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Abstract. Disformally coupled cosmologies arise from Dirac-Born-Infeld actions in Type II
string theories, when matter resides on a moving hidden sector D-brane. Since such matter
interacts only very weakly with the standard model particles, this scenario can provide a
natural origin for the dark sector of the universe with a clear geometrical interpretation: dark
energy is identified with the scalar field associated to the D-brane’s position as it moves in the
internal space, acting as quintessence, while dark matter is identified with the matter living on
the D-brane, which can be modelled by a perfect fluid. The coupling functions are determined
by the (warped) extra-dimensional geometry, and are thus constrained by the theory. The
resulting cosmologies are studied using both dynamical system analysis and numerics. From
the dynamical system point of view, one free parameter controls the cosmological dynamics,
given by the ratio of the warp factor and the potential energy scales. The disformal coupling
allows for new scaling solutions that can describe accelerating cosmologies alleviating the
coincidence problem of dark energy. In addition, this scenario may ameliorate the fine-tuning
problem of dark energy, whose small value may be attained dynamically, without requiring
the mass of the dark energy field to be unnaturally low.
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1 Introduction

The Nobel prize-earning experimental confirmation that our universe is currently accelerat-
ing [1, 2] has presented a challenge for theory which remains among the most important open
questions in modern cosmology. This late-time acceleration of the universe must be driven
by some hitherto unidentified energy source, generally referred to as dark energy (DE). It
may simply be due to a tiny cosmological constant, however more general, dynamical forms
of energy are allowed by the data. Dark energy constitutes about 68% of the overall energy
content in the universe, while in the standard model of cosmology, another 27% is in the
form of cold dark matter (DM), tallying up to a total of 95% of the energy in the universe
being in the unknown dark sector. These forms of matter and energy must have little or
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no direct interaction with ordinary matter, as they have been observed only through their
gravitational interactions.

On the other hand, fundamental theories such as string theory posit the existence of
extra dimensions which can contain all kinds of matter fields, which although coexisting with
our world of standard model particles in four dimensions, are spatially separated from visible
matter in higher dimensions. Could it be that the mysterious dark fluids in the universe are
due to the presence of another four-dimensional “world” which is separated from ours by
additional dimensions of space?

In addition to the dark fluids themselves, there is the question of possible interactions
between these fluids. It is often simply assumed that the components of the dark sector are
independent and do not interact directly, however there is no fundamental principle which
forbids some form of interplay between them. Indeed, whereas new forces between DE and
normal matter particles are heavily constrained by observations (e.g. by solar system tests
as well as gravitational experiments on Earth), this is not the case for DM particles. In
other words, it is possible that the dark components interact with each other, while not
being coupled to standard model particles. Several phenomenological interacting DE/DM
models have been proposed in the literature (see e.g. [3] for a recent review with several
references), however, typically without a compelling fundamental origin for the form of the
proposed couplings.

In the current work we propose a unified picture of the dark phenomena in the universe
in which dark matter and dark energy are naturally interacting. Specifically, we suggest
that the cosmological dark sector, namely dark energy, dark matter and any possible dark
radiation, may be naturally unified as distinct phenomena arising from the fluctuations of a
single object, which we call the Dark D-brane, moving in a higher dimensional space-time [4].

The Dark D-brane world scenario we propose can arise from “hidden sector branes”,
which are ubiquitous in string theory D-brane constructions, which are currently moving in
the six (warped) extra dimensions. Hidden sector D-branes are those branes which have
no intersection with the stack of D-branes responsible for the visible sector and therefore
they interact with the visible sector only gravitationally or via very massive states that are
integrated out of the low energy theory. Thus the matter fields on these branes are dark by
construction. For a single D-brane, the matter fields are U(1) gauge fields which may be
massive or massless. Hence they can simultaneously provide candidates for a dark matter
species and a dark radiation species in the universe, where we might expect that today the
dark matter species is in some form of massive decay products of these fields. This though
may not the end of the story, because if in addition, some of these hidden branes are able to
move during the present epoch, other light degrees of freedom will arise which could act as
dark energy and thus complete the dark spectrum in four dimensions.

In this picture, the oscillations of the open strings along the surface of a D-brane can
be thought of as encoding the D-brane’s intrinsic fluctuations. These give rise to the matter
fields on the brane. Similarly, the oscillations of the open strings that are transverse to the
D-brane encode the D-brane’s extrinsic fluctuations, namely the fluctuations of its position
in the higher dimensions in which it is embedded. These give rise to scalar fields which
parameterise the location of the brane. In our scenario we associate the intrinsic fluctuations
of a hidden sector brane, equivalently the open string oscillations on its surface, with dark
matter or dark radiation, and its extrinsic fluctuations along a single direction in the internal
six dimensional space, equivalently the open string oscillations transverse to its surface, with
dark energy. In this sense, the dark sector is unified as distinct phenomena arising from the
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fluctuations of the Dark D-brane in the higher dimensional spacetime today [4]. In the current
work, we consider for concreteness and to illustrate our idea, a Dark D-brane prototype in
the form of a single probe D3-brane inhabited by massive particles.1

As a geometrical framework for describing the dark sector, it is compelling that the dark
fluids in this scenario turn out to be non-minimally coupled in a very particular way: the
coupling, which arises due to the induced metric on the brane, is precisely a realisation of the
so-called disformal transformation [5], which has recently been receiving growing attention
in the modified gravity literature. Indeed, it can be argued that this transformation, which
takes the form

ḡ
µ⌫

= C(�, X)g
µ⌫

+D(�, X)@
µ

�@
⌫

�, (1.1)

is the most general physically consistent relation between two metrics which can be given by
a single scalar field �, where X = (@�)2 is the kinetic term [5]. The first term in eq. (1.1) is
the well-known conformal transformation which characterises the Brans-Dicke class of scalar-
tensor theories, for which the f(R) gravity theories are a widely studied example.2 The second
term is the purely disformal contribution, which is generic in extensions of general relativity.
In fact, it must appear in the Einstein frame formulation of any covariant theory involving an
invariant other than R, or of any more general Horndeski-type scalar-tensor theory.3 Another
very active area of study in which the disformal coupling makes an appearance is in the field
of non-linear massive gravity theories [12, 13].

Therefore our work makes direct contact with current theories of modified gravity and
provides a fundamental origin for the disformal transformation. Indeed, whereas in the
modified gravity literature the disformal coupling is usually “put in by hand”, we will show
that starting from a consistent physical theory of quantum gravity in higher dimensions, this
coupling appears naturally, rather than as an ad hoc modification of Einstein’s theory in
four dimensions. The general relation in eq. (1.1) then has a concrete interpretation as the
induced metric on a probe D-brane moving in a warped higher dimensional spacetime, such
that � is the scalar field associated to the position of the brane, and the functions C and
D are both given in terms of the warp factor h. In addition, the matter that is disformally
coupled cannot be just any matter but must be the matter that is localised on the moving
D-brane. In our scenario we associate � with dark energy, and the disformally coupled matter
with dark matter. Therefore, we will refer often to it as the Disformal Dark D-brane scenario.

Disformal couplings have a rich phenomenology and thus we can expect such matter to
exhibit distinctive features. Notably, whereas the function C in (1.1) is a local scale trans-
formation that leaves the causal structure untouched, the function D a↵ects angles and thus
distorts the light cones.4 This feature has been exploited, by coupling the Standard Model
electromagnetic field disformally, in varying-speed-of-light theories [19–21]. Constraints on
such couplings to visible sector photons have been derived from both high-precision labora-
tory experiments of low-energy photons [22] and from cosmological tests based for example
on the distortion of the cosmic microwave background black-body radiation [23, 24]. Bounds

1For standard compactifications of Type IIB with O3/O7 orientifold planes, the U(1) gauge field on a
D3-brane remains massless. However, considering the simplest Dark D-brane world scenario will be enough
to illustrate our points. This can then be readily expanded upon to construct a more realistic Dark D-brane
model involving higher dimensional branes and more complex D-brane configurations, where massive particles
arise naturally.

2For the role of conformal transformations in f(R) and other gravity theories, see [6–8].
3See [9–11] for the role of the disformal relation in general Horndenski classes of scalar-tensor theories.
4In relativistic MOND theories, the disformal relation is crucial in mimicking lensing by dark

matter [14–18].
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can also be placed by considering disformally coupled baryonic fluids in the radiation dom-
inated epoch of the universe’s evolution [25]. In the current work on the other hand, it is
exclusively the dark fluids which are disformally coupled. Nevertheless, our work suggests
that disformal phenomenology can in fact be viewed as a probe of extra dimensional brane
movement in for example a string theory setting.5 To ensure that everything stays causal
for all values of the field and its derivatives, constraints must usually be placed on the func-
tional forms of C and D [5]. In section 2.2 we discuss the causal structure for disformally
interacting massive particles (which we dub “DIMPs”) in our Dark D-brane scenario. From
the point of view of the geometrical picture, we see clearly that the causal structure in the
four-dimensional disformal spacetime is in fact determined by causal dynamics in the higher
dimensions, and thus we see that working within a concrete physical theory, causality arises
naturally without the need to place restrictions on the functions C and D.

In the context of string theory, eq. (1.1) has been widely exploited in cosmological
applications. Indeed the so-called Dirac-Born-Infeld (DBI) inflationary scenarios [30, 31],
for which “slow-roll” inflation is simply the non-relativistic limit, are based on this relation,
where the scalar field � plays the role of the inflaton.6 DBI inflation arises when the D-brane
is moving in a strongly warped region, commonly referred to as a warped throat. While in
the standard scenarios the D-brane moves radially in such a region, the generalisation to
allow motion in all six of the compact directions in the throat has been studied, and there
it was found that motion in all directions other than the radial is rapidly damped by the
cosmological expansion [37–39]. Thus the system quickly converges to the single field case as
in eq. (1.1).7

The vast majority of D-brane inflation models deal exclusively with the scalar fields
associated to the transverse degrees of freedom of the brane. Any other matter fields living
on the moving brane are usually not considered: apart from the inflaton, the branes are
“empty”. However, while such assumption can be justified during early time acceleration,
there is in principle no reason for it during late time cosmology. It is natural to take these
matter fields into account as D-branes cannot exist independently of open strings, of which
the position fields are only a subset. More importantly, these matter fields can indeed give
rise to interesting cosmology, as has been shown by the relatively few studies that have
considered them: in the early universe context, it has been shown that they may play the
role of Wilson-line inflatons in both the warped and unwarped cases [41, 42], or instead they
may act as vector curvatons on both stationary as well as moving branes [43, 44].

In the current work we are lead to consider DBI quintessence [45, 46] where matter
on the brane is taken into account. While DBI-type inflation models often require fine-
tuning to achieve the full 60 e-folds of accelerated expansion which are necessary to solve the
horizon and flatness problems,8 in the dark energy context, at most one e-fold of accelerated
expansion is required, since the acceleration becomes important only at a redshift of around
z = 1. Another attractive feature of our scenario is that since the visible sector does not
feel the coupling, there is no need to consider screening mechanisms for dark energy at local

5Our proposal does not need to be restricted to string theory, but could be in principle realised in a ‘pure’
brane world scenario [26–29].

6For reviews on D-brane inflation see [32–36].
7Furthermore, some implications of having two di↵erent metrics have been discussed in the context of

brane world scenarios in [40], where it is shown that observers living on a 3-brane may experience an induced
metric which bounces without violating the weak energy condition.

8For example, in the simplest single field DBI models this requires an unnaturally large mass term for the
inflaton [30, 31]. For more general discussion on fine-tuning in D3-brane inflation also see [47, 48].
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scales.9 However, for this picture to be viable, it should be able to suitably address both the
coincidence problem and the fine-tuning problem of dark energy.

Now, in standard quintessence models, the fine-tuning problem of dark energy is trans-
lated into the unnaturally small mass required for the dynamical field driving the present
acceleration. The coincidence problem could however be addressed by the direct coupling
between the dark matter and dark energy components. In particular, in the presence of the
so-called scaling solutions [52–54], where a fraction of the dark matter density and the dark
energy density stays constant, it does not appear a surprise they are of similar magnitude
today. While conformally coupled theories with a large enough coupling to address the coin-
cidence problem typically result in unacceptably enhanced perturbation growth [55–58], the
viability of much more general disformally coupled quintessence models largely remains to
be explored. A scalar with a disformal relation has been considered in [59] to drive short
inflation, while in [60, 61] it was considered as a quintessence field. A phenomenological
model of dark matter with a disformal coupling was studied in [9, 51].

We will show that these scaling solutions do indeed arise in our Disformal Dark D-brane
scenario. In addition, we will see that the scale of dark energy today depends on the current
value of the brane’s position field, which must go to zero as the brane approaches the tip of
the throat, to which it is attracted. Thus the scale of dark energy must be incredibly low
at some epoch (without requiring its mass to be extremely low). So we can conjecture that
such an epoch corresponds to the present one. Therefore, both the coincidence problem as
well as the fine-tuning problem can be potentially addressed in our scenario.

