1,∗, Swansea University

Tao Jiang2, University of Cambridge

Summary

Quantile regression methods have been widely used in many research areas in re-

cent years. However, conventional estimation methods for quantile regression models

do not guarantee that the estimated quantile curves will be non-crossing. While there

are various methods in the literature to deal with this problem, many of these methods

force the model parameters to lie within a subset of the parameter space in order for

the required monotonicity is satisfied. Note that different methods may use different

subspaces of the space of model parameters.

This paper established a relationship between the monotonicity of the estimated

conditional quantiles and the comonotonicity of the model parameters. We developed

a novel quasi-Bayesian method for parameter estimation which can be used to deal

with both time series and independent statistical data. Simulation studies and appli-
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Non-crossing quantile curve estimation

cation to real financial returns show that the proposed method has the potential to be

very useful in practice.

Key words: Asymmetric Laplace distribution, comonotonicity, quasi-Bayesian method.

1 Introduction

Quantile regression methods have become increasingly popular recently. Koenker (2005)

gives an excellent introduction to quantile regression models. The quantile regression ap-

proach offers a mechanism for estimating conditional quantiles, and hence the conditional

distribution of the response variable. Compared with statistical models for conditional

means, quantile regression models are capable of providing a more flexible statistical anal-

ysis of stochastic relationships between random variables.

Various quantile regression models and parameter estimation methods have been pro-

posed in the literature since Koenker & Bassett’s (1978) work. For example, Koenker &

D’Orey (1987, 1994) developed an optimisation method for estimating parameters, which

has been used widely through the package quantreg in statistical software R. Koenker &

Xiao (2004, 2006) studied statistical inferences in quantile autoregression models. Geraci

& Bottai (2007) developed a new methodology on longitudinal quantile regression. Yu &

Moyeed (2001) developed a Bayesian approach to estimating the parameters of a quan-

tile regression model. Cai & Stander (2008) proposed a quantile self-exciting threshold

autoregressive time series model and developed a Bayesian method for estimating model

parameters. Thompson et al. (2010) proposed a Bayesian non-parametric quantile regres-

sion method using splines and Cai et al. (2012) proposed a Bayesian estimation and fore-

casting method for quantile autoregressive time series models. The Bayesian approaches

mentioned above are based on the asymmetric Laplace distribution (ALD). There are also
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other Bayesian approaches that have been developed to make the likelihood more nonpara-

metric. For example, Kottas & Krnjajic (2009) proposed a method for Bayesian nonpara-

metric modelling in quantile regression, Lancaster & Jun (2010) studied the application

of Bayesian exponentially tilted empirical likelihood to inference about quantile regres-

sions, and Reich et al. (2010) proposed a flexible Bayesian quantile regression method for

independent and clustered data.

A well-known problem associated with the estimation methods mentioned above is

that the estimated quantiles may not be monotone for all possible covariate values, which

leads to an invalid conditional distribution of the response variable. Some methods have

been developed to deal with this problem: for example, Koenker (1984) considered parallel

quantile planes for linear quantile regressions. He (1997) proposed a sequential algorithm

for estimating the quantile curves in order to guarantee the monotonicity of the estimated

quantiles. Wu & Liu (2009) proposed a method based on fitting a sequence of ordered

quantiles curves. Dette & Volgushev (2008) proposed a non-parametric approach to non-

crossing quantile curve estimation. Bondell et al. (2010) proposed a direct correction

to the quantile regression optimisation method in order to ensure the monotonicity of the

estimated conditional quantiles. Most recently, Schnabel & Eilers (2013) proposed a new

methodology to avoid crossing quantile curves.

Koenker (2005) discussed the potential usefulness of the comonotonicity of a group of

random variables in the context of quantile regression. One of the main contributions of this

paper is to establish a relationship between the monotonicity of the estimated conditional

quantiles and the comonotonicity of the model parameters (see Theorem 1 and Theorem 2).

Another main contribution of this paper is the development of a quasi-Bayesian method for

estimating a sequence of non-crossing conditional quantile curves simultaneously. This

method can be applied to both independent and dependent data.

In Section 2 we develop the main theoretical results of the paper and propose a quasi-
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Bayesian MCMC method for non-crossing quantile estimation. In Section 3 we present the

results of our simulation studies. An empirical application to a real financial returns dataset

can be found in Section 4. Finally, in Section 5 some comments and concluding remarks

are given.

2 The main results and the quasi-Bayesian approach

2.1 Model and comonotonicity

Let y⊤ = (y1, . . . , yn) be independent samples of a response variable y, x⊤
i = (x1i, . . . , xpi)

(i = 1, . . . , n) the values of covariates x⊤ = (x1, . . . , xp), and z⊤ = (1,x⊤). Consider a

sequence of quantile regression models

qτkyi|xi
= β0τk + β1τkx1i + . . .+ βpτkxpi = z⊤i βτk

, k = 1, . . . , K, (1)

where β⊤
τk

= (β0τk , . . . , βpτk) is the parameter vector of the kth model, and 0 < τ1 < τ2 <

· · · < τK < 1 are quantile levels of interest.

We want to estimate the conditional quantiles defined by (1) such that, for any value of

x, the following inequality holds:

qτ1y|x ≤ qτ2y|x ≤ · · · ≤ qτKy|x. (2)

Before presenting our method, we remind readers the concept of comonotonicity.

Two random variables U and V are said to be comonotonic if there exists a third random

variable W and increasing functions h1 and h2 such that U = h1(W ) and V = h2(W ). See

Koenker (2005) for details.
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Note that in a general quantile regression model qτY |X = z⊤βτ the components of the

coefficient vector βτ can be viewed as functions of τ . Therefore, if we treat τ as a uniformly

distributed random variable on [0, 1]and let W = τ and Uj = hj(τ) = βjτ for j = 0, . . . , p

and if all hj(·) are increasing functions of τ , then βjτ (j = 0, . . . , p) are comonotonic. That

is, we have

βjτ1 ≤ βjτ2 ≤ · · · ≤ βjτK , j = 0, 1, . . . , p. (3)

We now establish the relationship between (2) and (3) with details given below.

