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Abstract 17 

The fractionation of nitrogen (as ammonia/ammonium) and phosphorus (as phosphate ions) 18 

present in the dairy manure digestate was investigated using a nanofiltration membrane 19 

NF270. The filtration and separation efficiencies were correlated to pH across the range 20 

3<pH<11. Filtration at pH 11 enabled higher permeate flux of 125-150 LMH at 20 bar, 21 

however rejection of ammonia was high at 30-36 % and phosphate was 96.4-97.2 %. At pH 3 22 

and pH 7, electrostatic charge effects led to higher permeation of ammonium and thus more 23 

efficient separation of nitrogen.. The rejection of phosphorus was relatively constant at any 24 
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given pH and determined as 83 % at pH 3, 97 % at pH 7 and 95 % at pH 11.The fractionation 25 

of nitrogen and phosphorus from complex aqueous solutions was demonstrated to be highly 26 

dependent on the charge of the membrane and ionic speciation. Solutions rich in nitrogen (as 27 

ammonia/ammonium) were obtained with almost no phosphorus present (<1 ppm) whilst the 28 

purification of the PO4-P was achieved by series of diafiltration (DF) operations which 29 

further separated the nitrogen. The separation of nutrients benefited from an advantageous 30 

membrane process with potential added value for a wide range of industries. The analysis of 31 

the process economics for a membrane based plant illustrates that the recovery of nutrients, 32 

particularly NH3-N, may be commercially feasible when compared to manufactured 33 

anhydrous NH3. 34 

 35 

Keywords 36 

 Nutrient recovery, membrane filtration, digestate, process economics 37 

 38 

Abbreviations 39 

P – phosphorus 40 

N – nitrogen 41 

MF – microfiltration 42 

DMDL – dairy manure digestate leachate 43 

NF – nanofiltration 44 

DF – diafiltration 45 

1. Introduction 46 

Fertilizers, including nitrogen and phosphorus, i.e. nutrients, have had a pivotal role in 47 

sustaining the food supply to an increasing world population. However, the manufacture and 48 

use of fertilisers is causing continuous environmental problems, such as the emission of 49 
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nitrous oxide, a potent greenhouse gas(Janson 2012, Vanthoor-Koopmans et al. 2013). In 50 

addition, the production of nitrogen (as ammonia/ammonium, nitrite/nitrate and urea) and 51 

phosphorus (as phosphate) also carries a significant carbon footprint. Indeed, 1.5-2.6 tonnes 52 

of CO2are produced per tonne of N (van Straaten 2008, Wood and Cowie 2004)and up to 1.0 53 

tonnes of CO2 per kg of P2O5 fertilizer (Oh-Ishi and Maeda 2002). The runoff of fertilisers 54 

into watercourses also has a direct impact on human health, as well as the depletion of 55 

oxygen supplies in the water leading to “dead zones”. 56 

In recent times, agro-industrial wastes are being seen as a source of both energy and 57 

resources. One particular example is that of manure waste being transformed into methane by 58 

anaerobic digestion, whilst the nutrient-rich digestate is used as a replacement to 59 

conventional fertilisers(Cornejo and Wilkie 2010, Desloover et al. 2012, Klavon et al. 60 

2013).Nonetheless, there is only so much that can be applied to the soil without causing 61 

nutrient excess and consequent damage to the environment. Also, nutrient run-offs owing to 62 

rainfall and excess load may lead to the eutrophication of water courses(Smith and Schindler 63 

2009, Smith et al. 1999).Indeed, the nitrate –directive (91/676/EEC nitrate) was created with 64 

the purpose to protect ground water and lakes. According to the directive, the maximum 65 

application of manure corresponds to 170 kg N/ha/year. However, during a transient period 66 

up to 210 kg N/ha/year can be allowed(Commission 1991). Therefore, one of the greatest 67 

engineering challenges of the 21st century is to develop strategies that help to control the 68 

impact of agriculture on the environment. 69 

Previous work has demonstrated the possibility of recovering nutrients in particle and 70 

bacteria-free solutions from dairy manure digestate(Gerardo et al. 2013). Strategies such as 71 

diafiltration (DF, i.e. addition of equal amounts of water for effective dialysis of solutes) and 72 

acidification of the digestate showed to critically influence the leaching of soluble nitrogen 73 