Thus our Disformal Dark D-brane world scenario, a generalisation of coupled
quintessence cosmology [3, 55, 62–71], is a naturally unified picture of the cosmological dark
sector in which dark energy arises from the motion of a hidden sector brane in the internal
(warped) space and is disformally coupled to the dark matter fields on its world-volume.10

From a “top-down” point of view to coupled quintessence, the scalar and matter fields ap-
pearing in our scenario have clear geometric interpretation and their properties such as the
coupling can be explicitly derived given the higher dimensional fundamental theory.11

To study in detail the ensuing homogenous cosmology, we will use the method of dy-
namical system analysis and numerical integration. Previously these methods have been
applied for DBI scalar field cosmologies in12 [45, 46, 90–93], also taking into account a phe-
nomenological coupling13 [96]. We will need only two ingredients to construct realistic late
time cosmologies: a matter dominated fixed point that is a saddle point, allowing for a

9While for the case of the purely conformal coupling (D = 0) various screening mechanisms have been
proposed to address this problem [49], it turns out that for the case of the purely disformal coupling (C = 1,
D 6= 0), such a mechanism is already in-built into its very structure: the disformal coupling depends on
the gradients of the scalar field, thus if the field is locally static and smooth, the coupling quite neatly
disappears [50]. Furthermore, in non-static situations, when D⇢ � 1, there is no dependence on the energy
density ⇢ in the scalar field equation, and it becomes “unsourced” [51]. However, if the scalar couples only
to hidden sector matter, then no fifth force will appear in the visible sector and so the disformal screening is
redundant.

10Extra dimensional dark matter has also been proposed in the brane world context where the fluctuations
of our brane give rise to “branon” particles [72–74]. In addition, Kaluza-Klein modes in universal extra
dimensions have been widely studied as viable candidates for dark matter [75–77], see [78, 79] for reviews.

11A string inspired coupled quintessence model was presented in [80] in terms of closed string moduli.
12For some other works on DBI dark energy see e.g. [81–89].
13However, in that case the coupling was introduced as a phenomenological interaction term added to the

conservation equations, and led to qualitatively di↵erent results from what we obtain here. It has been shown
that such ad hoc couplings can even result in spurious unphysical instabilities at the perturbation level [94, 95].
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matter dominated epoch which does not last forever, and an accelerating scaling fixed point
that the universe will reach around the present epoch, allowing for acceleration to follow the
matter dominated epoch in such a way that the coincidence problem of dark energy may be
alleviated. Remarkably, the very simplest model we consider contains these solutions.

The structure of the paper is as follows. In section 2 we discuss the string theory
D-brane set-up in which the disformal coupling arises and its general implications for the
physics in four-dimensions. In section 3 we focus on the cosmology using dynamical systems
and numerical analysis. We conclude in section 4. Some general formulas, an alternative
formulation and a study of a phase space of a special case are confined to the appendices.

2 The general set-up

In this section we first discuss how the disformal coupling arises from D-branes in the context
of Type IIB string theory warped compactifications [97–99]. This comprises section 2.1. Then
in section 2.2 we present the set-up for DIMPs on the moving brane and discuss some general
physical implications of the disformal coupling.

2.1 Disformal coupling from moving D-branes

Consider a warped flux compactification of Type IIB string theory , where the higher di-
mensional generalisations of gauge fields, the RR-forms, F

n+1 = dC
n

for n = 0, 2, 4 and
their duals n = 6, 8, as well as the NSNS-form H3 = dB2 are turned on in the internal six
dimensional space. These fluxes back-react on the geometry, warping it. In addition, it has
been shown that they generate a potential for most of the geometric moduli present in the
compactification, which allows these moduli to be stabilised [97].

Assigning the coordinates xµ to the noncompact dimensions, where µ = (0, . . . , 3), and
the coordinates yA to the compact dimensions, with A = (4, . . . , 9), the ten dimensional
metric takes the form

G
MN

dxMdxN = h�1/2(yA)g
µ⌫

dxµdx⌫ + h1/2(yA)g
AB

dyAdyB, (2.1)

where g
AB

is the metric of the internal six dimensional Calabi-Yau manifold, and in order
to preserve Lorentz symmetry in the noncompact four dimensions, the warp factor h is a
function of only the internal coordinates, h = h(yA).

We now want to consider probe Dp-branes embedded in this background. Defining
the coordinates ⇠a on the world-volumes of the D-branes, where a = (0, . . . , p), we can
embed them into the spacetime by the mapping xM (⇠a). This is simply a higher dimensional
generalisation of the familiar point-particle worldline in four dimensions, xµ(⌧), where ⌧ is
usually taken to be the proper time. As spatially extended objects, D-branes will also break
Lorentz symmetry, and thus should be space-filling in the noncompact dimensions. We are
then free to align the four-dimensional world-volume coordinates with the four-dimensional
spacetime coordinates, by choosing the static gauge ⇠µ = xµ. In the compact dimensions
on the other hand, the D-branes will naturally tend to move about as they search for the
minima of their potentials, and thus the embedding functions are kept general, yA(⇠a).

We are interested in matter fields which are confined to the brane, as discussed in the
introduction. These brane fields will naturally follow geodesics of the induced metric on the
D-branes, which we denote as ḡ

µ⌫

. For a D3-brane that is moving along a single compact
direction r for example, this is given by

ḡ
µ⌫

= G
MN

@
µ

xM@
⌫

xN = h�1/2(r)g
µ⌫

+ h1/2(r)@
µ

r@
⌫

r , (2.2)
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where the first term arises because we are in the static gauge, and r(xµ) is proportional to
the scalar field associated to the brane’s position parameterising its motion in the r direction.
We see that the induced metric on a D-brane moving along a single direction in the compact
space is precisely a realisation of the disformal relation, eq. (1.1), where we can readily
identify the form of the couplings in terms of the warp factor C(r)�1 = D(r) = h(r)1/2 and
the scalar field with the brane’s position � / r. On the other hand, the metric g

µ⌫

describes
the geometry of the bulk spacetime.

In order to see how the disformal coupling arises from the Dp-brane action, we now look
in more detail at the full action describing its dynamics. In the Einstein frame,14 the DBI
action of a Dp-brane is given by15

SDBI = �µ
p

Z
dp+1⇠e

(p�3)
4

'

q
� det(ḡ

ab

+ e�
'
2 F

ab

) (2.3)

where
µ
p

= (2⇡)�p(↵0)�
(p+1)

2 , T
p

= µ
p

e
(p�3)

4
', (2.4)

with T
p

being the tension of the brane, where ↵0 = `2
s

with `
s

the string scale and the vacuum
expectation value of the dilaton field ' gives the string coupling as e'0 = g

s

. The pullback
of the ten dimensional metric onto the Dp-brane world-volume takes the form (2.2)

ḡ
µ⌫

= G
µ⌫

+
@yi

@⇠µ
@yj

@⇠v
G

ij

= h�1/2g
µ⌫

+ h1/2@
µ

yi@
⌫

yjg
ij

, (2.5)

for the four dimensional components, whereas

ḡ
mn

=
@yl

@⇠m
@yr

@⇠n
G

lr

. (2.6)

for the internal ones. Moreover, F
ab

= B
ab

+ 2⇡↵0F
ab

is the gauge invariant combination of
the pullback of the NSNS 2-form B2 and the field strength of the world-volume U(1) gauge
field.

The coupling of the brane and its world-volume fields to the bulk RR-fields is described
by the Wess-Zumino (WZ) action, which is given by

S
WZ

= µ
p

Z

Wp+1

X

n

C
n

^ eF (2.7)

where W
p+1 is the world-volume of the brane, and C

n

are the pullbacks of the bulk RR-
C
n

forms to which the brane couples. In this expression, the wedge product picks out the
relevant terms in the exponential. The total action for a Dp-brane is then given by the sum
of the DBI and WZ actions, namely

S
Dp = SDBI + SWZ. (2.8)

14In D dimensions the Einstein frame and string frame are related by GE
MN = e�

4
D�2'Gs

MN where ' is the
dilaton.

15We use the following indices for the various coordinates:

M,N = 0, . . . , 9 for 10D coordinates
µ, ⌫ = 0, . . . , 3 for 4D coordinates
A,B = 4, . . . , 9 for 6D coordinates
a, b = 0, . . . , p for world-volume coordinates
m,n = 4, . . . , p internal (p - 3) world-volume coordinates
i, j = p+ 1, . . . , 9 internal transverse to brane coordinates

– 7 –
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2.1.1 The scalar sector

The four-dimensional induced metric in eq. (2.5), which gives the kinetic terms for the brane’s
position fields in the DBI action (2.3), is precisely of the disformal type. Indeed, comparing
with eq. (1.1), the scalar field � parameterises the variation of the position of the brane in
one direction in the compact space (for example the radial direction r2 =

P
i

(yi)2), and the
functions C and D are given in terms of the warp factor, which depends on the scalar field
associated to the position of the brane. As we have already mentioned, while the brane can
have motion in all of the transverse internal directions and the warp factor can depend on
all of these directions, we are well justified to consider the single field case [38].

For a D3-brane as we are interested in from now on, there are no compact coordinates,
and we may define the canonically normalised position field � ⌘ p

T3r with corresponding
warp factor h(�) ⌘ T�1

3 h(r), for the radial direction r in a warped throat region of the
compactification. The brane acquires a potential which is Coulomb-like in the vicinity of
an anti-brane, but more generally receives a variety of contributions from “compactification
e↵ects” such as fluxes and other objects present in the bulk. For the case of the D3-brane in
a warped throat, these e↵ects have been explicitly computed in [100].

Finally, the D3-brane is charged under the four-form C4, which appears as the first term
in (2.7) for the case of the D3-brane. We may write this charge as C4 = h�1p�g dx0 ^ dx1 ^
dx2 ^ dx3, and thus it is given in terms of the warp factor. Ignoring for the moment the
brane gauge field, after computing the determinant in the DBI action, the scalar action for
a D3-brane then takes the form

S
�

= �
Z

d4x
p�g


h�1(�)

✓q
1 + h(�)@

µ

�@µ�� 1

◆
+ V (�)

�
. (2.9)

This action then gives us the scalar part of the action. We now take into account the matter
fields living on the brane.

2.1.2 The matter sector

Let us now focus on the kinetic terms for matter on the brane, namely the U(1) gauge field,
which is encoded in the DBI action (2.3) above. Matter fields that live on D-branes naturally
feel the induced metric ḡ

µ⌫

. Indeed, we will see in section 2.2.3 that their associated particles
follow geodesics of ḡ

µ⌫

. Thus, these fields see a disformal metric. To see this concretely, we
can rewrite the determinant in eq. (2.3) as follows (p = 3)

� det[ḡ
µ⌫

+ e�
'
2 F

µ⌫

] = � det[ḡ
µ�

] det[��
⌫

+ e�'/2F̄�

⌫

], (2.10)

leading to

SDBI = �T3

Z
d4x

p�ḡ

q
det(��

⌫

+ e�'/2F̄�

⌫

). (2.11)

Here we have denoted F̄ to make it clear that here F is contracted with ḡ
µ⌫

and not with
g
µ⌫

! On the other hand, from the point of view of g
µ⌫

, the DBI action takes the form

SDBI = �T3

Z
d4x

p�g h�1
q

det(��
⌫

+ h @�yA@
⌫

yBg
AB

+ e�'/2h1/2F�

⌫

). (2.12)

Therefore, observers living in the background spacetime see the world-volume fields following
geodesics of g

µ⌫

but new scalar fields have appeared, namely the fields associated with the
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position of the brane in the compact space. In addition, the warp factor now appears in
the action as the function which gives both the conformal and disformal factors, C(�) ⌘
(T3 h(�))�1/2 and D(�) ⌘ (h(�)/T3)1/2 respectively, when restricted to motion in a single
direction � =

p
T3 r.

Expanding the square root in the DBI action we can rewrite (2.12) as

SDBI = �T3

Z
d4x

p�ḡ

 
1 +

e�'/2

4
F̄2 + · · ·

!
, (2.13)

where the first term corresponds to the kinetic term for the scalar, which appeared in (2.9)
above and the dots correspond to higher order terms in F̄ .

In Type IIB string theory, vector fields can acquire masses via the familiar Higgs mech-
anism or via a stringy Stückelberg mechanism (see appendix of [43] for a detailed discussion).
This stringy mechanism takes place whenever the vector field couples to a two-form field in
the 4D theory. Therefore if the coupling is present, the vector will acquire a mass. Depend-
ing upon the details of the compactification, the various two-forms which give rise to vector
masses may be projected out of the spectrum: this is due to the action of objects known
as orientifold planes: O-planes. In compactifications with O3/O7 planes, the coupling for
a D3-brane vector field vanishes because the associated 2-form field is projected out of the
spectrum. This entails that D3-brane vector fields remain massless or acquire a Higgs mass
for these compactifications. On the other hand, vector fields on branes of lower codimension,
such as wrapped D5 and D7-branes, can acquire Stückelberg masses in these compactifica-
tions, because the 4D two-form to which they couple remains in the spectrum. In what follows
we consider D3-branes with pressureless, i.e. massive particles on their world-volumes, as the
simplest scenario one can build. It should be clear that our study can readily be generalised
to include matter fields with pressure, or branes of lower codimension.