2.2 Main theoretical results

To estimate a sequence of model (1) satisfying condition (2), Bondell et al. (2010) proposed

estimating the model parameter β⊤ = (β⊤
τ1
, . . . ,β⊤

τK
) by solving the optimisation problem

minβ

∑K
k=1

∑n
i=1w(τk)ρτk (uik)

subject to z⊤βτℓ
< z⊤βτℓ+1

for all x ∈ D and ℓ = 1, . . . , K − 1,

for some weight function w(τk) such that w(τk) > 0 (k = 1, . . . , K), where uik = yi −∑p
j=0 βjτkxji, x0i = 1 (i = 1, . . . , n), D = [0, 1]p and ρτ (u) = u(τ − I[u < 0]), where I[·]

is an indicator function. To guarantee monotonicity, the covariate needs to take values in

D and the model needs to be reparameterised.

Following the approach used by Bondell et al. (2010), in the rest of the paper, we

take w(τk) = 1 for all k, implying that all ρτk(uik) are of equal importance. The main

differences between our approach and that of Bondell et al. (2010) are that the covariate

space and the model parameter space are different, and that our method is based on a

Bayesian approach while theirs is an optimisation based method. The capabilities of the

two methods are also different which will become clearer later in the paper.
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Before presenting the method that we have developed, let us first consider the following

theorem.

Theorem 1 Suppose that βjτ ≤ βjτ ′ , for j = 0, . . . , p and that at least one of the inequal-

ities is strict. If for all i

β0τ + β1τx1i + · · ·+ βpτxpi > β0τ ′ + β1τ ′x1i + · · ·+ βpτ ′xpi, (4)

where τ < τ ′, then there exists at least one xji such that xji < 0.

See the Appendix for a proof. Theorem 1 says that if comonotonicity holds, then the

curve-crossing problem may occur anywhere in Rp = (−∞,∞)p except for the first quad-

rant Rp
+. This is why we require that x ∈ Rp

+ = [0, ∞)p in the methodology developed be-

low. The next theorem establishes a relationship between comonotonicity and non-crossing

estimates of qτy|x.

Theorem 2 Let τ and τ ′ be such that 0 ≤ τ < τ ′ ≤ 1. Then

α⊤βτ ≤ α⊤βτ ′ , for any α ∈ Rp+1
+ (5)

if and only if

βjτ ≤ βjτ ′ , j = 0, 1, . . . , p. (6)

A proof can be found in the Appendix. Theorem 2 says that condition (5) is equivalent

to comonotonicity of the model parameters. Hence if (3) holds, then for any α = z =

(1,x) ∈ Rp+1
+ the monotonicity condition (2) also holds. Hence in our approach βτ may

be estimated by solving the following minimisation problem

min
β∈Ω

K∑
k=1

n∑
i=1

ρτk (uik) , (7)
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where Ω is the set of β such that βjτ1 ≤ βjτ2 ≤ . . . ≤ βjτK for j = 0, 1, . . . , p.

It is worth mentioning that minimising (7) does not involve any checking procedures

for the monotonicity condition (2) at any specific covariate values. All we need to do is

to make sure that the covariates take non-negative values, which can be easily achieved

through a simple transformation.

Note that for fixed k, uik can be viewed as a sample from the ALD with a density func-

tion defined by fk(u) = τk(1−τk)e
−ρτk (u). Hence Lk(y | β,x) = {τk(1−τk)}ne−

∑n
i=1 ρτk (uik)

can be viewed as the likelihood of uik (i = 1, . . . , n). If we let the combined likelihood of

the observed data be L(y | β,x) =
∏K

k=1 Lk(y | β,x), then

L(y | β,x) =
K∏
k=1

{τk(1− τk)}ne−
∑n

i=1 ρτk (uik). (8)

Consequently minimising (7) is equivalent to maximising (8).

Let πk(βτk
) be a prior density function for βτk

. Then π(β) =
∏K

k=1 πk(βτk
) is the prior

density function for β. The combined posterior density function for β is given by

π(β | x,y) ∝ L(y | β,x)π(β), β ∈ Ω. (9)

Theorem 3 For any well defined prior density function π(β) on Ω, the posterior density

function π(β | x,y) is also well defined on Ω.

Theorem 3 holds because L(y | β,x) ≤ 1. Therefore, π(β) may be chosen from a large

class of well defined density functions so that prior knowledge about the model parameters

can be properly taken into account. For example, we may let πk(βτk
) be a product of

independent density functions of βjτk . We may also let πk(βτk
) be

βjτ1 ∼ N(0, σ2), βjτk ∼ βjτk−1
+ χ2(dfk), k = 2, 3, . . . , K,
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where dfk is the degrees of freedom of a χ2-distribution. The effects of different prior

distributions on the parameter estimation are certainly worthy of investigation in the future.

For illustration purposes, in this paper we let

π(β) =
K∏
k=1

p∏
j=0

πk(βjτk)

(∫
Ω

K∏
k=1

p∏
j=0

πk(βjτk)dβjτk

)−1

, β ∈ Ω,

where

πk(βjτk) =
1√

2πσjk

e−β2
jτk

/2σ2
jk .

That is, π(β) is a truncated density function on Ω based on normal densities. Note that

large values of σjk imply weak prior information about βjτk . Further remarks are given

below.

Remark 1. The Bayesian framework used above is to facilitate computation only. This is because

expression (8) is clearly not the likelihood of the data. For this reason we call (8)

the “quasi-likelihood” of the data. We will use the term “quasi-Bayesian” for the

parameter estimation method developed in this paper.