(NH3-N), phosphorus (PO4-P) and metals. When the digestate was acidified at pH 3, a nearly 74 
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3-fold increase of PO4-P was possible with no effect on NH3-N.However, such process does 75 

not lead to the effective separation of NH3-N from PO4-P in aqueous solution. Undeniably, 76 

separate streams of NH3-N and PO4-P are desirable and would potentially have a much higher 77 

range of applications and market value. Fertilizer, textile, chemical and biotechnology 78 

industries are heavily reliant on NH3-N.Also, PO4-P is an essential element to all living cells 79 

and has a crucial role in maintaining high crop yields(Beardsley 2011, Gaterell et al. 2000, 80 

Tonini et al. 2013). In our recent work we have also suggested that separate streams of waste 81 

derived NH3-N and PO4-P could allow optimal microalgae growing strategies associated to 82 

biofuel production(Gerardo et al. 2014). 83 

Membrane technology for the recovery and fractionation of nutrients from digestate is 84 

preferential over alternative technologies such as precipitation, absorption and thermal 85 

treatments.  Ease of scaling up, chemical-free separations, low operating and maintenance 86 

costs, compact and modular design and highly selective separations are some of the 87 

advantages over their counter parts(Cheryan 1998, Strathmann 2011). Nanofiltration (NF) 88 

membranes have been widely reported to selectively allow the passage or retention of solutes 89 

based on both steric and electrostatic effects. Several NF membranes have been associated 90 

with the retention of phosphorus, chloride, micropollutants and ammonia. Pronk et al (2006) 91 

compared three NF membranes (NF270, DS5 and N-30-F) and concluded that PO4-P and 92 

NH4 could be retained from synthetic urine at around 95 % and 45 %, respectively, using a 93 

NF270 (polyamide) membrane (Pronk et al. 2006). Rejection of up to 98 % of PO4 was 94 

reported using a tailored made multilayer polyelectrolyte NF membrane(Hong et al. 95 

2009).Phosphate anions, H2PO4
- and HPO4

2-, were also demonstrated to be retained by 96 

NF200 at 85 % and at 96 %, respectively (Ballet et al. 2007). Other authors have reported 97 

that polyethersulphone membranes rejected up to nearly 70 % of NH3-N in solution (Ali et al. 98 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Page 5 

 

 
 

2010). NF membranes have a potential role in the recovery of valuable resources from 99 

aqueous solution. Nonetheless, much of the results reported to date and associated 100 

phenomena are based on lab-grade synthetic solutions which do not mimic real separation 101 

conditions. 102 

The objective of this work was to investigate the fractionation of NH3-N and PO4-P derived 103 

from dairy manure digestate using a NF270 membrane. Upon leaching nutrients by MF, the 104 

influence of pH on the effective rejection of both NH3-N and PO4-P was discussed. Filtration 105 

of up to 42 % of the feed volume allowed evaluating the dynamics of such process in relation 106 

to the variation of the concentration of nutrients in the permeate stream. Diafiltration 107 

strategies were investigated to enhance the separation and purification of nutrients. Finally, 108 

capital expenditure and operational costs of a membrane filtration plant were determined. 109 

 110 

2. Materials and methods 111 

2.1.Preparation of the dairy manure digestate leachate (DMDL) 112 

Dairy manure digestates were obtained from Fre-Energy dairy farm (Wrexham, Wales, UK). 113 

Initial conditioning treatment consisted of adjustment to pH 3 with concentrated HCl (Fisher 114 

Scientific, UK) and sedimentation for at least 1 hour. The supernatant was then collected and 115 

screened through a 500 µm mesh. Nutrient rich leachates were produced by permeation 116 

through a bench-top cross-flow filtration unit. The crossflow membrane filtration unit 117 

consisted of an AGT Quix Stand benchtop system. This system featured a 1 L graduated 118 

polysulfone reservoir, peristaltic pump and a polysulphone hollow fiber cartridge with 0.2 119 

µm pore size and 0.042 m2 surface area, all from AGT (now part of GE Healthcare). The 120 

DMDL was analysed for nitrogen (as NH3-N), phosphorus (as PO4-P), metals and 121 

conductivity. pH 3 was chosen because of the high recovery of phosphorus and metals, with 122 

no influence on the recovery of nitrogen(Gerardo et al. 2013). 123 
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2.2.Characterisation of the NF270 – electrokinetic study 124 