For a D3-brane we can then collect the vector terms into a general action of the form

S
U(1) = �

Z
d4x

p�ḡL
U(1) (ḡµ⌫), (2.14)

where we have chosen to write the action in the disformal frame to highlight that the matter
field couples to the induced metric ḡ

µ⌫

. Above we have illustrated explicitly the case where
the matter living on the brane is a vector field. However, the coupling of the induced metric
will be also there for more general matter fields living on the brane. Therefore below we
model a generic type of Dark D-brane matter in terms of a coupled gas of particles, our
DIMPs, which will serve to illustrate the e↵ects of the “disformal” coupling.

2.1.3 The geometry

The prototype warped compactification, which is smooth all the way to the tip of the throat,
is given by the compact version of the Klebanov-Strassler geometry [97, 101]. It arises due to
the presence of fluxes sourced by wrapped D3 and D5-branes, and is an exact non-singular
supergravity solution. Such a geometry is rather complicated, however it features an interior
region which may be approximated by the simpler adS5⇥ S5 geometry, which corresponds
to the near horizon limit of a stack of N D3-branes. This is cut o↵ in the infra-red which
corresponds to the tip of the throat. The warp factor in this case is given by

h =
�
adS

r4
, �

adS

= 4⇡↵02g
s

N, (2.15)
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where g
s

N � 1 for the supergravity approximation to be valid, while g
s

< 1 for string
perturbation theory approximation to hold, so that the t’Hooft coupling, �

adS

� 1. For the
Klebanov-Srassler (KS) geometry, the adS5 approximation breaks down near the tip of the
throat. Very near the tip of the KS throat the warp factor approaches a constant value h !
const.(O(1)) with corrections of order O(r2).

In what follows we study the D-brane dynamics in the mid-throat region as well as
near the tip. For the former we use the adS5 approximation with the warp factor given
in (2.15) above, and for the latter, we will simply take h to be a constant. This should
capture the predominant behaviour of the system in the regions of interest. Furthermore, in
large-volume scenarios [102] the e↵ect of the warping is washed away and thus these type of
compactifications are also explored when h ! const.

2.2 Disformally Interacting Massive Particles (DIMPs)

To outline the essential implications of the disformal coupling for particles on a moving
brane, we now adopt a classical point-particle description in place of the usual field theory
description. This approach can also be justified as we want to describe a fluid made of
galaxies, which can be seen as point particles moving in the universe.

We first discuss how lengths and angles are a↵ected by the motion of the brane; in this
way we contrast the disformal coupling with the conformal coupling. We will then explain
how causality is guaranteed in the spacetime that is disformally related to the spacetime on
a moving brane, and give the form of the local invariant speed on the brane. Turning then
to general motion on the brane, we will see that from extremising the action (2.16) below,
particles on the brane naturally follow geodesics of the induced metric. Finally, we give the
form of the energy-momentum tensor for pressureless particles on the brane and compare
this to the “bare” energy density for standard pressureless particles. This distinction will
have important consequences for cosmology, as we will later explore.16

Consider the e↵ective action for massive particles evolving in a p + 1-dimensional dis-
formal geometry ḡ

µ⌫

. For a D3-brane (p = 3) as we are considering, the brane actions is
entirely four-dimensional and it is simply given by17

SDDM = �
NX

i=1

Z
d4x m

i

q
�ḡ

µ⌫

ẋµ
i

ẋ⌫
i

�(4)(x
i

(⌧)� x
i

), (2.16)

where we have used that d⌧ = d4x �(4)(x
i

(⌧) � x
i

) and the dot denotes the derivative with
respect to the a�ne parameter ⌧ . Moreover, the disformal metric ḡ

µ⌫

is the induced metric
on the brane in eq. (2.2).

2.2.1 Norms and angles

Unlike a spacetime that is purely conformally related to the background spacetime, angles
as well as lengths are distorted in the disformal spacetime. The norm of a 4-vector aµ takes
the form (where we have transformed to field variables using T3)

ḡ
µ⌫

aµa⌫ = (T3 h(�))
�1/2

�
a2 + h(�)(@� · a)2� , (2.17)

where a2 ⌘ g
µ⌫

aµa⌫ .

16In this section we consider expressions as they appear in the present string realisation of the disformal
spacetime, for general expressions see appendix A.

17For branes of lower codimension we extra factors arise from the integration over the compact directions.
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The first term is simply a conformal transformation and the second term, which projects
the four-velocity along the gradients of the scalar field in addition to giving a conformal re-
scaling, is the purely disformal e↵ect of the coupling. For a cosmological scalar field, these
gradients will be time-derivatives at the level of the background.

For two 4-vectors aµ and bµ on a moving D-brane, the angle between their 3-vector
components, becomes

cos ✓̄ =
a · b+ h(�)(@� · a)(@� · b)

| a || b |
q

1 + h(�)
a

2 (@� · a)2
q

1 + h(�)
b

2 (@� · b)2
, (2.18)

where it is understood that the vector components are taken (i.e. a = ai, i = 1, 2, 3). There-
fore the angles depend on the gradients of the scalar field in an intricate way.

For the case of a slowly moving brane, the disformal lengths and angles on the world-
volume approach their standard values in the background spacetime, however on a fast mov-
ing or relativistic brane, the discrepancies are enhanced, thus an observer in the background
spacetime would notice lengths and angles associated with disformally coupled particles be-
coming more and more distorted as the brane speeds up.

2.2.2 Causality

Let us discuss how causality arises in this context. Firstly, motion in the higher dimensional
spacetime must also obey causality, and as objects with tension or mass per unit volume,
D-branes follow timelike trajectories. In particular, for a scalar field which parameterises the
motion of a brane in a single compact direction, we may define a Lorentz factor

� ⌘ 1p
1 + h(�)gµ⌫@

µ

�@
⌫

�
(2.19)

which must always be real. In the four dimensional disformal spacetime, a necessary condition
for causality is that the metric g

µ⌫

preserves Lorentzian signature for all values of the scalar
field and its derivatives; and then physical particles must follow trajectories for which ds̄2  0.
Note that in four dimensions, there are now two invariant speeds and indeed two copies of
the Lorentz group, one associated with the background spacetime and the other with the
disformal spacetime. Writing the disformal metric as

ḡ
µ⌫

=
g
µ�p

T3h(�)
[��
⌫

+ h(�) @��@
⌫

�], (2.20)

we see that for a time-dependent scalar field in a cosmological background, the components
are just

ḡ00 =
g00p
T3h(�)

[1 + h(�) @0�@0�] ⌘ g00p
T3h(�)

��2, ḡ
ij

=
g
ijp

T3h(�)
. (2.21)

The warp factor h > 0 always and due to causality in the higher dimensions, ��2 > 0 always.
Therefore the signature of the disformal metric is simply given by that of the four dimensional
metric g

µ⌫

, and so causality is never violated.18

18Note that this coincides with the standard constraints given in [103] for a general disformal metric as
in (1.1), namely

C(�, X) > 0, C(�, X) +D(�, X)X > 0, (2.22)
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To write down the local invariant speed for particles on the brane we take the special
relativistic limit of eq. (2.16), using eq. (2.17) with aµ = ẋµ, and ⌧ = t. We see that the
velocities of physical particles on the brane must obey

~v ⌘ d~x

dt

q

1� h(�)�̇2 = ��1, (2.23)

therefore if the brane is moving relativistically, causality in the disformal spacetime demands
that the velocities are strongly suppressed. On the other hand, the usual causal constraint
for physical particles, ~v  1, is approached in the limit that the brane is moving very slowly.
Hence we see that the invariant speed for particles on the moving brane is not constant but
instead becomes a dynamical quantity, determined by causal motion in the higher dimensional
spacetime. Indeed, from the form of eq. (2.17) we see that the disformal contribution is always
positive, thus a null trajectory on the brane, ā2 = 0, can never correspond to a spacelike
trajectory in the background spacetime, i.e.

a2 = �h(�)(@� · a)2. (2.24)

We also easily see from eq. (2.17) that a time-like norm on the brane can appear only more
time-like to us when h > 1. Thus null cones can only remain such or become squeezed from
our point of view.

Finally, let us consider two 4-vectors A
µ

and B
µ

on the brane. Let us call their corre-
sponding unit vectors a

µ

and b
µ

, and endow the contraction by the disformal metric with a
hat, so that the angle between the two vectors, as measured by an observer on the brane, is
cos ✓̄ = a ·̂ b. By inverting the relation (2.18), we can deduce the angle between the vectors
as measured by an observer in our disformally related space-time:

cos ✓ =
a ·̂ b�ph(�)/T3(@� · a)(@� · b)q

1�ph(�)/T3(@� · a)2
q

1�ph(�)/T3(@� · b)2
! a ·̂ a�ph(�)/T3(@� · a)2

1�ph(�)/T3(@� · a)2 ,

(2.25)
where the second form applies if a = b and again 3D components are understood. However,
the formula generalises to four-vectors as well, and then a ·̂ a = 0 for null and a ·̂ a = �1 for
time-like vectors. This provides another way to verify that the causality is preserved, since
from the second form in (2.25) we can immediately see that neither null nor time-like vectors
in the brane space-time can appear space-like to us. Thus null cones can only remain such
or become squeezed from our point of view.

Since as we have already said, we want to identify the scalar field that parameterises the
motion of the brane with dark energy, and the matter fields on the brane with dark matter,
we see that the causal behaviour of the dark matter particles is determined by the dynamics
of dark energy.

where X ⌘ gµ⌫@µ�@⌫�, and for our case the first condition amounts to h > 0 and the second to ��2 > 0,
where C(r) = D(r)�1 = h(r)�1/2. For diagonal metrics, these constraints can be deduced by writing the
metric in such a form as (2.20) and considering the various components. In [103] it is argued that if C does
not depend on X, then the second constraint can only be met if D depends on X. In our case, neither C
nor D depend on X, and yet the second constraint is ensured dynamically as outlined above. Even if the
functional form of the coupling would allow a sign flip of the metric, in physical set-ups that does not occur,
as has been previously discussed in the contexts a disformally self-coupled field [60, 61] and also disformally
coupled dark matter [9, 51].
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2.2.3 Geodesics

Extremising the action (2.16), we see that particles on the D-brane naturally follow geodesics
of the disformal metric and thus the geodesic equation becomes

ẍµ + �̄µ

↵�

ẋ↵ẋ� = 0, (2.26)

where the disformal Levi-Civita connection �̄µ

↵�

is torsion-free, and can be expressed in terms

of the usual connection �µ

↵�

associated with g
µ⌫

as follows:

�̄µ

↵�

= �µ

↵�

� h0

2h
�µ(↵@�)�+

�2

4
@µ�

✓
h0

h
g
↵�

+ 4hr
↵

r
�

�+ 3h0 @
↵

�@
�

�

◆
. (2.27)

The connection �̄µ

↵�

is the unique connection that is metric-compatible with the induced
metric ḡ

µ⌫

on the moving brane.
While the extra terms in eq. (2.27) could in principle lead to dangerous fifth forces if

visible matter follows geodesics of ḡ
µ⌫

, in the present work only dark matter lives on the
moving brane and therefore such forces, if they arise, would not impact the visible sector
directly, and are not a problem for local gravity tests. In the above expression the conformal
and disformal e↵ects arising from (2.2) are not precisely distinguishable: the two latter terms
are solely due to the disformal part, but that modifies the conformal term also by the �2-
factor. A general expression for the connection is given in the appendix A.3 which allows
one to unpick the various contributions.