Remark 2. Although Remark 1 means that the resulting posterior is not really a valid posterior in

the Bayesian sense, Yang & He (2012) pointed out that work of Yu & Moyeed (2001),

Geraci & Bottai (2007) and Yue & Rue (2011) has provided numerical evidence that

such a Bayesian approach to quantile regression has merits.

Remark 3. In addition to developing a novel quasi-Bayesian method for (8), we also developed

an optimisation method for (7). Extensive simulation studies suggest that the quasi-

Bayesian approach outperforms the optimisation approach, which provides further

evidence that the quasi-Bayesian approach has merit and may be useful in practice.

Remark 4. In our approach we require non-negative covariates, which can be achieved by a sim-
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ple shift transformation. Although such a shift is non-unique, the estimated quantiles

of the original response variable will not be affected and can be obtained easily since

we are dealing with linear quantile regression. In particular, for cross-sectional data

the conditional quantiles of the response variable will not be affected by a shift trans-

formation of the covariates. For time series, if we let yt = xt + c and let qτyt be the

quantile of yt, then the quantile of xt is given by qτyt − c.

2.3 Quasi-Bayesian MCMC algorithm

It follows from Theorem 3 that the model parameter β may be estimated by a Markov chain

Monte Carlo (MCMC) method. The two general steps of the MCMC algorithm are given

below, where β∗
jτk

and βjτk represent proposed and current parameter values respectively.

1. Obtain a proposed value β∗
jτk

by sampling from q(βjτk → β∗
jτk

) such that β∗ ∈ Ω,

where q(βjτk → β∗
jτk

) represents the probability density function of β∗
jτk

conditional

on the current value βjτk , j = 0, . . . , p and k = 1, . . . , K.

2. Accept the proposed value with probability α = min{AB, 1}, where

A =
L(y | β∗,x)π(β∗)

L(y | β,x)π(β)
,

B =

∏p
j=0

∏K
k=1 q(β

∗
jτk

→ βjτk)/
∫
Ω

∏p
j=0

∏K
k=1 q(β

∗
jτk

→ βjτk)dβjτk∏p
j=0

∏K
k=1 q(βjτk → β∗

jτk
)/
∫
Ω

∏p
j=0

∏K
k=1 q(βjτk → β∗

jτk
)dβ∗

jτk

,

The above general method produces a Markov chain of vectors β with the equilibrium

distribution given by (9). Let β(m) (m = 1, . . . ,M ) be values saved from the MCMC algo-

rithm once every L steps after a burn-in period. Then these saved values form a posterior

sample of the model parameters, on the basis of which further statistical inferences may be

made.

9



Non-crossing quantile curve estimation

Theorem 4 Let the quasi-Bayesian estimate of β be given by

β̂jτk =
1

M

M∑
m=1

β
(m)
jτk

, j = 0, 1, . . . , p, k = 1, . . . , K.

Then inequality (5) holds for τ = τk and τ ′ = τk+1, for k = 1, . . . , K − 1.

See the Appendix for a proof. Theorem 4 implies that, conditional on any x ∈ Rp
+, the

quasi-Bayesian estimate q̂τy|x = z⊤β̂τ of the conditional quantiles of y is monotone with

respect to τ . Consequently, it suffices to design an efficient method for obtaining β∗ such

that (3) holds.

Let U ∼ N(0, 1), let Φ(·) be the corresponding probability distribution function, and

let V be the random variable representing the truncated version of U over an interval [a, b].

The probability distribution function of V is given by FV (v) = Φ(v)−Φ(a)
Φ(b)−Φ(a)

, where v =

Φ−1 [r{Φ(b)− Φ(a)}+ Φ(a)] and r ∈ (0, 1). This result leads to the following method

for obtaining β∗, where sjk is a standard deviation for a normal distribution, which can be

assigned by user.

1. For j = 0, . . . , p and k = 1, obtain a sample β∗
jτ1

∼ N(βjτ1 , s
2
j1).

2. For j = 0, . . . , p and k = 2, . . . , K, obtain a sample β∗
jτk

∼ N(βjτk , s
2
jk) such that

β∗
jτk

≥ β∗
jτk−1

. Specifically,

(a) Simulate r ∼ U(0, 1).

(b) let a = (β∗
jτk−1

− βjτk)/sjk.

(c) Calculate w = r{1− Φ(a)}+ Φ(a).

(d) Calculate v = Φ−1(w).

(e) Let β∗
jτk

= βjτk + vsjk.
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3. Accept the proposed β∗ with probability α = min{AB, 1}, where A is the same as

that given above, while B becomes

B =

∏p
j=0 q(β

∗
jτ1

→ βjτ1)
∏K

k=2 q(β
∗
jτk

→ βjτk | βjτk−1
)∏p

j=0 q(βjτ1 → β∗
jτ1

)
∏K

k=2 q(βjτk → β∗
jτk

| β∗
jτk−1

)
,

where q(βjτ1 → β∗
jτ1

) is again a normal density function for β∗
jτ1

with mean βjτ1 and

variance s2j1, and

q(βjτk → β∗
jτk

| β∗
jτk−1

) =
1

Cjk

√
2πsjk

e−(β∗
jτk

−βjτk
)2/2s2jk ,

where

Cjk =

∫ ∞

β∗
jτk−1

1√
2πsjk

e−(β∗
jτk

−βjτk
)2/2s2jkdβ∗

jτk
= 1− Φ

(
β∗
jτk−1

− βjτk

sjk

)
.

It is worth mentioning that the MCMC method that we have developed can also be applied

to time series. This is demonstrated by means of simulation studies which are presented in

the next section.

2.4 Further discussion

Note that the marginal distribution of each parameter may be estimated by using the poste-

rior samples. Hence a kind of credible interval for each parameter may also be constructed.

However, as pointed out earlier in the paper, this interval is not a credible interval in the

conventional Bayesian sense. Therefore we call it a quasi credible interval and refer to it

as a QCI. Our extensive simulation studies suggest that these QCIs can be used to measure

the performance of the estimated model in an effective manner.