Zeta potential measurements were performed using Electro Kinetic Analyser (EKA,Anton 125 

Paar GmbH -Austria) for pH range of 3-10. The dimension of the streaming channel were 74 126 

mm × 10 mm × 0.3 mm (Oo & Ong, 2010). An electrolyte solution was pumped through the 127 

cell and the pressure drop was measured by two pressure probes located up- and downstream 128 

of the cell. The potential difference resulting from the accumulation of charge at one end, i.e. 129 

streaming potential, was detected by two Ag/AgCl electrodes which provide information on 130 

the electrostatic charge at the shear plane36N.Streaming potential can be determined 131 

experimentally by plotting the voltage difference (∆E) against various pressure drop (∆P). A 132 

linear relation was obtained and the gradient (streaming potential coefficient) was used to 133 

calculate the zeta potential using Helmholtz–Smoluchowski equation (Ariza et al. 2001, 134 

Chapman Wilbert et al. 1999, Huisman et al. 1998) 135 

 136 

� = ��
��

�
���	
�        (Equation 1) 137 

 138 

Where� is the zeta potential in mV, dU/dp is the slope of streaming potential versus 139 

pressure(streaming coefficient) in mV/Pa, � the electrolyte viscosity in Pa.s, 
� the relative 140 

liquid permittivity(dielectric constant, dimensionless), 
�	the vacuum permittivity(8.854x 10-141 

12 C2 J-1 m-1 or s m-1.ῼ-1), and KB the specific conductivity of the bulk electrolyte solution 142 

(Ohm). When � is zero the membrane is said to isoelectric also known as isoelectric point 143 

(IEP). 144 

The membrane was characterised using KCl salt solutions at different concentrations 145 

(0.001M, 0.01M and 0.025M KCl) and three diluted solutions of the DMDL. The dilution 146 

factors are 100(10ml of wastewater in 1000ml water), 50(20ml of wastewater in 1000ml) and 147 
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33.33 (30ml wastewater in 1000ml water). All chemicals used in the experiments are 148 

analytical grade (Fisher Scientific, UK).The physical properties of the NF270 membrane used 149 

in this study are summarised in Table 1. 150 

 151 

2.3.Fractionation of nutrients – NF and DF 152 

The high-pressure stirred cell was sourced from Membranology® (Membranology Ltd, 153 

Swansea, UK) with a total volume capacity of 400 mL, maximum operational pressure 154 

allowance of 100 bar and a membrane area of 32.17 cm2. The system was pressurized with 155 

nitrogen gas and controlled via valves and digital pressure gauges. The permeate line was 156 

connected to a collecting vessel placed on a digital scale and the automated weight was 157 

recorded via the RS232 (serial) port. A diagram of the NF setup is given in Figure 1.The 158 

filtration was operated at 20 bar and 300 rpm (1.2 m/s) using a new and clean membrane for 159 

every DMDL sample. Before introducing the DMDL sample, each membrane was flushed 160 

and pressurized using deionised water at 20 bar. 161 

Different aliquots of the DMDL were pH adjusted to pH 3, pH 7 and pH 11 with 0.1 M 162 

NaOH (Fisher Scientific, UK)or0.1 M HCl (Fisher Scientific, UK). Individual 250 mL 163 

aliquots of DMDL at each respective pH were introduced into the high-pressure cell holding 164 

the NF270 membrane. Permeate fractions were collected every 15 g (equivalent to 6 % of 165 

initial feed volume) until 42 % of the feed volume was collected as permeate. Permeate flux 166 

was continuously recorded for each pH value of the digestate leachate. All permeate fractions 167 

were analysed for nitrogen (as NH3-N) and phosphorus (as PO4-P), conductivity and pH. 168 

Retentate fractions were also analysed for metals. 169 

DF using deionised water was also investigated to enhance the effective separation of 170 

nutrients. Using a clean and pressurized membrane, 130 mL of DMDL at pH 7 was 171 

introduced into the high pressure cell operating at 300 rpm and 20 bar. When half of the 172 
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volume was collected as permeate, the same volume of deionised water (65 mL) was 173 

introduced into the cell and stirred for 1 minute at 300 rpm before pressurizing.  174 