2.2.4 Stress energy tensor

Let us consider now the energy density on the brane which will be important for cosmology.
The stress-energy tensor for disformally coupled matter is defined in the usual manner by

T
µ⌫

= � 2p�g

� (�p�ḡLDDM)

�gµ⌫
. (2.28)

For the point particle action (2.16), the stress-energy tensor is found to be

T
µ⌫

= ⇢u
µ

u
⌫

, (2.29)

where the four velocity, normalized as u2 = �1, is

u
µ

=
ẋ
µp�ẋ2

, (2.30)

and the energy density is given as

⇢ =
X

i

m
i

�(4)(xi � xi(⌧))

✓
1

T3 h(�)

◆ 1
4

s
ẋ2

g

h
1� h(�) (uµ@

µ

�)2
i� 1

2
. (2.31)

Comparing eq. (2.31) with the standard expression for the energy density of pressureless
matter, the “bare” energy density,

⇢
b

=
X

i

m
i

�(4)(xi � xi(⌧))

s
ẋ2

g
, (2.32)

we might expect that the disformally coupled fluid behaves quite di↵erently in cosmology to
a standard pressureless fluid. This is indeed the case, as will be explored in detail in what
follows. In particular, the inherent coupling of dark matter to dark energy in (2.31) leads to
a non-conservation of the dark matter energy density, which modifies its time evolution as
the universe expands.
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3 Disformal dark D-brane cosmology

In what follows, we consider the phenomenology of the disformal coupling for present day
cosmological evolution. For the sake of clarity and in order to illustrate the e↵ects, we focus
on the simplest Dark D-brane scenario, which can be easily generalised to more complex
cases, as we already mentioned. We consider a dark sector D3-brane, which contains some
type of matter that we identify with dark matter, disformally coupled to the scalar describing
the radial D-brane’s position today, as outlined before. The warp factor depends only on the
co-ordinate r, say, and we take the prototype types of warped geometries such as adS5⇥S5
and a constant warped factor, mimicking the close tip region of a KS throat. We would
like to stress that while moduli fields associated to the sizes of the internal space need to be
stabilised today (and preferably at early times to avoid the moduli problem [104]), there is
in principle no reason for D-branes’ position fields present in our universe (should we live in
a stringy D-brane world scenario!) to have reached their minima today. In particular, if the
associated scalar fields represent no harm in today’s cosmology, there is no reason to have all
D-branes sitting fixed in the internal space. We thus entertain the possibility that a moving
brane today can be responsible for one or both dark sectors in the universe and study the
implied phenomenology.

Firstly, in subsection 3.1 we derive the field equations of motion for the disformally
coupled components in cosmology. In subsection 3.2 we use analytical methods of dynamical
system analysis to study the phase space of the resulting cosmology, identifying the relevant
equilibrium points of the solutions and their stability in the two directly string-motivated
example geometries. The analytic considerations are in agreement with the numerical results
presented in subsection 3.3. A discussion on the present value of the vacuum energy and the
mass of the scalar field in our scenario is presented in section 3.4. Finally in section 3.5 we
explore an alternative example of disformal DBI cosmology.

3.1 Field equations

Since we are interested in cosmology, we now follow the usual e↵ective approach and couple
our probe Dark D-brane as described in section 2 to four dimensional gravity [30]. The total
action we consider is thus

S =
1

22

Z
d4x

p�g R �
Z

d4x
p�g


h�1(�)

✓q
1 + h(�)@

µ

�@µ�� 1

◆
+ V (�)

�

�
Z

d4x
p�ḡLDDM(ḡ

µ⌫

) , (3.1)

where the first term is the ordinary four-dimensional Einstein-Hilbert action, which arises
from dimensional reduction of the ten dimensional closed string sector action, 2 = M�2

P

=
8⇡G is the reduced Planck mass in four dimensions, which is related to the internal volume

as M2
P

= 2V (w)
6 /((2⇡)7↵04) = M2

s

V6/((2⇡)6⇡g2
s

), where V
(w)
6 =

R
d6y

p
g6 h, V6 = V w

6 /`6
s

and M
s

= `�1
s

.
This summarises the e↵ective 4-dimensional theory derived above: the second piece

which is the scalar field lagrangian, was deduced in section 2.1.1, the disformally coupled
matter lagrangian was discussed in section 2.1.2 (see eq. (2.13)) and the geometrical sector,
consisting of the usual Einstein-Hilbert term, was discussed in section 2.1.3.

The Einstein equations derived from (3.1) are

R
µ⌫

� 1

2
g
µ⌫

R = 2
⇣
T �

µ⌫

+ Tm

µ⌫

⌘
, (3.2)
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where the energy momentum tensors are defined as:

T (�)
µ⌫

= � 2p�g

� (S
�

)

�gµ⌫
, T

µ⌫

= � 2p�g

� (�p�ḡLDDM)

�gµ⌫
. (3.3)

Furthermore, the equation of motion for the scalar field becomes:19

r
µ

[� @µ�]� V 0 +
�

2

h0

h2
�
��1 � 1

�2
= �r

µ

[hTµ⌫@
⌫

�] +
Tµ⌫

2


� h0

2h
g
µ⌫

+
h0

2
@
µ

�@
⌫

�

�
. (3.4)

The energy momentum tensor for pressureless matter on the brane takes the form

T
µ⌫

= ⇢u
µ

u
⌫

, (3.5)

where for the point particle action in (2.16), u
µ

is given by (2.30) and the energy density ⇢
by (2.31). For the scalar field the energy momentum tensor turns out to be:

T �

µ⌫

= P
�

g
µ⌫

+ (⇢
�

+ P
�

)u�
µ

u�
⌫

, (3.6)

(3.7)

where

u�
µ

=
@
µ

�p�@
µ

�@µ�
(3.8)

and we have defined

⇢
�

=
� � 1

h
+ V , P

�

=
1� ��1

h
� V , (3.9)

with � being the Lorentz factor for the brane’s motion, given in (2.19).
Due to the non-minimal coupling, the individual conservation equations for the two

energy momentum tensors are modified. The conservation equation for the full system is
given in the usual fashion as r

µ

(Tµ⌫

�

+ Tµ⌫) = 0, and we have

r
µ

Tµ⌫

�

=


r

µ

(� @µ�)� V 0 +
�h0

4h2
�
��1 � 1

�2
�
@⌫� = Q @⌫� (3.10)

where we use (3.4) to define

Q ⌘ �r
µ

[hTµ⌫@
⌫

�] +
h0

4h
Tµ⌫ [�g

µ⌫

+ h@
µ

�@
⌫

�] . (3.11)

The non-conservation coupling Q is consistent with the general form for disformally coupled
matter derived in [51] and given in (A.8).

The matter sector is model in the following as a disformally coupled gas of point parti-
cles, with the stress energy tensor as given in section 2.2.4.

19Note that all equations can be easily extended to the case of a general lagrangian for the scalar field of
the form P (X,�), X = 1

2
(@�)2.

– 15 –



J
C
A
P
0
6
(
2
0
1
4
)
0
3
6

3.1.1 Cosmological equations

In order to study cosmology we now restrict to a flat Friedmann-Lamâıtre-Robertson-Walker
(FLRW) line element:

ds2 = �dt2 + a2(t)
�
dx2 + dy2 + dz2

�
. (3.12)

Since the field must be homogeneous in this background, the Lorentz �-factor becomes

� =
1q

1� h �̇2
. (3.13)

The Friedmann equations and the Klein-Gordon equation for the scalar field
become, respectively

H2 =
2

3
[⇢

�

+ ⇢] , (3.14)

Ḣ +H2 = �2

6
[⇢

�

+ 3P
�

+ ⇢] , (3.15)

�̈+
h0

2h2
(1� 3��2 + 2��3) + ��3(V 0 +Q0) + 3H��2�̇ = 0 . (3.16)

We further have the continuity equation for the scalar field and matter

⇢̇
�

+ 3H(⇢
�

+ P
�

) = �Q0�̇ , ⇢̇+ 3H⇢ = Q0�̇ . (3.17)

Finally, the non-conservation coupling for the background, Q0, is given by

Q0 = h⇢


3h0

4h
�̇2 � h0

4h2
+ �̇

✓
3H +

⇢̇

⇢

◆
+ �̈

�
. (3.18)

Solving away the leading derivative terms for � and ⇢ using eqs. (3.16), (3.17), this becomes

Q0 = �
2

4
h
⇣
V 0 + 3�H�̇

⌘
+ h

0

h

�
1� 3

4�
�

� + h⇢

3

5 ⇢ . (3.19)

Let us now consider some implications of this coupling.

3.1.2 The e↵ects of the coupling

In order to gain some understanding of the interaction between dark matter and dark energy,
we can compute Q0 in an alternative way. In an FRW background, the energy density for
pressureless particles on the brane given in (2.31) is:

⇢ = (T3h)
�1/4 ⇢

b

� , (3.20)

where the bare energy density ⇢
b

solves the standard continuity equation for uncoupled
matter yielding

⇢
b

= ⇢0 a
�3. (3.21)

Taking the first derivative of (3.20) using (3.21), we obtain the equation

⇢̇

⇢
+ 3H =

�̇

�
� h0

4h
�̇ , (3.22)
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which exactly matches the second of eqs. (3.17) with Q0 defined by (3.18). This also allows
us to write Q0 in a particularly compact form

Q0

⇢
�̇ =

d

dt
log
⇣ �

h1/4

⌘
. (3.23)

In conformally coupled theories, the bare energy density is modified by a field dependent
conformal factor [63]: we see quite neatly here that new disformal e↵ect is simply to modulate
the bare energy density by an additional factor � that involves the kinetic term of field as well.

We can gain some additional useful insight into the dynamics of the system by rewrit-
ing (3.22) in terms of an e↵ective equation of state for the disformal dark matter (DDM),

⇢̇

⇢
+ 3H(1 + we↵

DDM) = 0, we↵
DDM ⌘ � 1

3H

✓
�̇

�
� h0

4h
�̇

◆
= � 1

3H

Q0�̇

⇢
. (3.24)

The e↵ective equation of state simply quantifies how the dark matter dilutes with the expan-
sion. In particular we see from here clearly that if we↵

DDM < 0 the dark matter will redshift
slower than a�3 and faster in the opposite case, we↵

DDM > 0.
In a completely analogous way, we can consider an e↵ective equation of state for the

DBI field,

⇢̇
�

⇢
�

+ 3H(1 + we↵
�

) = 0, we↵
�

⌘ w
�

� ⇢

⇢
�

we↵
DDM, w

�

⌘ P
�

⇢
�

. (3.25)

If the energy in dark matter is boosted such that we↵
DDM < 0, we↵

�

will correspondingly receive
a positive contribution from the coupling term having less accelerating power. On the other
hand, if we↵

DDM > 0 then dark energy is draining energy from dark matter and thus we↵
�

receives a negative contribution from the coupling term having more accelerating power.
As can be seen from (3.24), the sign of the e↵ective equations of state depends on the

behaviour of �̇, h0 and �̇. Note first that �̇ will always start being positive as the brane starts
moving down the throat. In the case of a smooth throat such as the KS one, the brane will
eventually start slowing down till � ! 0. Now, the warp factor is always positive and it
grows as we reach the tip of the throat at � = 0, therefore the contribution from the warp
factor is always negative. On the other hand, the sign of �̇ depends on whether the brane is
moving down or up the throat.

Let us consider more explicitly the case we will be mostly interested in, an adS-like
throat, such that h / ��4. In this case the time-dependent combination h�1/4� which
appears in (3.23) is simply ��. The general solution to the continuity equation in eq. (3.24)

is then ⇢ / a�3(1+w

e↵
DDM). Due to the fact that ⇢

b

/ a�3, we see that �� / a�3we↵
DDM in

eq. (3.20). Thus the disformal coupling may either quicken or slow the dilution of dark
matter, depending on whether we↵

DDM is positive or negative, as explained above. Now,
despite the fact that � ! 0 as the brane moves towards the tip of the throat, the Lorentz
factor may in fact grow rapidly enough such that the overall e↵ect is that �� is growing with
time. This would imply that we↵

DDM in eq. (3.24) becomes negative due to the presence of
the coupling term, so that the dark matter energy density dilutes slower with the expansion
due to the energy interchange with dark energy. So, interestingly, while the the conformal
contribution ⇠ d log �/dt in eq. (3.24) tends to quicken the dilution of dark matter particles,
the disformal e↵ect ⇠ d log �/dt acts against the dilution and could, if it dominates, serve to
boost the energy density residing in dark matter.
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In the following it will be useful to define the total equation of state w which characterises
the expansion rate as

w
T

⌘ � 2Ḣ

3H2
� 1 =

P
�

⇢
�

+ ⇢
. (3.26)

This is the quantity that is relevant for observations, and is the ratio of the total pressure
content of the universe and its total energy density.

In a so-called scaling solution, where we↵
�

= we↵
DDM, the scaling components dilute at

the same rate and their fractional energy densities maintain a constant ratio. In this case,
we↵
�/DDM

= P
�

/(⇢
�

+ ⇢) = w
T

as we see from the second equation in (3.25). Accelerating

scaling solutions then occur when we↵
�

= we↵
DDM < �1/3. In the following we will show, using

the method of dynamical system analysis, that such solutions arise for the model at hand due
to the presence of the disformal coupling. Obviously, in the absence of the coupling, there
can be no accelerating scaling solutions, since then we↵

DDM = w
CDM

= 0 as seen in eq. (3.24).
In a DBI scenario where matter on the brane is not taken into account, w

T

⌘ w
�

becomes negative when the brane is relativistic and warping is strong, because in that case
the pressure p

�

! �V in (3.9), and acceleration is attained when w
�

< �1/3. Expansion is
of the power law type, while quasi de Sitter expansion, for which w ⇠ �1, can usually only
arise in the slow-roll limit of DBI, for then � ⇠ 1 and so ⇢

�

⇠ V ⇠ �P
�

in eqs. (3.9). In this
case the DBI dark energy field is almost constant as the universe expands.