In practice, the problem of how to compare several possible models under the quasi-
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Bayesian approach is very challenging. This is because the data do not actually follow the

ALD distribution. We suggest checking the overall empirical coverage probabilities of the

estimated quantile curves, since well-fitting model should provide good overall coverage

probabilities. We also suggest checking the local coverage probabilities using the moving

window method developed by Cai et al. (2012).

The basic idea of the moving window method is given below. Since the quasi-Bayesian

method is based on the equivalence of (7) and (8), no matter what distribution the error

term follows, the τ th conditional quantile of the model residual should be approximately

zero. On this basis the moving-window method is defined to consist of the following steps:

(a) Select a window width h. (b) Calculate the τ th sample quantile of the residuals in the

ith window. (c) Plot these quantiles against the window index. If the estimated τ th quantile

model is good, then we should expect that the values of these local sample quantiles should

be close to the horizontal line at height 0.

3 Simulation studies

3.1 Data generating processes

In this section, we consider three simulation studies involving both time series and inde-

pendent data. The first data generating process is given by

yt = β0 + β1yt−1 + β2yt−2 + (1 + 0.1yt−1 + 0.3yt−2)ϵt, (10)

where ϵt are independently and identically distributed (iid) N(0, 0.42), β0 = 2.2, β1 = 0.8

and β2 = −0.1. Process (10) was used to obtain 100 independent time series, each of

length 100. The details are as follows: (a) Let y1 = y2 = 0. (b) For t = 2, . . . , 100000,
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simulate ϵt ∼ N(0, 0.42) and calculate yt using (10). (c) Save the last 100 values of yt as

the simulated series in order to remove starting value effects. Figure 1 (a) displays one of

the simulated time series.

Please note that in this simulation study all the true parameter values were chosen such

that the simulated yt are positive for all t, hence the value of the term (1+0.1yt−1+0.3yt−2)

is also guaranteed to be positive.

0 20 40 60 80 100

0
5

10
15

(a) Time

y t

0.0 1.0 2.0 3.0

−5
0

5
10

(b)  x1

y
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−5
0

5
10

(c)  x2

y

0 20 40 60 80 100

0
5

10
15

(d) Time

y t

Figure 1: (a) Plot of a simulated time series from (10). (b)-(c) Scatter plots of a data set
from (11). (d) Plot of a simulated time series from (12).

The second data generating process is given by

yi = β0 + β1 sin(x1i) + β2x2i + (1 + 0.5 sin(x1i) + 1.8x2i)ϵi, i = 1, . . . , n, (11)

where β0 = 1.5, β1 = −2.7, β2 = −0.5, x1 ∈ [0, π] and x2 ∈ [0, 2], ϵi are iid N(0, 1).

Again 100 independent samples, each of length 100, were simulated from process (11) as

follows: For i = 1, . . . , 100, we simulated x1i ∼ U(0, π), x2i ∼ U(0, 2) and ϵ ∼ N(0, 1).
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Then we used (11) to calculate yi. One of the simulated data sets is shown in Figure 1 (b)

and (c). Note that both sin(x1) and x2 are non-negative.

The third data generating process is similar to (10) and is given by

yt = β0 + β1yt−1 + β2yt−2 + (1 + 0.1yt−1)ϵt, (12)

where ϵt are iid N(0, 0.42), β0 = 2.2, β1 = 0.8 and β2 = −0.1. Process (12) was used to

obtain 100 independent time series, each of length 100.

3.2 Parameter estimation

The quantile autoregressive model corresponding to processes (10) and (12) is

qτyt|yt−1
= β0τ + β1τyt−1 + β2τyt−2, (13)

where β0τ = β0 + q(τ), β1τ = β1 + 0.1q(τ) for both processes, and for process (10)

β2τ = β2 + 0.3q(τ) while for process (12) β2τ = β2 (i.e. a constant!), where τ ∈ (0, 1)

and q(τ) is the τ th-quantile of N(0, 0.42). These true parameter values denoted by βjτk are

given in Table 1 and Table 3 respectively, where

τ ∈ A1 = {τ1, . . . , τ9} = {0.01, 0.05, 0.25, 0.35, 0.5, 0.65, 0.75, 0.95, 0.99}.

Similarly, the quantile regression model corresponding to process (11) is

qτyi|xi
= β0τ + β1τ sin(x1i) + β2τx2i, (14)

where τ ∈ A2 = {τ1, . . . , τ11} = {0.005, 0.1, 0.2, . . . , 0.9, 0.995}. The true parameter

values are given in Table 2.

In these simulation studies we used both the quasi-Bayesian method and the optimisa-
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tion method to estimate the parameters. We also deliberately chose two different sets of τ

values. We hoped that the two methods would produce similar results and that the simu-

lation results would not depend on the chosen quantile levels. We also hoped that the true

parameter values of each model would be within the respective 95% QCIs. For process (12)

we expected that the estimated β2τ values would be non-decreasing with respect to τ but

would still be close to the true value, i.e. −0.1. Finally, we expected that the estimated

conditional quantile curves would be non-crossing at all covariate values.

The number of parameters in each simulation study is 27, 33 and 27 respectively. The

initial parameter values were obtained by simulating a random sample from the standard

normal distribution with the restriction that the results fall in the parameter space Ω. For the

quasi-Bayesian approach, we assumed there to be little prior information about the model

parameters, hence we deliberately set σjk = 25, a relatively large value, for all possible

values of j and k.

For each of the 100 independently simulated data sets, a Markov chain of length 500000

was run for the respective models. Testing runs showed that a burn-in period of 50000

values is sufficient. For illustration purposes, Figure 2 shows the time series plots of the

parameter values from the MCMC algorithm for the first simulated data set obtained from

processes (10). As the saved data file is large, we only plotted the parameter values once

every 100 steps. The plots for all other simulated data sets are very similar. We have no

concerns about the convergence of the MCMC algorithm.