Subsequently, when further 65 mL of permeate were collected another 65 mL of deionised 175 

water were introduce into the high pressure cell and allowed to mix for 1 minute. These steps 176 

were repeated until a total of four permeate samples and one retentate sample was collected. 177 

All permeate samples were kept separate and analysed for nitrogen (as NH3-N) and 178 

phosphorus (as PO4-P) only. 179 

 180 

2.4.Chemical analysis 181 

Nitrogen was analysed as NH3-N (or NH4-N) using the phenate colourimetric method and 182 

absorption was monitored using a spectrophotometer (UNICAM UV 300, Thermo Scientific, 183 

UK)at 640 nm. Phosphorus was analysed as PO4-P using the vanadomolybdo-phosphoric acid 184 

colourimetric method and absorption was monitored using a spectrophotometer (UNICAM 185 

UV 300) at 470 nm, both analysis are according to Standard Methods(APHA 1998). The 186 

elements Ca, Fe, Mn, Mg, K, Zn, Cr, Si and Cu were analysed using an Atomic Absorption 187 

Spectrometer (PinAAcle 900F,  PerkinElmer, UK) after dilution with 1 % nitric acid. The 188 

calibration curves were performed using TraceCERT® AAS standard solutions (Sigma-189 

Aldrich, UK). 190 

 191 

2.5.Rejection and selectivity of NF270 192 

The degree of retention by the NF270 membrane is known as rejection which relates the 193 

retention of each individual species relative to the concentration present in the feed. The 194 

experimental rejection (R) is given by Equation 2 where����� and ����� are the solute 195 

concentrations in the permeate and feed, respectively. Membrane selectivity expresses the 196 

relative preference to retain one solute over the other as a ratio of rejection between those two 197 
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solutes. Equation 2 represents the calculation of selectivity for phosphorus in relation to 198 

nitrogen having the maximum relative value of 1. 199 

� = �1 − �����
������ × 100      (Equation 2) 200 

"#/% = 1 − &'(),+
&'(),,       (Equation 3)(Hong et al. 201 

2009) 202 

 203 

2.6.Nutrient speciation 204 

Owing to the nature of NF systems, the chemical speciation of the targeted nutrients is 205 

important for the understanding of the fractionation of nitrogen from phosphorus. As a 206 

simplification, the soluble forms of nitrogen and phosphorus were represented as NH3-N and 207 

PO4-P, respectively. Nevertheless, the pH of the aqueous solution determines the speciation 208 

of each solute. The equilibrium reaction for each nutrient is given as: 209 

 210 

 211 

212 
 213 

Throughout this work, the pH was set at pH 3, pH 7 and pH 11. At pH 3, ionic species NH4
+ 214 

and H2PO4
- were considered to be the dominant forms of the NH3-N and PO4-P respectively. 215 

At pH 7 this was NH4
+ and both H2PO4

-/HPO4
2- and at pH 11 NH3 and HPO4

2-, respectively. 216 

Throughout this work, we assume that practically all nitrogen is present as ammonia and 217 

practicallyall phosphorus as phosphate. 218 

3. Results and discussion 219 

3.1. Electrokinetic properties of the NF270membrane 220 
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Using KCl salt, this work demonstrated that the isoelectric point (IEP) of the NF270 221 

membrane is around pH 3, similar to that found in the literature(Al-Rashdi et al. 2013, Oatley 222 

et al. 2012). The electrokinetic properties of the membrane were also verified using the 223 

DMDL solutions and showed very similar trends (Figure 2). The zeta potential curves for the 224 

NF270membraneobtained in these experiments are characteristic of amphoteric surfaces with 225 

both acidic and basic functional groups (Chiu and James 2007, Chun et al. 2003, Yang et al. 226 