On the other hand, in the present case where matter on the brane is taken into account,
w
T

is given by eq. (3.26), which reduces to w
�

only when matter is diluted away and thus
⇢ ! 0. One consequence of this is that if we↵

DDM is positive, we↵
�

can be pushed to �1 even
when w

�

> �1, i.e., dark energy can be constant as the universe expands. This occurs if
the purely conformal contribution ⇠ d log �/dt in eq. (3.24) is dominating over the disformal
contribution ⇠ d log �/dt. As mentioned above, the other possibility is if the growth of the
Lorentz factor is rapid enough, the disformal e↵ect can dominate and thus the energy density
in matter can be boosted, resulting in we↵

DDM becoming negative. For a brane moving towards
the tip of a warped throat, we expect that the Lorentz factor will grow very rapidly at first.
This could result in we↵

DDM < �1/3, i.e. the disformally coupled matter could contribute to
driving the expansion of the universe: this is the emergence of a scaling solution. Then, once
the strong warping forces the growth of � to become less rapid, the disformal dark matter will
be less boosted and might be diluted away, eventually giving rise to a standard DBI epoch.

So here we see the emergence of a new aspect to the usual DBI scenarios: the Lorentz
factor acts on ⇢

b

to slow down its usual dilution by a�3, allowing for the possibility of a
new epoch of accelerated expansion that is driven in part by the disformally coupled dark
matter on the brane. This could eventually evolve into the standard scenario in which matter
does not contribute to the expansion. In this way, the accelerated expansion of the current
universe can begin in a matter dominated era, during which the disformally coupled dark
matter fluid is active in initiating the acceleration of the expansion, due to its non-minimal
coupling to dark energy. This early accelerating era featuring an interplay between dark
matter and dark energy eventually gives way to a fully dark energy dominated era. In what
follows, these various regimes will be explored using both dynamical systems analysis as well
as numerical examples.

3.2 Phase space analysis

In this section we make use of a dynamical system approach to solve the equations of motion.
In this approach one considers a system of coupled di↵erential equations put into to first
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order form:

ẋ = f(x) . (3.27)

The vector x may have any integer dimension and its components span the phase space of the
same dimension. The evolution of the system is described by trajectories in this phase space.
The fixed points (or equilibrium points or critical points as they are sometimes called), are
those points in the phase space where the trajectories may stay constant. At a fixed point
x = x

c

then,

ẋ

c

= f(x
c

) = 0 . (3.28)

For example, if one of the components of x was H, all the fixed points would correspond to de
Sitter solutions with di↵erent constants H = H

c

. This illustrates two basic points: the fixed
points do not need to describe static situations (in the de Sitter example the scale factor is
evolving with time), and secondly how one sets up the phase space, i.e. chooses the variable
combinations that define x, determines very crucially whether the fixed points correspond
to interesting situations of the system at hand or not (if one would have chosen aH as the
variable instead of H, the fixed points would correspond to turnarounds or trivial solutions
instead of de Sitter ones). The linear stability of each fixed point with respect to small
perturbations defined by x = x

c

+�x, can be studied from the first order perturbed equations:

ẋ = f(x
c

+ �x) = f(x
c

) + F · �x+ · · · ) ˙�x = F · �x , (3.29)

where F is a matrix with the components F
MN

= @f
M

/@x
N

and the equality holds up
to the linear order. Now, in an orthogonal basis, F(o) is just a diagonal matrix consisting

of the eigenvalues and the above equation has the solution �x
(o)
N

⇠ exp (�
N

), where �
N

is

the eigenvalue corresponding to the orthogonal basis vector �x(o)
N

. Since the eigenvalues are
independent of the basis, we can compute them directly from F. Stability is then determined
from the eigenvalues as follows: a) if all the �

N

< 0 are negative, all the perturbations decay,
that is the fixed point is stable and we call it an attractor. b) If all �

N

> 0 are positive, any
fluctuation away from the fixed point will grow and take the system away from the solution
x = x

c

. This point is thus unstable and can be called a repellor. c) Finally, if some of the
eigenvalues are positive and at least one negative, the system is unstable when disturbed
in some direction in the phase space, while stable to disturbances in some other directions.
Such a solution is called a saddle point.

Let us then consider our specific system of cosmological equations in section 3.1.1. The
phase space is there two-dimensional: we can formulate the equations as three coupled first
order di↵erential equations (for the dark energy scalar field, its derivative, and the matter
density), subject to one constraint (given by the Friedmann equation). A convenient choice
of variables turns out to be

x ⌘ �p
3 (� + 1)

�̇

H
, z ⌘ 

p
Vp

3H
, ⌦ ⌘ 2⇢

3H2
. (3.30)

The Friedmann constraint (3.14) allows us to then to eliminate ⌦ as

⌦ = 1� x2 � z2 , (3.31)
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leaving us with physical space spanned by20 �1  x  1, 0  z  1. Furthermore, it is
convenient to use, instead of �, the variable

�̃ ⌘ 1

�
, 0  �̃  1 . (3.32)

The expansion rate corresponding to each parameter value is described then by the total
equation of state defined in (3.26),

w
T

= �̃x2 � z2 . (3.33)

In fact, to close the system of equations, we will need also �̃, and in this sense we have a
three-dimensional phase space. However, as seen from (3.31), it is only x (roughly speaking,
the kinetic energy contribution) and z (the potential energy contribution), that determine
the expansion rate. For this reason, it is useful to view the phase space in terms of these
variables considering �̃ as a parameter. This kind of approach was used also in refs. [91, 92].

After some algebra, using the equations of the previous section together with the defi-
nitions above, the evolution equations for the three dimensionless variables, in terms of the
e-folding time N = log a, can be brought into the following form:

dx

dN
=

3x

2

✓
(�̃ + 1)(2�̃ � 1)x2

�̃ (x2 + z2 � 1)� z2 + 1
+ �̃x2 � z2 + 1

◆

+

p
3�̃(�̃ + 1)x2

⇥
µ
�
(10�̃ � 3)x2 � 2�̃ + 3

�
+ z2((4� 8�̃)�+ (2�̃ � 3)µ)

⇤

8 (�̃ (x2 + z2 � 1)� z2 + 1)
, (3.34)

dz

dN
=

z

2

⇣
3 + 3�̃x2 � 3z2 �

p
3�̃(�̃ + 1)�x

⌘
, (3.35)

d�̃

dN
=

3�̃
�
1� �̃2

�
x2

�̃ (x2 + z2 � 1)� z2 + 1
+

p
3�̃(�̃ + 1)(1� �̃)�̃x

�
µ+ 3µx2 � z2(4�+ µ)

�

4 (�̃ (x2 + z2 � 1)� z2 + 1)
. (3.36)

To close the system, we need to to express the derivatives the warp factor and the potential
appearing in the field equations. For this purpose we have define the following quantities here:

µ ⌘ � h0

h
, � ⌘ � V 0

V
. (3.37)

In general, their evolution equations are

dµ

dN
= �

µ

p
3�̃(1 + �̃) , �

µ

=
h02 � h00h

2h2
, (3.38)

d�

dN
= �

�

p
3�̃(1 + �̃) , �

�

=
V 02 � V 00V

2V 2
. (3.39)

Our system can be closed, i.e. put into an autonomous form when the two �-factors can be
expressed in terms of the other quantities. If the functions were exponential, the �-factors
would vanish and thus both µ and � would be constants. However, this simplification is not
motivated by the geometries discussed above in section 2.1.3, though it might arise in some
suitable brane-world scenario. We briefly check the contents of the phase space with constant
� and µ in appendix B. In the following we study the case in which the warp factor and the
potential both have a power-law form. Then we will scrutinise the cases in which the powers
are those corresponding to an adS5 and constant-warped geometries.

20We assume positive potential energies for the field in the following. However the formulas would apply
also for negative potentials when extended to imaginary z.
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3.2.1 Power-law evolution

In this section, we take power law forms for the warp factor and the potential, which include
adS5 and a mass term potential:

h(�) = h0
4�m

�m

, V (�) = V0
n�4�n . (3.40)

The parameters V0 and h0 are dimensionless numbers and n and m are constants. A re-
striction we need to impose is that n 6= m; then we can solve µ and � in terms of the other
variables as

µ = m

✓
(1� �̃)z2

�̃�0x2

◆ 1
m�n

, � = �n

✓
(1� �̃)z2

�̃�0x2

◆ 1
m�n

, (3.41)

where we have defined
�0 ⌘ h0V0 , (3.42)

which turns out to be a very useful parameter. Here and in the following we take � � 0,
since the field corresponds to the brane’s position in the internal space.

Using the equations (3.34), (3.35), (3.36) above, together with the defini-
tions (3.40), (3.42), the evolution equations for the three dimensionless phase space variables,
in terms of the e-folding time N = log a, turn out as

dx

dN
=

x

8 (�̃ (x2 + z2 � 1)� z2 + 1)

"
12
⇣
�̃2x4+�̃x2

�
(�̃ � 2)z2+�̃+3

��(�̃ �1)
�
z2 � 1

�2�x2
⌘

+
p

3�̃(�̃ + 1)x
⇣
z2(2�̃m+ 8�̃n� 3m� 4n)

+m
�
(10�̃ � 3)x2 � 2�̃+3

�⌘✓ �0�̃x
2

(1� �̃)z2

◆ 1
n�m

#
,

dz

dN
=

z

2

"
p

3�̃ (�̃ + 1)nx

✓
�̃�0x

2

(1� �̃)z2

◆ 1
n�m

+ 3 �̃ x2 � 3z2 + 3

#
, (3.43)

d�̃

dN
=

�̃(1� �̃)x

p
3�̃ (�̃ + 1)

�
3mx2 �mz2 +m+ 4nz2

� ⇣
�̃�0x

2

(1��̃)z2

⌘ 1
n�m

+ 12(�̃ + 1)x

�

4 (�̃ (x2 + z2 � 1)� z2 + 1)
.

(3.44)

Interestingly, the structure of the phase space depends solely upon the product of the pa-
rameters defined in (3.40) which quantifies the energy scales of the potential and the warp
factor, �0 defined in equation (3.42).

General behaviour

Before looking into particular solutions for the powers in the warp factor and potential, we
can make some general statements about the possible fixed points of (3.43)–(3.44). Indeed,
the equations (3.43)=(3.43)=(3.44)=0, can be solved in various ways:

a) Standard matter dominated solution: in this case x
MD

= z
MD

= 0 ) !
MD

= 0 and
⌦
MD

= 1. This is valid for all values of n,m and �. The eigenvalues corresponding
to small perturbations around this solution are (32 ,

3
2). Therefore this solution is always

unstable.
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b) Potential dominated de Sitter solution: in this case x
dS

= ⌦
dS

= 0 so that z
dS

= 1 and
thus !

dS

= �1. From (3.43) and (3.43) one can check that in order for it to be a solution,
n and m must satisfy:

n�m  �2 , (3.45)

and the solutions have �̃
dS

= 1. The eigenvalues corresponding to this solution are (�3, 3),
and therefore the solution is always a saddle point.

c) Kinetic dominated solution: in this case x
kin

= ±1, z
kin

= ⌦
kin

= 0. From (3.43)
and (3.43) we see that in order to be a solution to these equations we need

n�m < 0 (3.46)

and therefore the only solutions have �̃ = !
kin

= 0. The eigenvalues corresponding to
this solution are 3(12 ,�1), thus this solution is a saddle point.

d) For more general solutions with 0 < z < 1, which will be the most interesting ones,
we can make some general statements and will look into two concrete examples below.
Solving (3.43) =0 gives rise to the following equation:

3(1 + �̃ x2) z
2

n�m � 3 z2(1+
1

n�m) + n�
1

n�m
0

p
3(�̃ + 1) �̃

x
�
�̃ x2

� 1
n�m

(1� �̃)
1

n�m

= 0 . (3.47)

One can check that if the last term in this equation vanishes, then we are back at one of
the previous solutions. Therefore, non-trivial solutions arise when the last term does not
vanish. We can then have the following situations

i) x = 0 or �̃ = 0. This case requires that

n�m = �2 (3.48)

and the solution to (3.47) can be easily found (see below).

ii) For general values of x and �̃, the solution to (3.47) is more complicated depending
on the precise values of n and m.

In what follows we consider two explicit examples of the classes of solutions above,
corresponding to a brane moving down an adS5 throat in a mass term potential and a
constant warp factor, with an inverse law potential, where the brane moves towards the
bulk geometry. This latter case can be seen as an example of a moving brane in a large
volume scenario.