After the burn-in period, we saved values of the Markov chain once every 100 steps to

weaken the autocorrelation between the posterior samples. A 95% QCI for each param-

eter was constructed from the posterior samples and the estimate of the parameters was

calculated. We thus have 100 estimates and 100 associated 95% QCIs for each model

parameter. The average of the parameter estimates and the corresponding 95% QCIs are

shown in Figure 3, where the first and the third rows correspond to model (13) for process
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Figure 2: Time series plots of the parameter values from the MCMC algorithm.

(10) and process (12) respectively, while the second row is for model (14). Furthermore,

the triangle and the circle symbols correspond to the true and estimated average parameter

values respectively, and the continuous curves show the average 95% QCIs of the model

parameters. It is seen that on average all the true parameter values are well within the 95%

QCIs, suggesting that the performance of the developed methodology is good.

It is also seen that the average performance of the method is good for non-extreme

quantile levels, but gets worse at extreme quantile levels in all three simulation studies.

The width of the 95% QCIs also becomes wider as τ tends to extremes, which is consistent

with what was found by Reich et al. (2010).

It is worth mentioning that in the data generating process (12) we set β2τ = −0.1. Al-

though the estimated parameter values are not constant, they are close to the true parameter

values for non-extreme τs. However if the true parameter values were decreasing with in-
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Table 1: True and the average estimated parameters and the associated standard errors for
Simulation study 1.

τ 0.01 0.05 0.25 0.35 0.50 0.65 0.75 0.95 0.99
β0τk 1.269 1.542 1.930 2.046 2.200 2.354 2.470 2.858 3.131
β̂0τk 0.523 1.586 2.090 2.279 2.472 2.665 2.861 3.374 4.439
β̃0τk -1.824 -1.653 -1.462 -1.281 -1.041 -0.715 -0.359 0.114 0.724

SE(β̂0τk) 1.114 0.515 0.355 0.338 0.331 0.339 0.360 0.514 1.105
SE(β̃0τk) 1.765 1.717 1.658 1.577 1.470 1.261 1.088 0.953 0.960

β1τk 0.707 0.734 0.773 0.785 0.800 0.815 0.827 0.866 0.893
β̂1τk 0.523 0.672 0.742 0.768 0.795 0.822 0.849 0.918 1.070
β̃1τk 0.630 0.653 0.674 0.687 0.704 0.753 0.788 0.984 1.144

SE(β̂1τk) 0.165 0.081 0.062 0.060 0.060 0.060 0.062 0.081 0.167
SE(β̃1τk) 0.641 0.640 0.634 0.629 0.623 0.658 0.676 0.804 0.855

β2τk -0.379 -0.297 -0.181 -0.146 -0.100 -0.054 -0.019 0.097 0.179
β̂2τk -0.416 -0.267 -0.192 -0.164 -0.135 -0.106 -0.079 -0.006 0.143
β̃2τk 0.615 0.617 0.621 0.625 0.632 0.666 0.721 0.940 1.057

SE(β̂2τk) 0.165 0.081 0.062 0.060 0.059 0.060 0.062 0.081 0.162
SE(β̃2τk) 0.639 0.639 0.639 0.638 0.637 0.652 0.718 0.879 0.937

MSE β0τ β1τ β2τ

Quasi Bayesian 0.327 0.008 0.002
Optimization 9.288 0.014 0.683

creasing τ then according to Theorem 2 the given method should not used directly. See

further discussions on this issue later in the paper.

We now compare the performance of the quasi-Bayesian method and the optimisation

method. The average estimated parameter values over the 100 simulated data sets for each

of the three models can be found in Tables 1, 2 and 3 respectively, where β̂jτk and β̃jτk

denote the parameter estimates obtained from the quasi-Bayesian method and the optimi-

sation method respectively, while SE(β̂jτk) and SE(β̃jτk) are the corresponding standard

deviations of the estimates. The MSE gives the mean squared errors between the estimated

and the true parameter values. It is seen that the average performance of the optimisation

method is not very good, which may be explained as follows.
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For illustration purposes, let us consider the first simulation study. We noticed that the

estimated constant term β̂0k of the model has the largest MSE. To visualize the situation, we

arbitrarily chose one of the simulated data sets, let τ = 0.5 and we fixed β2 at an arbitrarily

selected value between −10 and 10. Note that we also checked many other data sets and

values of τ and β2, each time similar results were obtained. Then for a sequence of equally

spaced values of β0 and β1 between −10 and 10, we calculated the values of the objective

function
∑n

i=1 ρτ (ui), where ui = yi − β0 − β1yt−1 − β2yt−2. Finally we constructed a

contour plot of the objective function, shown in Figure 4 (a). Clearly, there exist infinitely

many β0 values that could minimise the objective function. This may explain why the

simple optimisation method performs badly in this simulation study.

We also produced the contour plot of the posterior distribution in this case, showed in

Figure 4 (b). These contour plots are similar due to the fact that weak prior information

was used. However one thing to notice is that the Bayesian posterior estimates of the

parameters were obtained based on the mean of the posterior distribution, which may not

be the same as the mode of the distribution, while the mode of the distribution is the basis

for the conventional optimisation method. This might explain why in such cases the quasi-

Bayesian method appears to work better than the conventional optimisation method.

3.3 Some further discussions

It is seen from Tables 1-3 that all the MSEs corresponding to the quasi-Bayesian method

are less than those corresponding to the optimisation method, which further confirms that

the quasi-Bayesian method is more successful than the optimisation method.

Now let us consider the performance of the methods at extreme levels. Tables 1-3

suggest that larger variations occurred in the parameter estimations since the standard errors

of the estimates at extreme levels are generally larger than those at non-extreme levels.
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Table 3: True and the average estimated parameters and the associated standard errors for
Simulation study 3.