2003).The decrease of the negative surface charge observed with KCl salt from pH 10 (-35 227 

mV) to pH 3 (~0 mV)is explained by the fact that cations interact with the membrane’s 228 

surface functional groups which counteract the negative charges(Szymczyk et al. 1997, Yang 229 

et al. 2003). There was a significant difference of the membrane surface charge when 230 

exposed to KCl salt in comparison to the DMDL, where the later resulted in “less negative” 231 

surface charge throughout most of the pH range studied. This is more likely to do with the 232 

increased presence of cations and ionic charge in the DMDL which form multivalent 233 

chemical complexes with the membrane surface. 234 

 235 

 236 

3.2. Recovery of nutrients from dairy manure digestate 237 

Previous work reported on the success of MF in the recovery of nutrients from dairy manure 238 

digestate (Gerardo et al. 2013). Improved recovery of phosphorus and metals in particle and 239 

bacteria-free solutions was demonstrated at pH 3, with no influence on the recovery of 240 

nitrogen. The same process to obtain nutrient leachate was used in this study. Table 2 gives 241 

the concentration of the solutes of interest present in the DMDL at pH3 obtained in this 242 

study. The concentration of nitrogen (as NH3-N) was noted to be very high (1572.8 mg/L) in 243 

contrast to that of phosphorus (as PO4-P) (61.01 mg/L). Such recovery process is paramount 244 

for the feasibility of nutrient fractionation using nanofiltration membranes. The MF process 245 
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selectively separates any suspended particles, pathogens and colloidal agents above 0.2 246 

micron thus preparing the nutrient-rich solution for the subsequent nanofiltration process. 247 

 248 

3.3. Permeate flux and influence of pH 249 

The influence of the feed pH on the flux and thus processing time was investigated and is 250 

summarised in Figure 3. In each case the flux declined over the experimental period as a 251 

result of membrane fouling. Operating at pH 11 allowed between 2- to 3-fold increase in the 252 

permeate flux (permeate flux varied from the initial flux of 149.7 LMH to 125.4 LMH) when 253 

compared to pH 3 (initial flux was 50.3 LMH and steadily declined to 22.2 LMH). After 254 

processing 42 % of the feed volume at pH 11 the observed decline in flux was only 16 % of 255 

the initial flux. Therefore, operation at pH 11 is recommended for optimal membrane flux 256 

when filtering the DMDL. 257 

Given the IEP of the NF270 is in the region of pH 3, the processing of the manure digestate at 258 

pH 3 did not benefit from the (negative) charge effect typically present on the surface of this 259 

membrane. In this case, solutes were being transported as neutral species and thus the mass 260 

transfer of solutes through the membrane is solely due to size exclusion. As a result the 261 

membrane is more prone to fouling resulting on lower permeate flux. On the other hand, at 262 

high pH, e.g. pH 7 and pH 11, the increased charge on the membrane surface helps prevent 263 

fouling leading to higher flux (Luo and Wan 2013, Nyström et al. 1995). 264 

The permeation of ions is highlighted in Figure 4 in relation to conductivity of the permeate. 265 

Conductivity of the permeate fractions obtained at pH 11 is consistent with the higher 266 

permeation of solutes through the membrane. 267 

 268 

3.4. Fractionation of nutrients by NF270 – rejection and selectivity 269 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Page 12 

 

 
 

Figure 5demonstrates the rejection of (a) nitrogen (measured as NH3) and (b) phosphorus 270 

(measured as PO4), respectively, during the filtration of the DMDL under different pH 271 

conditions. Rejection was calculated using Eq. 2 with the concentration of the feed being 272 

corrected by mass balances for each permeate fraction collected. 273 

At pH 3, the rejection of nitrogen was 30.3 %, however, a sharp decline in rejection to only 274 

1.0 % was observed for the last permeate sample collected. A similar trend was observed at 275 

pH 7 where initially the rejection of nitrogen was 23.9 % and declined to 4.6 %. This data 276 

indicates that the rejection of nitrogen at pH 7 is less than at pH 3 which can be explained by 277 

the fact that at pH 3 the membrane is isoelectric but negatively charged at pH 7. Thus, at pH 278 

7, the electrostatic attraction of NH4
+ is taking place and causing increased transport of the 279 

species. 280 

Contrary to this, at pH 11 the rejection of nitrogen was steady at around 30-33 % throughout 281 

the course of the filtration experiment. This is explained by the fact that the nitrogen species 282 

is now NH3 and is neutral, which is not impacted by the membrane’s negative charge. Luo et 283 

al. (2013)also have reported that the retention of neutral solutes decreased with increasing pH 284 

due to membrane swelling (i.e both membrane thickness and the pore size increased)(Luo and 285 

Wan 2013). 286 

The 30-33% retention of nitrogen at pH 11 was interesting since diffusion coefficients for 287 

NH3 and NH4
+ are very similar, 1.80x10-9 m2/s and 1.96x10-9 m2/s, respectively(Haynes 288 