3.2.2 The adS5 warp factor

Let us consider first the adS case where the warp factor goes like h ⇠ ��4. For the potential we
consider a mass term, that is we setm = 4, n = 2, so n�m = �2. From the general discussion
above we see that the system contains classes (a), (b), (c) of fixed points. Furthermore, within
class (d) we have the following fixed points:
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Class (d): 0 < z < 1. In this example, the condition dz/dN = 0 from eq. (3.47)
reduces to

3
�
1 + �̃x2 � z2

�
+ 2 z

s
3(1� �̃2)

�0
S(x) = 0 , (3.49)

where S(x) = sign(x). The solutions to this equation are

z± =
1p
3�0

h
S(x)

p
1� �̃2 ±

p
1� �̃2 + 3�0 (1 + �̃x2)

i
. (3.50)

Thus we see that physical solutions exist only when the field is rolling down the throat,
S(x) = �1, for the positive branch since otherwise either z < 0 or the matter energy density
is negative since z > 1. It is di�cult to find the most general solution for x. However, we can
focus on the special case �̃ = 0, corresponding to an ultra relativistic regime, (d)(i) above.
In this case we obtain the following fixed points:

• Matter scaling solution with xDDM = 0. For this solution we have

xDDM = 0 , zDDM =
�1 +

p
1 + 3�0p
3�0

, ⌦DDM =
2

1 +
p
1 + 3�0

. (3.51)

The total equation of state parameter approaches minus unity as one increases �0,

wDDM = �
�
1�p

1 + 3�0
�2

3�0
. (3.52)

The eigenvalues for this fixed points are
 
�1 + 3�0 �

p
1 + 3�0

�0
,
3
�
1 + �0 �

p
1 + 3�0

�

2�0

!
. (3.53)

Requiring these to be negative, we find that this solution is stable for 0 < �0 < 1.
Otherwise it is a saddle point. Moreover, we are interested in accelerating solutions,
which means that the total e↵ective equation of state (3.52) for this solution should
satisfy wDDM < �1/3. This requires �0 > 1. Therefore we see that the solution is not
an accelerating attractor for 0 < �0 < 1, however it could be a viable matter scaling
attractor when �0 is small enough, such that w ⇠ 0. The reason this needs to be small
is that large-scale structure would be too di↵erent from the ⇤CDM case if dark matter
was not e↵ectively nearly pressureless during the structure formation era. As we will
see in the numerical study below, this fixed point is typically reached as an intermediate
stage in a cosmic evolution which is close to ⇤CDM cosmology.

• Kinetic solution with ⌦
DBI

= 0. For this ultra-relativistic solution the matter contri-
bution vanishes and

x
DBI

= �
s

2

1 +
p
1 + 3�0

, z
DBI

=
�1 +

p
1 + 3�0p
3�0

, ⌦
DBI

= 0 . (3.54)

The total equation of state is the same as for the matter-scaling solution above,

w
DBI

= �
�
1�p

1 + 3�0
�2

3�0
. (3.55)
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Now we obtain for the eigenvalues of this fixed points:
 
�1 + 3�0 �

p
1 + 3�0

�0
,
3
�
2�p

1 + 3�0
�

1 +
p
1 + 3�0

!
. (3.56)

From this we see that this solution is a saddle point when the previous one is an
attractor, that is when 0 < �0 < 1. Moreover, when �0 > 1, the solution is an
accelerating attractor with w

DBI

< �1/3, while the previous one is a saddle point for
these values of �0.

In summary, for the adS case with a mass term we have found two accelerating attractors
for the system: a nonrelativistic potential-dominated de Sitter solution (class (c)), and an
ultra-relativistic DBI solution (class (d)-(i)).

3.2.3 Constant warp factor

In regions both asymptotically far in the bulk and very near to the tip of a Klebanov-
Strassler throat, the warp factor can be approximated by a constant. This provides the
simplest example of a nontrivial disformal relation, where both C and D are constants. In
this case m = 0. Following the general discussion above, we know that this case has class
(a) of fixed points. Furthermore, it posses an accelerated saddle point, class (b) of solutions
only for n = �2, that is, an inverse power law potential. Moreover, for all n < 0 it posses
class (c) of fixed points as well. Regarding class (d), we have the following fixed points:

Class (d): 0 < z < 1. Focusing again in class (d)-(i), we need n = �2. Then eq. (3.47)
yields for z

z± =
1p
3�0

h
�S(x)

p
1� �̃2 ±

p
1� �̃2 + 3�0 (1 + �̃x2)

i
. (3.57)

From here we can see that now the physical solutions correspond to a brane moving towards
the bulk geometry, that is S(x) = +1 and furthermore we should pick the +-branch of the
solution such that z > 0. Focusing again in the ultra-relativistic limit �̃ = 0 we consider the
cases when either the matter contribution or the kinetic contribution to the expansion are
negligible.

• Matter scaling solution xDDM = 0. This fixed point and its total equation of state
are given by the expressions (3.51) and (3.52). However, now the eigenvalues of the
perturbation matrix turn out to be

✓�1� 3�0 +
p
1 + 3�0

�0
,
3

2

◆
, (3.58)

thus this solution is never an attractor when �0 is positive, but always a saddle point.

• Kinetic scaling solution with ⌦
DBI

= 0. In analogy with the above, this fixed point
and its total equation of state are given by the expressions (3.51) and (3.52), but now
the stability properties di↵er because of the di↵erent warp factor and potential. From
the eigenvalues ✓

�1 + 3�0 �
p
1 + 3�0

�0
,�3

◆
. (3.59)
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Fixed point Stability when Stability for w

m = 4, n = 2 m = 0, n = �2

(a) Matter domination Unstable Unstable 0

(b) de Sitter solution Saddle Saddle �1

(c) Kinetic domination Saddle Saddle 1

(d) Matter scaling solution Attractor i↵ 0 < �0 < 1 Saddle �(1�
p
1+3�0)

2

3�0

(d) Kinetic scaling solution Attractor i↵ �0 > 1 Attractor �(1�
p
1+3�0)

2

3�0

Table 1. Summary of the fixed points in the two examples considered.

we see that this solution is always an attractor. The di↵erence with the m = 4, n = 2
case is that in that case, the matter scaling solution is a saddle point and the kinetic
solution an attractor in the accelerating case �0 > 1, while in the present case, we find
that for all �0 > 0 the matter scaling solution is a saddle point, while the kinetic scaling
solution is an attractor.

The fixed points and their stability properties in the two examples considered above
are summarised in table 1. In the dynamical system analyses of DBI cosmologies, scaling
solutions have been found in the literature [45, 46, 90–93]. However they described nonac-
celerating expansion with w

T

= 0. The possibility of scaling with w
T

6= 0 appears only
when a coupling is taken into account (recall our discussion in section 3.1.2). However, the
phenomenological coupling terms considered in [96] did not give rise to new accelerating
fixed points, though in some cases the presence of the coupling could modify the stability
properties of the fixed points.

3.3 Numerical solutions

In this section we investigate the system (3.43)–(3.44) numerically in order to confirm the
results we expect from the considerations of section 3.1.2 and the dynamical system analysis
exposed in section 3.2 above. We also uncover some of the typical details of the evolution
as the system converges to its asymptotic state described by the attracting fixed points.
Our aim is to construct realistic cosmological scenarios starting from a standard matter
dominated era21 (for simplicity, as the new e↵ects appear only at late time cosmology, we
have omitted the radiation contribution to the early expansion of the universe) and ending in
an accelerating era. For purposes of illustration we use an adS geometry for the warp factor
with a quadratic potential for the scalar field. Thus we set m = 4 and n = 2 in what follows.

When we start integrating the equations of motion with matter dominated initial con-
ditions, we generically end in a stage where the DBI field has a significant impact to the
dynamics. This was expected since the matter dominated solution is a repeller in all the
models at hand (class (a) above). We also generically find the universe ending in an acceler-
ating phase described by the DBI fixed points when �0 > 1. For the quadratic adS model,
we found two of these points: an attractor and a saddle point. A typical evolution is such
that the universe evolves via the saddle point (3.51) into the attractor (3.54). Examples are
shown in figure 1, for two values of the parameter �0. Since the universe typically spends a

21An alternative scaling scenario starting from a scaling matter era will be briefly described in section 3.5.
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Figure 1. The evolution of the fractional energy densities and the total equation of state as functions
of the e-folding time N = log a for �0 = 10 (left panel) and �0 = 100 (right panel). The equation
of state is the dash-dotted purple line that settles to its attractor value eq. (3.52). The black dotted
line is the ⌦ for matter that drops first from the matter-dominated value ⌦ = 1 to the saddle point
solution value given by eq. (3.51) and then to zero as the universe eventually reaches the attractor
described by eq. (3.54). At the latter transition, the kinetic energy contribution of the field, x2,
plotted as the blue dashed line, becomes important. The potential energy contribution z2, plotted as
the red solid line, retains its value through the two latter stages.

few e-folds in the saddle point stage and in a realistic case the acceleration has begun only
recently, the prediction is that our universe resides (or rather, is reaching) the accelerating
scaling saddle point. Interestingly, the equations of state (3.52) and (3.55) for these two
physically distinct fixed points coincide, which means that judging from the expansion of the
universe alone, they cannot be observationally distinguished. For the fixed point (3.51) there
is a non-negligible contribution from the disformally coupled dark matter, and for the fixed
point (3.54) a non-negligible contribution from the kinetic energy of the scalar field.22

The various equations of state defined in section 3.1.2 provide another aspect from which
to understand the workings of the disformal coupling. In addition to the total equation of
state (3.33), one has the usual definitions for the equations of state of the individual fluids,
given in terms of our phase space variables as

wDDM = 0 , w
�

=
�̃x2 � z2

x2 + z2
. (3.60)

In the presence of the nonminimal coupling however, the scaling of the energy components
is defined by the e↵ective equations of state that now can be written as

we↵
DDM =

1

3

2

41
�̃

d�̃

dN
±
s

3(1� �̃2)

�0
z

3

5 , we↵
�

= w
�

� 1� x2 � z2

x2 + z2
we↵
DDM , (3.61)

where the positive sign should be chosen now in the former equation, and the derivative
of �̃ is given by eq. (3.44). The time evolution for these quantities is shown in figure 2.
Because �� grows with time, there is energy transfer from the scalar field to dark matter
that makes the latter dilute slower, as is discussed in section (3.1.2). During the scaling era,

22The reason that they still can have identical expansion rates is that neither dust-like matter nor the
kinetic energy of the scalar field, when suppressed by the relativistic Lorenz factor, contribute to the e↵ective
pressure, as seen from eq. (3.33).
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Figure 2. The time evolution of the various equations of state as functions of the e-floding time
N = log a when �0 = 50. In the left panel the kinetic energy x is initially small and the w� = p�/⇢�
(purple dash-dotted line) as well as the e↵ective equation of state for the field we↵

� (blue dashed line)
are essentially w� = �1 until the coupling begins to modify the dynamics. The e↵ect of the the
coupling is to increase the we↵

� and to lower the e↵ective equation of state for dark matter we↵
DDM

(black dotted line) so they both track the total equation of state w (red thick line) during the scaling
epoch. When this epoch ends, the dark matter dilutes faster than dark energy, but as seen from the
plot, the coupling continues to have an e↵ect on the DDM-component. In the right panel, initial
conditions are set such that the kinetic energy x is significant and thus w� > �1. In such a case the
universe evolves to the kinetic attractor soon after the coupling kicks in, before the scaling solution
is reached.

by definition, w
T

= we↵
DDM = we↵

�

. Even when this era ends, the coupling continues to slow

down the dilution of the DDM energy density, so that we↵
DDM remains at a constant negative

value. In the right panel of figure 2, we show an example of a case when initially the energy
density of the field is not potential-dominated. Then the kinetic scaling era begins shortly
after the coupling becomes e�cient, and the scaling behaviour never quite takes place. Such
initial conditions require the coupling and the kinetic contribution to both become significant
around the present epoch, and are thus less generic than the initial conditions that allow some
e-folds of scaling. An interesting detail to observe is that due to the fact that we have set
the scalar field evolving as an initial condition, the coupling is e↵ective from early on: in
particular, as suggested in section (3.1.2), it forces the energy density of the DBI field to
remain constant, i.e. we↵

�

= �1 even though w
�

> �1. This is because the e↵ect of the
coupling is to produce an energy flow from dark matter to dark energy, which contributes a
very tiny positive we↵

DDM: when we↵
�

= �1, we↵
DDM = (1 + w

�

)⇢
�

/⇢ as seen from (3.25).