τ 0.01 0.05 0.250 0.350 0.500 0.650 0.750 0.950 0.99
β0τk 1.27 1.54 1.930 2.046 2.200 2.354 2.470 2.858 3.13
β̂0τk 0.88 1.94 2.217 2.322 2.417 2.514 2.620 2.895 3.98
β̃0τk -2.12 -1.96 -1.80 -1.62 -1.34 -1.01 -0.59 -0.15 0.31

SE(β̂0τk) 1.06 0.52 0.469 0.464 0.463 0.464 0.468 0.513 1.09
SE(β̃0τk) 1.52 1.52 1.49 1.41 1.27 1.12 0.94 0.83 0.80

β1τk 0.71 0.73 0.773 0.785 0.800 0.815 0.827 0.866 0.89
β̂1τk 0.55 0.69 0.732 0.746 0.759 0.772 0.786 0.823 0.96
β̃1τk 0.56 0.59 0.60 0.61 0.62 0.66 0.71 0.81 0.89

SE(β̂1τk) 0.18 0.10 0.097 0.097 0.097 0.097 0.097 0.102 0.17
SE(β̃1τk) 0.70 0.70 0.70 0.69 0.70 0.71 0.74 0.76 0.79

β2τk -0.10 -0.10 -0.100 -0.100 -0.100 -0.100 -0.100 -0.100 -0.10
β̂2τk -0.29 -0.15 -0.115 -0.101 -0.089 -0.076 -0.062 -0.023 0.14
β̃2τk 0.70 0.70 0.70 0.71 0.71 0.73 0.76 0.84 0.90

SE(β̂2τk) 0.17 0.10 0.098 0.097 0.097 0.097 0.098 0.104 0.19
SE(β̃2τk) 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.75 0.78

MSE β0τ β1τ β2τ

Quasi Bayesian 0.143 0.005 0.012
Optimization 11.256 0.020 0.728
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Figure 4: (a) Contour plot of the objective function for the optimisation method. (b) Con-
tour plot of the posterior density function for the quasi-Bayesian method. The square dots
correspond to the true values of β0 and β1.

Although this is what we expected because less and less information is available as τ goes

to extremes, it is worth mentioning that it may not be appropriate to use our methodology to

estimate extreme quantiles. Some work about the problem of extreme quantile estimation

can be found in the literature. For example Chernozhukov (2005) developed a theory of the

large sample properties of extremal quantile regression estimators for the linear quantile

regression model. Beirlant et al. (2004) suggested a two-step procedure based on local

quantile regression and univariate extreme value theory. Gardes et al. (2010) proposed an

estimation method such that the estimation of an extreme quantile is based on observations

in a small neighborhood of a given covariate value of interest. Wang et al. (2012) developed

two estimation methods for extremal conditional quantiles of heavy-tailed distributions.

However none of these methods address the crossing issue. We believe that estimation of

non-crossing extreme quantiles is worth investigating in the future.

To check whether the fitted quantile curves are non-crossing, we calculated the differ-
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ences qτkyt|yt−1
− q

τk−1

yt|yt−1
, where τk ∈ A1 and t = 3, . . . , 100 for model (13) corresponding

to processes (10) and (12) respectively, and the differences qτkyi|xi
− q

τk−1

yi|xi
, where τk ∈ A2

and i = 1, . . . , 100 for model (14). We found that all these differences are non-negative,

hence no curve-crossing problem occurred. The first row in Figure 5 displays three of these

differences for illustration purposes.
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Figure 5: The first row corresponds to our method and the second row corresponds to the
conventional method without non-crossing constraints.
(a)(d) Plots of q0.99yt|yt−1

− q0.95yt|yt−1
for model (13) corresponding to (10).

(b)(e) Plots of q0.3yi|xi
− q0.2yi|xi

for model (14).
(c)(f) Plots of q0.05yt|yt−1

− q0.01yt|yt−1
for model (13) corresponding to (12).

We also fitted the three models to the simulated data sets (shown in Figure 1) respec-

tively by using the R-package in which no non-crossing constraints are involved. The

second row in Figure 5 shows the differences between two fitted conditional quantiles at

the same levels as those used in the first row. Clearly, the three data generating processes

considered here do result in estimated quantile curves that cross each other if non-crossing

constraints are not imposed.

In summary, the simulation studies show that the quasi-Baysian method works well
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in parameter estimation and in providing a reasonable QCI for the estimated model pa-

rameters. The simulation studies also show that the quasi-Bayesian method appears to

outperform the optimisation method with non-crossing constraints. However it may not be

appropriate to use our methods when dealing with extreme quantiles.

4 Application to DJIA time series

In this section, we apply the developed methodology to the log-returns of the Dow Jones

Industrial Average (DJIA). The data cover the period between 2 January 2004 and 8 Oc-

tober 2010 and are of length 1705. The time series plots of the observed series and its

log-returns are displayed in Figure 6. It is seen that the observed DJIA log-returns exhibit

the occurrence of extremes and volatility clustering.
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Figure 6: (a) Time series plot of the DJIA between 2 January 2004 and 8 October 2010.
(b) Time series plot of the DJIA log-returns.
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Note that the smallest log-return is −8.20% during this period of time. To make sure

the covariates in our model only take non-negative values, we let yt = xt + C, where xt

denotes the log return at time t, t = 1, . . . , n = 1704, with the constant C chosen so that

yt > 0 for t = 1, . . . , 1704. In this application we let C = 10.

We fitted the following models

qτkyt|yt−1
= β0τk + β1τkyt−1 + · · ·+ βpτkyt−p, τk ∈ A1 (15)

to the yt series, where p = 1, 2, 3 and 4. Model (15) says that the τkth quantile of yt given

yt−1 is qτkyt|yt−1
. It then follows from yt = xt + C that the τkth quantile of xt given xt−1 is

given by qτkxt|xt−1
= qτkyt|yt−1

− C.