2011). This indicates that the size of both species in solution is similar (0.139 nm and 0.125 289 

nm, respectively) and thus the phenomena observed is explained by electrostatic interactions 290 

with the membrane surface. The negatively charged membrane acts as a charge screen 291 

allowing positively charged ions through in detriment of neutral and negatively charged 292 

species, therefore imposing the retention of nitrogen (as NH3) at pH 11. The preferential 293 
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permeation of charged species at this pH is also highlighted by the higher conductivity during 294 

the filtration experiment (Figure 4). 295 

During the filtration experiment, a decline of the rejection of nitrogen was observed mostly at 296 

pH 7 and pH 3. This phenomenon is explained by the fact that NH4
+ is initially being rejected 297 

at around 24-30 % and thus an accumulation of this ion takes place. As the concentration of 298 

this species builds, the radii of the ionic charge cloud contracts due to charge proximity 299 

which increases the potential for transport through the membrane(Oatley et al. 2012). This 300 

inevitably leads to a reduction in the rejection of this species. At pH 11, the rejection of 301 

nitrogen is typical of neutral species since rejection stayed constant throughout the filtration 302 

experiment. The permeation of nitrogen at pH 3 and pH 7 is possibly determined by charge 303 

effects which force NH4
+ close to the negatively charged membrane surface and permeation 304 

occurs through larger pores. 305 

The rejection of phosphorus was steady throughout the filtration process regardless of the pH. 306 

At pH 3 the observed rejection of phosphorus varied between 84.0-86.6 % and at pH 7 and 307 

pH 11 the rejection was constant at around 97 %. Figure 5(b) illustrates that rejection of 308 

phosphorus at pH 3 is always lower that than observed at pH 7 and pH 11. To some extent, 309 

this may be explained by the size of the ionic species in solution. At pH 3, H2PO4
- is the 310 

dominant ionic species with a hydrodynamic radius of 0.27 nm, smaller than that of HPO4
2- 311 

with a radius of 0.32 nm and thus at pH 3 higher diffusion of H2PO4
- takes place leading to 312 

lower rejection. Electrostatic effects on the membrane surface are also expected to define and 313 

influence the underlying phenomena of such rejections. At pH 7 and pH 11, the natural 314 

negative charge of the NF270 membrane is then present causing electrostatic repulsion of the 315 

HPO4
2- (and possibly PO4

3-) leading to increased rejection. Moreover, at higher pH values the 316 

valence of the phosphorus species is increased from 1- to 2- (and possibly 3-) which further 317 

increases the electrostatic repulsion effect. Nonetheless, at pH 3 the observed rejection of 318 
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phosphorus is slight lower owing to the lack of repulsive charge on the membrane surface 319 

(and possible attractive charge if positively charged). These results for the rejection of 320 

phosphorus and influence of pH are similar to that reported by Hong et al.(2009) with 321 

standard solutions. 322 

The fractionation of phosphorus from nitrogen, using NF has shown some interesting 323 

phenomena. The NF270 membrane demonstrated effective rejection of phosphorus with a 324 

minimum rejection of 84 %, however a maximum of 98 % rejection was attainable at and 325 

above pH 7. Simultaneous to the retention of phosphorus, the permeation of nitrogen was 326 

possible. At pH 11, nitrogen retention varied between 27-34 % and was considered high for 327 

an effective nutrient fractionation. When operating at pH 7 and pH 3 the permeation of 328 

nitrogen was much higher as charge effects dictated a lower rejection. Up to 6 % of volume 329 

filtered, the rejection of nitrogen at these pH values was very similar at around 25 % and 330 

declined significantly to around 2 %. Thus a more effective fractionation was taking place. 331 

The results summarised in Table 3 highlight the differences in permeate flux, nutrient 332 

rejection and P/N selectivity under different pH conditions throughout the experiment. For 333 

the final permeate fraction collected, P/N selectivity was as high as 0.99 at pH 3 and 0.95 at 334 

pH 7. Overall, the lowest P/N selectivity was observed at pH 11 yet much higher permeate 335 

flux was possible. 336 

3.5. Fate of metals after filtration with NF270 337 

By analysis of the retentate fractions, total retention was calculated for Cu, Mn, Zn, Ca, Mg, 338 