To get a better understanding at the dynamics behind this evolution and the role of
initial conditions, we plot the variable x and the Lorenz factor � as functions of the scale
factor in figure 3 for di↵erent initial values of �. We start with a small x and z: for a fixed
�, the initial value of z determines when we enter into the saddle point, and the initial value
of x when into the attractor. We see that the transition from the accelerating fixed point to
another occurs when x reaches its critical value given by eq. (3.54). The more nonrelativistic
� is, the longer this will take. If the brane starts moving very slowly from a virtually non-
warped region in the early universe, after reaching the matter scaling fixed point the universe
can stay there for in principle arbitrary number of e-folds before the brane has reached close
enough to the tip of the throat to end the matter scaling behaviour. On the other hand, if
the initial conditions are relativistic enough the x-variable grows with a “saturated” rate also
during matter dominated epoch and there is no di↵erence in the observational predictions.
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Figure 3. The evolution of the “kinetic term” x (left panel) and the brane Lorenz factor presented
via log �̃ (right panel) as functions of the scale factor a when �0 = 30. The results are presented for
five di↵erent initial conditions (set at a = 10�12) as given in the legend of the right panel. We see
that the x, initially set to a small value, grows until it reaches the attractor value given by eq. (3.54).
For su�ciently non-relativistic initial condition (�̃ very close to unity), x can be frozen during the
matter dominated era but starts growing as the universe enters into the accelerating scaling saddle
point solution eq. (3.51). For su�ciently relativistic initial conditions (�̃ very close to zero) this does
not occur. During matter dominated era � is constant, but begins to evolve at a constant rate towards
relativistic values � ! 1 as the accelerating era begins. When the attractor is reached, this rate
changes. The rate is given by �0 in such a way that �� ⇠ a�3w where w is the equation of state in
eq. (3.52), as expected from considerations in 3.1.2.

In the right panel of figure 3 we see that the scaling of the �-factor, which is identical for
all initial values during the matter epochs, changes only when the attractor is reached. The
scaling is such that �� ⇠ a�3wT , as expected already from the considerations in section 3.1.2.

Finally we check how cosmology depends upon the parameter �0, which is the sole
theoretical quantity that controls the evolution. We illustrate this in figure 4 by plotting
x and ⌦ as functions of the scale factor for �0 of a few di↵erent orders of magnitude. In
complete agreement with the results of the analytic study in section 3.2, we find that the
�0 = 1 is the dividing value above which the universe accelerates and eventually ends with
⌦ = 0, and below which the universe decelerates forever and ⌦ retains a constant finite value.

3.4 The vacuum energy scale today

We pause here to discuss the value of the mass and expectation value of the dark energy field
today. As we now argue, the adS5 case with a quadratic potential turns out to be the most
appealing model which can provide a tantalising alternative to explain the smallness of dark
energy density today. As we have seen, the interesting solutions in this case require �0 > 1.
This is given in terms of the ‘t Hooft parameter �

adS

and the mass of the field, related to V0.
As we have discussed, our approximations are valid so long �

adS

� 1. Now, the observed
value of the Hubble rate H today is H ⇠ 10�33 eV, corresponding to the energy scale of
V
vac

⇠ (10�3eV)4. This can be translated into the condition that (m)(�0) ⇠ 10�60. Since
we need �0 > 1, the smallest value that the mass of the disformal quintessence field can be
is of order (m)2 & 1/�

adS

. Therefore for reasonable values �
adS

⇠ 105�10, the mass of the
scalar field does not need to be small.

On the other hand, the Disformal Dark D-brane is moving towards the tip of the throat
at � = 0. Therefore, an observed value of the brane’s position today of order �0 & 10�60

(assuming e. g. a mass of the field around the Planck scale) simply tells us that the brane is
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Figure 4. The evolution of the “kinetic term” x (left panel) and ⌦ (right panel) as functions of the
scale factor a for di↵erent values of �0 (as given in the legend of the right panel). For �0 larger than
unity, the evolution of x is similar to as depicted in figure 3, and ⌦ behaves as depicted in figure (1).
For the limiting value �0 = 1, for which the attractor value of the equation of state is w = �1/3,
the x-term freezes and it occurs that the matter scaling persists. When �0 < 1, the attractor value
of the equation of state is non-accelerating w > �1/3 and instead of growing the x-term begins to
decay when the matter scaling solution is reached. The solution is now an attractor and ⌦ remains
the constant given in eq. (3.51).

exceedingly close to the tip of the throat today! In the very simplest model (using the adS
approximation for the warp factor) studied here, the brane reaches the tip of the throat at
� = 0 only asymptotically, spending an infinite amount of time getting ever closer with ever
slower pace as � ! 1. Therefore a tiny but nonzero value of the field today does not require
any coincidence or fine-tuning. We should however point out that the profile of a realistic
Klebanov-Strassler throat smoothens to a constant at the tip of the throat, so the warping,
though huge, does not grow infinitely. What this may imply is that the universe does not
accelerate forever since the field may eventually reach the very tip.

Various comments are in order here. First of all, we would like to stress that in our
scenario we are not interested in addressing the cosmological constant problem. That is,
the enormous mismatch between the observed value of the vacuum energy and the expected
value of the cosmological constant from theory. Instead we take another widely studied route
in which one assumes that the cosmological constant is either screened or prevented from
gravitating by some mechanism, meaning that it is e↵ectively set to zero by these e↵ects.23

Therefore, we are interested only in explaining why the observed vacuum energy is not exactly
zero due to the presence of a dynamical scalar field.

Conceptually, dynamical dark energy models can improve this problem because in prin-
ciple dark energy can evolve over an enormous range of scales. However, in practise it usually
turns out that an incredible amount of fine-tuning is required even from these dynamical mod-
els, usually on the mass of the dark energy field, to obtain the correct scale: the scalar mass
must be of the order m ⇠ 10�33 eV. One arrives at this conclusion in standard quintessence
models, since there the slow roll conditions generically imply a vacuum expectation value for
the scalar today �0 & M

P

. This is often referred to as the fine-tuning problem of dark energy.
In our present Dark D-brane scenario, however, the usual slow roll approximation cannot

be used, and therefore, such a conclusion does not apply. In fact, in the DBI case, the
potential term in the equation of motion for the scalar field is suppressed by the Lorentz

23The cosmological constant will contain the sum of constant vacuum energies of all the fields in the theory,
including classical contributions such as possible constant terms in the scalar potential.
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factor (and so is the coupling term in our Disformal Dark D-brane model). Moreover as we
have seen, so long as �0 > 1 our solutions are valid, even for steep scalar potentials, just as
in the DBI inflationary scenario. One can see this explicitly from the analogue of the slow
roll conditions in DBI inflation, which require [105]:

✓
V 0

V

◆2 V h

2
� 1 . (3.62)

Plugging our power law expressions for the potential and warp factors, this condition becomes

(�)n�m�2 �0 � 1 . (3.63)

For the case we have been considering n�m = �2, this condition translates into

� ⌧ (�0)
1/4 , (3.64)

which is satisfied for the very small values required to match the vacuum energy today as
described above. Combining this with the condition on the dark energy scale today implies

m � 10�60(�0)
�1/4 , (3.65)

confirming again that the mass of the scalar field does not need to be small, as in standard
quintessence models.

3.5 An alternative scaling scenario

In the example scrutinised in detail above, the universe enters into an accelerating scaling
attractor. However, one could also employ the matter scaling solution to alleviate the coin-
cidence problem in the past in such a way that the during the matter dominated era there
was a constant contribution from the DBI field energy density to the expansion rate. Then
the corresponding equation of state should of course be nearly enough vanishing in order to
not spoil the agreement with observations. Indeed, by considering low enough values for �0

we can make w
T

arbitrarily close to zero, and this should work robustly since when �0 < 1
the disformal matter scaling solution is an attractor in the phase space. An issue then arises
however, is that the phase space trajectory will get stuck to this fixed point and never enter
into an accelerating regime. This can be easily changed, but that requires going slightly
beyond the very simplest minimalistic set-up we have focused upon above.

Here we will only briefly explain how the alternative scenario can be naturally realised,
and provide a numerical proof of example to confirm it; more detailed study of the alternative
scaling scenario is beyond the scope of the present paper. In this scenario, the moving brane
has been sliding towards the throat through the history of our universe, resulting in a slightly
modified e↵ective behaviour of dark matter and a scaling of the energy density that is identical
to that of dark matter. This energy density will become a constant and our universe will
begin to accelerate as a consequence of the moving brane reaching deep enough into the throat
where the geometry and the e↵ective potential for the DBI field may need to be modified.

When in the disformal attractor, the scalar field is rolling down the potential, in other
words, the moving brane is approaching the tip of the throat and the Lorentz boost factor is
increasing towards infinity. At some point, as is well known, the adS approximation h ⇠ ��4

will break down. In the KS geometry the warp factor will become roughly constant very
close to the tip. On the other hand, the quadratic approximation for the potential may
also receive significant corrections. What this generically seems to imply for the dynamics
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Figure 5. The cosmological evolution in the alternative scaling scenario of section 3.5 when the
potential becomes linear (left panel) and quartic (right panel) for small field values. In both cases, we
have set �0 = 0.05. The equation of state is the dash-dotted purple line that begins from its slightly
negative attractor value eq. (3.52) and settles to w = �1. The black dotted line is the ⌦ for matter
that drops from the disformal scaling value given by eq. (3.51) to zero as the field domination begins.
The potential energy contribution z2, plotted as the red solid line, becomes dominant as the de Sitter
stage is reached. The kinetic energy contribution of the field, x2, plotted as the blue dashed line,
remains negligible in this scenario. The only di↵erence between the examples is that in the case of
asymptotically linear potential, the transition to de Sitter expansion is slightly smoother.

is that the de Sitter solution becomes an attractor. Thus, as corrections become important
the universe will begin to accelerate. Just to illustrate such a case, we modify the potential
in such a way that at a suitable point the quadratic slope changes, in the examples shown
in figure 5, to either linear or to quartic. This is of course a crude way to take into account
the possible corrections to the simplest possible set-up, and it should be studied in more
generality whether the outcome we find here persists in more realistic cases. Investigations of
dynamics with more complicated potentials and warp factors are however outside the scope
of the present study.

4 Conclusions

In this article we have proposed and explored the cosmological implications of an intuitive
geometric picture in string theory compactifications, where the complete dark sector of the
universe may be due to a “hidden sector” D-brane (or stack of D-branes). In this picture,
dark energy emerges from the oscillations of the open strings transverse to the brane, dark
matter is due the massive oscillations of the open strings along the brane (DIMPs), and
possible dark radiation is due to the massless open string oscillations along the brane.

Dark energy is thus associated to the brane’s motion in the compact six dimensional
space, which in the four-dimensional theory is described by a scalar field with non-standard
(DBI) kinetic terms. We allow the moving brane to carry matter and therefore dark matter
(and/or dark radiation) is associated with these matter fields living on the brane, which couple
in a precise way to dark energy. In particular, they couple via a disformal relation [5], thus
giving an explicit realisation of this relation and a new framework to construct disformally
coupled quintessence models in string theory.24

24Phenomenological models of disformal quintessence have been explored recently in a handful of papers:
to highlight one interesting result, the disformal coupling was discovered to feature a new kind of e�cient
and largely model-independent screening mechanism [51]. Moreover, an stringy inspired coupled quintessence
model was proposed in [80].
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As has been shown in the literature, the coincidence problem can be relaxed in coupled
models of DM and DE, in as much as an interchange (i.e. coupling) between these two forms
of energy can explain why they are of the same order today (see [3] for a review). Moreover,
whereas new forces between DE and normal matter are heavily constrained by observations
(e.g. in the solar system and gravitational experiments on Earth), this is not the case for
DM. A resolution of the “cosmic coincidence” problem then implies that energy densities of
DE and DM dilute with the same rate for a significant period of the universe’s expansion.
Therefore the Disformal Dark D-brane scenario we propose can alleviate this problem and
can also explain why a coupling among DE and standard model fields is suppressed, since
the Disformal Dark D-brane is a hidden brane and thus “dark” by construction.

We have considered the simplest Dark D-brane model in terms of a probe Dark D3-
brane moving in the throat of a warped compactification in type IIB string theory, and
have explored the resulting homogeneous cosmological evolution. We studied the system of
equations in terms of a set of dimensionless and bounded phase space variables in order to
conveniently undertake a dynamical system analysis. We focused on a power law form for
the warp factor and the potential and for this case derived four classes of fixed points, (a,
b, c, d), from which only one is independent of the values of the parameters (class (a)).
The other fixed points depend upon the value of the exponents in the power law expressions
for the warp factor and the potential, namely (n � m) (see section 3.2). Furthermore the
most interesting class of fixed points, class (d), which contains scaling accelerating solutions,
turned out to depend upon a single dimensionless parameter �0, the ratio of the scales of the
potential and of the warp factor. This clarifies how the cosmological dynamics are invariant
under a given class of rescalings of the fields and the parameters.