We checked the overall coverage probabilities of the estimated quantile curves and

calculated the MSE between these probabilities and the true quantile levels. The MSE

values are 7.5×10−4, 2.2×10−4, 8.9×10−5 and 8.5×10−2 for p = 1, 2, 3 and 4 respectively.

We chose the model with the smallest MSE, p = 3. Details about fitting this model are

given below.

To estimate the parameter values we ran the MCMC algorithm for 107 steps with the

starting values of βjτk randomly simulated from N(0, 1) with the restriction that they fall in

the parameter space. After a burn-in period of 2× 106 steps we saved the parameter values

once every 100 steps. Figure 7 provides a summary of the estimates of the parameters and

the corresponding 95% QCIs for τk ∈ A1.

For the purpose of comparison we also fitted model (15) with p = 3 to the DJIA

log-returns using Bondell et al.’s (2010) method and Schnabel and Eilers’ (2013) method.

Table 4 lists the estimated parameter values from all methods, where M1, M2, M3 represent

our method, Bondell et al.’s method and Schnabel and Eilers’ method respectively.

These results clearly show that the estimated parameter values from the three methods
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Table 4: Estimated parameter values by using three different methods
β̂0τk

τ 0.01 0.05 0.25 0.35 0.5 0.65 0.75 0.95 0.99
M1 −0.04 0.05 0.14 0.18 0.22 0.24 0.26 0.28 0.32
M2 −4.04 −1.93 −0.48 −0.21 0.06 0.32 0.54 1.74 3.41
M3 −2.70 −1.50 −0.47 −0.26 0.003 0.25 0.45 1.39 2.54

β̂1τk

τ 0.01 0.05 0.25 0.35 0.5 0.65 0.75 0.95 0.99
M1 0.18 0.21 0.23 0.24 0.24 0.25 0.26 0.30 0.37
M2 −0.001 −0.01 −0.05 −0.07 −0.09 −0.09 −0.09 −0.19 −0.19
M3 0.22 0.07 −0.06 −0.09 −0.12 −0.15 −0.18 −0.30 −0.44

β̂2τk

τ 0.01 0.05 0.25 0.35 0.5 0.65 0.75 0.95 0.99
M1 0.16 0.25 0.30 0.31 0.32 0.33 0.35 0.39 0.49
M2 −0.13 −0.02 0.01 −0.01 −0.01 −0.03 −0.05 −0.07 −0.15
M3 0.15 0.04 −0.05 −0.07 −0.10 −0.12 −0.14 −0.22 −0.33

β̂3τk

τ 0.01 0.05 0.25 0.35 0.5 0.65 0.75 0.95 0.99
M1 0.27 0.32 0.39 0.40 0.41 0.42 0.44 0.47 0.53
M2 0.25 0.14 0.07 0.07 0.07 0.07 0.07 0.07 −0.01
M3 0.35 0.22 0.12 0.10 0.07 0.05 0.03 −0.07 −0.19
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Figure 7: Plots of estimated parameter values and the corresponding 95% QCIs obtained
from our method.

are different. Now we compare their performance. We have found that the estimated quan-

tile curves at non-extreme quantile levels are very similar, but differences between them

can still be seen visually. Figure 8 displays the estimated quantile curves at three levels, i.e.

τ = 0.01, 0.5 and 0.99. The first row corresponds to our method (darker lines) and Bon-

dell et al.’s method (grey lines); the second row corresponds to our method (darker lines)

and Schnabel and Eilers’ method (grey lines); and the final row corresponds to Bondell et

al.’s method (darker lines) and Schnabel and Eilers’ method (grey lines). It is seen that the

median curves obtained from all methods are very similar. It is also seen that the condi-

tional distribution defined by the estimated quantile curves obtained from our method has

the longest tails, while that obtained from the Schnabel and Eilers’ method has the shortest.

Nevertheless, all methods seem to have produced similar quantile curves despite the fact

that the model parameters are different.

Now we check the overall coverage probabilities of the estimated quantile curves from
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Figure 8: Estimated conditional quantile curves from our method, Bondell et al.’s method
and Schnabel and Eilers’ method.

each model. Let nk be the number of the log-returns that are below the τkth quantile curve.

The proportion at level τk may be simply estimated by nk/(n− p). These estimated values

are shown in the second, fifth and sixth columns of Table 5 for the three methods (ours, that

of Bondell et al. (2010) and that of Schnabel and Eilers’ (2013) respectively). The last row

of Table 5 gives the MSE values between the empirical coverage probabilities and the true

ones. These MSE results suggest that our method and Bondell’s method perform better.

Due to the nature of the quasi-Bayesian approach, we are also able to construct 95%

QCIs for each of the coverage probabilities. Specifically, at a level τk ∈ A1, we used all

posterior samples of the model parameters to calculate the proportions. The lower and

upper 0.025 quantiles of these proportions then form a 95% QCIs of the true coverage

probabilities at this level. The third and the fourth columns of Table 5 show the lower

and upper bounds of these QCIs respectively. We noticed that all true probabilities are
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Table 5: The coverage probability of the estimated quantile curves and the associated 95%
QCI for our method.

Our method Bondell et al. method S & E’s method
τ Proportion L-bound U-bound Proportion Proportion

0.01 0.008 0.005 0.012 0.010 0.028
0.05 0.048 0.037 0.058 0.052 0.075
0.25 0.236 0.206 0.263 0.249 0.256
0.35 0.340 0.312 0.370 0.350 0.335
0.50 0.487 0.455 0.516 0.499 0.453
0.65 0.638 0.604 0.663 0.651 0.603
0.75 0.740 0.714 0.767 0.751 0.703
0.95 0.943 0.929 0.954 0.951 0.922
0.99 0.985 0.981 0.990 0.991 0.976
MSE 8.94× 10−5 9.69× 10−6 9.77× 10−4

well within these 95% QCIs, which suggest that our estimated coverage probabilities are

reasonably good. On the other hand, as it is difficult to use the other two methods to

estimate the corresponding confidence intervals, it is difficult to assess the variation of

their estimates. Therefore we are not able to compare the fitted models with respect to this

criterion.