K, Cr and Fe in relation to that present in the feed solution. Table 4 summarises the rejection 339 

of metals (and nutrients) for the filtration of DMDL under different pH conditions.In most 340 

cases there is a slight decrease in rejection of most of the metal cations with increasing pH. 341 

As previously explained, this is motivated by the membrane charge variation and 342 

electrostatic/repulsion between ions and membrane. However, the rejection of Ca and K was 343 
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highly influenced by pH and was higher at pH 3 than that at pH 7 or pH 11. Researchers have 344 

reported that single electrolyte solutions exhibit, in general, much higher rejection for metal 345 

ions at acidic pH (> 90% for Ca2+, Cu2+, Mn2+, Mg2+, Cd2+ and Pb2+) and a much lower 346 

rejection at alkaline pH (Al-Rashdi et al. 2013, Luo and Wan 2013, Ozaki et al. 2002, Szoke 347 

et al. 2003). Nonetheless, for a complex mixture of solutes such asDMDL, the ionic species 348 

in solution are likely to significantly affect both retention and permeation of nutrients and 349 

metals. As demonstrated by Al-Rashdi et al. 2013, multi-component mixtures of metals show 350 

lower retention than that observed in single of two-component mixtures (Al-Rashdi et al. 351 

2013). Moreover, the rejection of heavy metals also decreases with the increase in 352 

concentration of the feed solution. This phenomena may be explained by the Donnan effect in 353 

which positive ions in solution are able to permeate through the membrane also forcing 354 

counter ions through so that electro-neutrality around the membrane is maintained (Luo and 355 

Wan 2013). Indeed, the concentration of ions in the feed solution was high as illustrated by 356 

the conductivity of 80 mS/cm(equivalent to around 5 % wt NaCl solution). 357 

Metals such as Mn, Zn, Cr and Fe were highly retained by the NF270 with rejections above 358 

70 %. Lowest retentions were observed for Cu and Mg which may have resulted from their 359 

permeation as counter-acting ions. As a result of the rejection of metals, 25-86 % depending 360 

on the metal and pH, the accumulation of metals in the retentate fractions was inevitable.  361 

Overall, rejection of phosphorus and nitrogen at pH 7 seems to be the most effective means 362 

of fractionating nutrients (Table 4). The N:P molar ratio of the permeates obtained varied 363 

between 900-2868 against that in the feed solution of 57, representing a maximum of 50-fold 364 

increase of nitrogen in solution obtained as permeate. On the other hand, the N:P ratio on the 365 

retentate obtained after filtration at pH 7 was 24. Given that separate streams of nitrogen and 366 

phosphorus are desirable, strategies such as DF may also help with further permeation of 367 

nitrogen while phosphorus is retained. 368 
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3.6. Purification of nitrogen and phosphorus using NF-DF strategies 369 

In this section we have investigated the possibility for the total separation of nutrients by 370 

means of NF using DF strategies as described in section 2.3. The principle of the 371 

fractionation of the nutrients using the NF270 membrane follows the same underlying 372 

phenomena as described in the sections above. From the series of filtration and DF steps, 373 

each permeate was collected separately and analysed for nitrogen (as NH3) and phosphorus 374 

(as PO4). Following a total of three DF steps, the retentate obtained was also analysed for 375 

nitrogen and phoshorus. The results are summarised in Figure 6 and illustrate that nitrogen 376 

and phosphorus can be nearly totally separated by a series of diafiltrations using the NF270 377 

membrane. This approach allowed the separation of 94.2 % of nitrogen (as NH3/NH4
+) 378 

present in the feed solution whereas only very small amounts of phosphorus (as ionic forms 379 

of PO4)were found in the permeate fractions. Simultaneously, 98.9 % of phosphorus present 380 

in the feed solution was retained during the series of filtration and DF steps, in which only 381 

2.6 % of nitrogen present in the DMDL remained with the retentate fraction. Further 382 

purification of the phosphorus fraction may be attained by continuous DF. Such purification 383 

step demonstrates the opportunity to obtain solutions of nitrogen with virtually no phosphorus 384 

present in solution. On the other hand, the continuous retention of phosphorus increased the 385 

concentration of phosphorus in the retentate with residual amounts of phosphorus still 386 

present. The downside of this process was the increasingly diluted permeate stream which 387 

resulted from the DF (addition of deionised water to the retentate stream on a 1:1 dilution 388 

basis). While the first permeate fraction contained 1.54 g NH3-N/L, the average concentration 389 

of the permeate stream across all four permeate fractions collected was 0.74 g NH3-N/L and 390 