Within this interesting class of fixed points, we have studied explicitly two representative
cases: firstly, we considered a Disformal Dark D-brane moving in an adS5 throat, which can
be seen as an approximation to a mid-throat region in a KS geometry with a quadratic
potential. Secondly, a Disformal Dark D-brane moving in a geometry with a constant warp
factor, which can arise as a very near-tip KS region or simply as an unwrapped region in a
large volume scenario, with an inverse power law potential. In the ultra-relativistic limit, we
found two di↵erent types of disformal scaling fixed points for the two cases (see table 1). At
one of these points, the (disformally coupled) dark matter contributes a constant fraction to
the expansion rate (the matter scaling solutions in section 3.2). At the other, the matter
sources contribute negligibly to the energy density (the kinetic scaling solutions), and yet
this fixed point exhibits precisely the same total equation of state as the previous fixed point.
The stability properties of these two types of fixed points for the adS5 and constant warp
factor cases depends on the value of �0, and di↵ers for both cases as follows (see table 1): in
the adS5 case for �0 > 1, the matter scaling fixed point is an accelerating saddle point, while
the kinetic scaling solution is an accelerating stable fixed point. Instead, for the constant
warp factor with inverse power low potential, the matter scaling solution is a saddle point
while the kinetic fixed point is an attractor for all positive values of �0 > 0.

Finally, we confirmed numerically all of the results which were expected from the ana-
lytic and dynamical system analysis in the adS5 case in section 3.3. In summary, we found
that a generic background expansion is such that presently the universe is undergoing an
accelerating scaling expansion, but asymptotically becomes devoid of matter while still ex-
panding with the identical accelerating rate. We also presented an alternative application of
the new scaling solution, where a de Sitter solution is reached after a scaling matter era.
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As we discussed in section 3.4, the adS5 case suggests a compelling geometrical expla-
nation for the smallness of DE today. Since the value of the quintessence potential today is
required to be very small, V

vac

⇠ (10�3eV)4, in terms of a quadratic potential, this implies
that (m�0) ⇠ 10�60M2

P

. Since the brane is moving towards the tip of the throat at exactly
� = 0, the smallness of the vacuum energy today can be simply translated into the fact that
today, the Disformal Dark D-brane is very close to the tip of the throat, i.e. at a field value
of �0 & 10�60M

P

. Therefore, the mass of the DBI quintessence field does not need to be fine
tuned to be extremely small as in standard slow roll quintessence.

Our Disformal Dark D-brane proposal has several natural advantages with respect to
early inflation DBI models. Firstly, because it describes late time acceleration of the universe,
there is no reason for the moving D-brane to be empty; whereas in early universe inflation
models we can expect the matter to have diluted away. Secondly, several standard problems
of DBI inflation, or early universe DBI acceleration, do not arise, such as the Lorentz factor
becoming too large and thus causing problems with back reaction [37] and overly large non-
Gaussianites. Finally, as we already mentioned, there is in principle no reason for the D-brane
position to have reached its minimum, as long as it does not cause problems for cosmology.
Therefore, while we have not yet produced a completely realistic coupled DM/DE model
from the Disformal Dark D-brane scenario, it seems a very promising avenue to explore new
ways to test higher dimensional theories, in particular, string theory.

There are clearly several steps that need to be carried out in order to assess whether the
Dark D-brane picture can indeed explain the observed dark sector of our universe. Firstly,
from a phenomenological point of view, in order to check the cosmological viability of the
model the next step is to explore the physics of structure formation, since the disformally
coupled nature of dark matter can result in new phenomenology at the linear and nonlinear
levels. This may allow us to constrain the models with high precision and to distinguish them
from other alternative explanations of the dark sector. Preliminary studies of cosmologies
with disformal couplings have uncovered a very rich structure in the disformally coupled
perturbation equations for clustering of dark matter (compared to the conformally coupled
ones) [9, 51, 106, 107], but they have not been implemented in the type of models presented
here. The massless modes residing upon the Dark D-brane would also be worth investigating
in detail as they will contribute possible dark radiation to our four-dimensional cosmology.
What again distinguishes this proposal from other models of the dark sector is that the
radiation will be disformally coupled, entailing novel phenomenology that can provide the
possibility to test Disformal Dark D-brane cosmology with experimental data.

From the theoretical point of view, our proposal requires a more rigorous construction,
possibly including the observable sector as well as the implications (if any) for other stabilised
moduli, and a compelling argument for the hidden sector brane to be moving today, although
this may require a better understanding of the reheating mechanism in D-brane inflation.

One immediate question which arises in our present model is the choice of a mass
term potential. In principle one could argue for possible symmetries which justify such a
choice [30, 105]. However, one may expect that other terms should generically appear [100].
An investigation of solutions for more general potentials and warp factors is under current
investigation. A further avenue to pursue would be the possible unification of the early and
late time acceleration in a string theory set up. For example, an interplay between open
and closed string moduli seems to be a natural possibility, namely early time acceleration
originated from the closed string sector, while late time acceleration originated from an open
string sector given by our Dark D-brane world scenario. We leave the study of these and
other interesting ideas for future investigation.
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The history of physics is a testimony to the elegance of Nature, as with the passing
of time ever more apparently unrelated phenomena are found to be unified within a deeper
structure. String theory suggests that quantum field theory and gravity may be unified as
distinct phenomena arising from the oscillations of a single object, the string, in a higher
dimensional spacetime. In line with this principle, the results of the current work suggest
that the “great unknowns” of cosmology, namely dark energy, dark matter and possibly
dark radiation, may all be but manifestations of di↵erent aspects of D-brane fluctuations. It
remains to be seen whether this picture is supported by the precision data of cosmological
large scale structure, and whether such data may guide us towards constructing more detailed
scenarios, providing new avenues for experimental tests of string phenomenology.
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A Disformalities

• Metric, inverse, determinant and connection: in terms of general functions C =
C(�, X) and D = D(�, X) where X = gµ⌫�

,µ

�
,⌫

is the kinetic term of the scalar,
the disformal metric and its inverse are given respectively by

ḡ
µ⌫

= C(�, X)g
µ⌫

+D(�, X)@
µ

�@
⌫

�, ḡµ⌫ =
1

C


gµ⌫ � D@µ�@⌫�

C +D(@�)2

�
. (A.1)

The determinant
p�ḡ of the disformal metric may be expressed in terms of the deter-

minant
p�g of the background spacetime as

p�ḡ = C2

r
1 +

D

C
(@�)2

p�g. (A.2)

Finally, for the case in which C = C(�) and D = D(�), the disformal Levi-Civita
connection takes the compact form25

�̄µ

↵�

= �µ

↵�

+
C 0

C
�µ(↵@�)�

+
D

(C +D(@�)2)
@µ�

✓
r

↵

r
�

�� C 0

2D
g
↵�

+

✓
D0

2D
� C 0

C

◆
@
↵

�@
�

�

◆
. (A.3)

• Lengths and angles: the norm of a vector in takes the form

ḡ
µ⌫

xµx⌫ = C x2 +D(@� · x)2, (A.4)

where x2 ⌘ x·x = g
µ⌫

xµx⌫ is the norm in the background spacetime and @�·x = @
µ

�xµ.
The inverted relation is

x2 =
x ·̂x
C

� D

C
(@� · x)2. (A.5)

25See [9] for the general case.
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The angle between two vectors x and y is given by

cos ✓̄ =
x · y + D

C

(@� · x)(@� · y)
| x || y |

q
1 + D

Cx

2 (@� · x)2
q

1 + D

Cy

2 (@� · y)2
, (A.6)

where | x |= p
x · x. The inverted relation is

cos ✓ =
x ·̂ y �D(@� · x)(@� · y)

| x̂ || ŷ |
q

1� D

x̂

2 (@� · x)2
q

1� D

ŷ

2 (@� · y)2
, (A.7)

from which it is obvious that the conformal relation has nothing to do with the distortion
of angles.

• The coupling term: the non-conservation coupling term takes the form [51]

Q =
C 0

2C
T �r

µ

✓
D

C
@
⌫

�Tµ⌫

◆
+

D0

2C
@
µ

�@
⌫

�Tµ⌫ , (A.8)

which in an FRW background becomes (the subscript 0 denotes the background value)

Q0 =
⇢

C


1

2
C 0 � C 0D

C
�̇2 + 3DH�̇+

1

2
D0�̇2 +D

✓
�̇
⇢̇

⇢
+ �̈

◆�
. (A.9)

B Exponential warps and potentials

Suppose that the potential and the warp factor have the form,

V ⇠ e�� , h ⇠ e�µ� . (B.1)

respectively, where � and µ are constants. The dynamics of the phase space is described
by the equations (3.34)–(3.36). The dynamics is oblivious to the energy scales of these
functions which we need not thus specify. An exponential warp could perhaps be motivated
in some brane world scenarios, but is not supported by the extra-dimensional geometries we
discussed in section 2.1.3. In the following we shall briefly list the fixed points of the system
and their properties.

• Matter dominated solution: x = z = 0, ⌦ = 1, w = 0. This solution exists regardless
of � and is a repellor.

• Potential dominated solution x = 0, z = 1, ⌦ = 0, �̃ = 1, w = �1. This solution
exists when � = 0 and is then an attractor.

• Kinetic dominated solution: x = ±1, z = 0, ⌦ = 0, w = �̃. This solution exists
regardless of �̃. In the limit �̃ = 0 it is a saddle point, in the limit �̃ = 1 the downhill
branch is an attractor given � < �p

6 and µ > 2
p
6, and symmetrically, the uphill

branch is an attractor given � >
p
6 and µ < �2

p
6.

• Kinetic scaling solution: x = �µ/2
p
6, z = 0, ⌦ = 1 � µ2/24, w = 0, �̃ = 1. This

solution exists when |µ| < 2
p
6 but is never stable.
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• Field dominated solution: x = �/6, z =
p
1� �2, ⌦ = 0, �̃ = 1, w = �1+�2/3. This

solution exists when 0 < |�|  p
6 and �(� + 4µ) � 12. Further, it accelerates when

0 < |�| < p
2.

Thus no new scaling attractors are found in the system. The potential accelerating solutions
correspond to those present for uncoupled exponential quintessence as well. However, the
coupling can modify both the details of the cosmological evolution and that could be used
to place constraints on µ.

C An alternative autonomous system

Here we rewrite the set of cosmological equations of section as a first order autonomous system
using alternative variables to span the phase space from section 3.2. We have experimented
with several di↵erent choices of variables and their combinations in order to find the most
convenient ones for our purposes. The set x and z, supplemented with �̃ turned out to be
the most practical and lead to simplest evolution equations. An alternative formulation can
be better suited for e.g. numerical studies of some aspects. In general also the fixed points of
a dynamical system can depend upon the variables used to formulate it. For these reasons
it might be useful to present an alternative formulation here. The variables employed here
correspond to those used in ref. [90].

Let us define the dimensionless variables

� =
p
3H

r
�

h
, y =

�̇
p
�

H
, z =


p
Vp

3H
, ⌦ =

2⇢

3H2
. (C.1)

In comparison to variables used in section 3.2, here � = x/
p
1� �̃ and y = ±p3(1 + �̃)x.

Only three of the four variables are independent due to the Friedmann constraint. We choose
to eliminate ⌦ by

⌦ = 1� �1� ��1
�
x2 � z2 . (C.2)

The evolution equations for the remaining three variables can be written as

d�

dN
=

1

24�2 (3 (�3 � � + 1)�3 � �� (�2y2 + 3z2 � 3))


2�13/2µy5 + 12�5y4

�3�7/2y3
��
4�3 � � + 3

�
µ�2 � �µ+ �z2(4�+ µ)

�

+36�3�2y2
����2 + �2 + �2

�
z2 � 2

��

+9�3/2�2y
��
�
�
�
�
2�3 � �+3

�� 4
�
+4
�
µ�2 + 4�3�z2+

�
�2 � 4

�
�µ
�
z2 � 1

��

�108�2
����2 + �2 + �2

�
z2 � 1

�� ��
�3 � � + 1

�
�2 + � � �z2

� �
, (C.3)

dy

dN
=

1

24�2�2 (3 (�3 � � + 1)�2 � � (�2y2 + 3z2 � 3))
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��
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�
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– 36 –



J
C
A
P
0
6
(
2
0
1
4
)
0
3
6

+4�
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�
µ
�
z2 � 1
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+108�2y
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(� � 1)

⇣
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⌘
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�3 � 3� + 2

�

+
�
�
���3 + � � 2

�
+ 1
�
z2 � 1

⌘
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, (C.4)

dz

dN
= �z

��3��2 + 3�2 + �3/2�y + 3�2
�
z2 � 1

��

2�2
. (C.5)

Here � should be understood as a shorthand notation for

� ⌘ �q
�2 � 1

3y
2
. (C.6)

Given � and µ, the system is closed. If we consider the forms given in (3.40), then � and µ
in the above system can be replaced by

µ = m


�z2

�0�2

� 1
m�n

, � = �n


�z2

�0�2

� 1
m�n

. (C.7)

For completeness, in general they are determined as

dµ

dN
= �

µ

yp
�
, �

µ

=
h02 � h00h

2h2
, (C.8)

d�

dN
= �

�

yp
�
, �

�

=
V 02 � V 00V

2V 2
. (C.9)
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