Now let us consider the local coverage probabilities. Figure 9 shows the local coverage

diagnostic plots at five quantile levels, where the grey curves are from our model, contin-

uous darker curves from Bondell’s model and the dashed curves from the Schnabel and

Eilers’ model. It is seen that at non-extreme quantile levels all three models behaves sim-

ilarly because the majority of the three curves overlapped and are close to the horizontal

line, while at extreme quantile levels that the performance of Schnabel and Eilers’ model

seems slightly better than the other two.

In practice it is of great interest to estimate the conditional distribution of financial re-

turns. This is because once this distribution is available then any quantity of interest about

the returns can be obtained easily. For illustration purposes we constructed four condi-

tional distributions at times t = 1000, 1200, 1400 and 1700, that were chosen arbitrarily.
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Figure 9: Diagnostic plots of the local probability coverage of the estimated quantile curves
from different models.
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Figure 10 shows these density functions, where the continuous dark curves are from our

model, the dashed curves from Bondell’s model, the grey curves from Schnabel and Eilers’

model, and the vertical lines correspond to the observed returns at these time points. It is

interesting to see that, as shown in Figure 10, although the estimated conditional quantile

curves from different methods behave similarly, the estimated density functions conditional

on a specific covariate value may not be similar. This may be due to the fact that the pa-

rameter spaces of those methods are different. Note that as it is difficult to compare the

variation of the estimated conditional distributions in this study, we plan to carry out ex-

tensive simulation studies in the future so that the performance of different methods can be

compared from a distributional point of view in a systematic way. In practice, we suggest

users should try different methods on the same data and choose the most suitable model for

their study.
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Figure 10: Estimated conditional density functions at different time points.

It is worth mentioning that the estimated conditional density functions (see Figure 10)
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are not sufficiently smooth. Smoother conditional density functions might be obtained

by increasing the number of quantile levels K. It might also be possible to introduce

an additional penalty term to the model to ensure smoothness of the resulting quantile

function. We also leave this for future research.

Finally, we would like to point out that, without non-crossing constraints, the conven-

tional quantile regression method will produce invalid estimated conditional quantiles for

the data set in this example.

5 Further comments and Conclusions

In this paper we established a relationship between the comonotonicity of the model param-

eters and the monotonicity of the estimated conditional quantiles for non-negative covariate

variables. We also proposed a quasi-Bayesian approach to non-crossing quantile curve es-

timation.

Our results show that the quasi-Bayesian method not only allows us to estimate non-

crossing quantile curves but also allows us to estimate, as by-products of the method, the

distribution of any aspect of the response variable at any quantile level. Such information

is difficult to obtain from the method of Bondall et al. (2010) or that of Schnabel and Eilers

(2013). We noticed that the performance of our method at extreme levels is not as good as

it is at non-extreme levels. Consequently careful interpretation of results at extreme levels

is required.

In this paper we also developed an optimisation method for parameter estimation. Ex-

tensive simulation studies suggest that this quasi-Bayesian method outperforms the more

conventional optimisation method.

As we have mentioned earlier in the paper, the main limitation of the proposed method
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is that if a true model parameter is monotonically decreasing, it may not be appropriate

to use our method directly. However Koenker (2005) showed that it is always possible

to reparameterise the model so as to achieve comonotonicity and illustrated this by an

example.

The best way to use our method in practice is to reparameterise the model before apply-

ing the method. Note that currently techniques for the reparametrisation are model and/or

data dependent. There are no unified procedures available for the reparametrisation. Fur-

ther research on this issue is obviously needed.

Appendix

Proof of Theorem 1:

It follows from (4) that

(β0τ ′ − β0τ ) + (β1τ ′ − β1τ )x1i + · · ·+ (βpτ ′ − βpτ )xpi < 0. (16)

But βjτ ′ − βjτ ≥ 0 for all j, so we see that for (16) to hold, we must have at least one xji

such that xji < 0 as required.

Proof of Theorem 2:

First suppose that (5) holds. We need to show that (6) also holds.

Since (5) holds for all α ∈ Rp+1
+ , it must in particular hold for α = ej = (0, . . . , 1, . . . , 0),
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where all the entries of ej are 0 except for the j + 1th entry which is equal to 1. That is,

(0, . . . , 1, . . . , 0)



β0τ

...

βjτ

...

βpτ


≤ (0, . . . , 1, . . . , 0)



β0τ ′

...

βjτ ′

...

βpτ ′


.

Therefore, we have βjτ ≤ βjτ ′ for j = 0, . . . , p as required.

On the other hand, suppose that (6) holds, we need to show that (5) also holds.

First note that for any α = (α0, . . . , αp) ∈ Rp+1
+ we have αj ≥ 0 and α =

∑p
j=0 αjej .

It follows from (6) that e⊤j βτ ≤ e⊤j βτ ′ for j = 0, . . . , p , hence

αje
⊤
j βτ ≤ αje

⊤
j βτ ′ implies that

p∑
j=0

αje
⊤
j βτ ≤

p∑
j=0

αje
⊤
j βτ ′ .

So (5) holds as required.

Proof of Theorem 4:

First note that for fixed k and m, and for any α ∈ Rp+1
+ we have α⊤β(m)

τk
≤ α⊤β(m)

τk+1
.

Consequently
1

M

M∑
m=1

α⊤β(m)
τk

≤ 1

M

M∑
m=1

α⊤β(m)
τk+1

.

That is to say α⊤β̂τk
≤ α⊤β̂τk+1

as required.
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