0.07 mg PO4-P/L. 391 

The recovery and fractionation of nutrients from waste sludge is a vital step in the 392 

valorisation of wastewater and waste sludge. In particular, dairy manure digestate contain 393 
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generous quantities of nutrients which can be separated using membrane filtration systems. 394 

Across the literature, concentrations of up to 3000 mg NH3-N have been reported for dairy 395 

manure digestate (Fenton and Ó hUallacháin 2012, Rico et al. 2011). While the recovery of 396 

nutrients will certainly represent a solution towards the minimisation of nutrient loading and 397 

environmental damage, the fractionation of these nutrients in separate streams does 398 

potentially increase their range of applications and market value. Nevertheless, an economy 399 

based on sustainable resources relies on the feasibility, environmental concerns and on 400 

nutrient availability, costs and health and safety considerations. Diary manure digestate are 401 

usually very rich in nutrients, however these fluids are typically complex and may potentially 402 

contain pathogens (including viruses), prions and high concentration of toxic metals. The 403 

methodology demonstrated here for the extraction and fractionation of nutrients benefits from 404 

the attractive features of membrane technology. Particle and bacteria free leachate from 405 

nutrient-rich dairy manure digestate was possible via sedimentation and MF which preceded 406 

the nutrient fractionation step. Although the separation of any potential toxic metals from the 407 

nutrient fractions is unlikely to be attainable via membrane separation, our previous work 408 

with DMDL did not highlight an unusual concentration of toxic metals, e.g., Pb, As, Co, Cd 409 

(Gerardo et al. 2013). The rejection of metals observed using the NF270 (Table 4) is likely to 410 

lead to a built up to metals in the retentate fraction and thus limiting the use of the 411 

phosphorus rich fraction in the wider context of commercial/industrial applications. In 412 

addition, anions present in solution such as sulphate, chlorides and carbonate are likely to be 413 

present and are expected to be found in the retentate fractions as a result of their negative 414 

charge (Hong et al. 2007, Wang et al. 2005). Depending on the proposed applications of such 415 

nutrients, further refining may be required to address the likely low purity of the fractions 416 

obtained from dairy manure digestate. 417 

 418 
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4. Process economics 419 

The cost of processing dairy manure digestate into separate nutrient streams maybe estimated 420 

by considering the process design and project evaluation. For that purpose, the process basis 421 

here considered is a 200 m3 anaerobic digester for the treatment of dairy manure waste. If a 422 

20 days residence time is given for the treatment of the manure waste, digestate flow would 423 

be 10 m3/day. Figure 7 illustrates the process design for the extraction and fractionation of 424 

nutrients from the digestate based on membrane filtration technology. The proposed process 425 

design benefits from the acid treatment which increases the amount of phosphorus in the 426 

soluble fraction (Gerardo et al. 2013). 427 

Owing to the amount of solids present in the digestate, a solid-liquid separator was included 428 

to prepare the digestate for the filtration steps. Mass balance to the solids is given as guidance 429 

only since these may vary substantially depending on the feed stream. The solid-liquid 430 

separator was considered to be able to separate around 85 % of the solids while 80 % of the 431 

process flow would feed to the filtration units and consist mainly of solids with a particle size 432 

below 1 µm at a range of 1-3 % total solids. A MF unit features a low pH tolerant membrane, 433 

such as a ceramic membrane with a pore size of 0.2 µm. Around 125 LMH of virtually 434 

sterilised permeate, i.e. absence of bacteria and virus, is adjusted in-line to pH 7 which 435 

maximises the N/P separation using the NF system (Table 4). From Table 3 and Figure 6, the 436 

NF operates at a 45-65 LMH with a separation efficiency of 50 % NH3-N and nearly 100 % 437 

PO4-P retention. Further separation of NH3-N is possible by DF, however these costs are 438 

considered separately. From Figure 6, a total offour NF batch cycles are required for a 439 

separation of 94.2 % NH3-N as permeate and 98.9 % PO4-P as retentate fractions. 440 

Project evaluations can be very extensive, however for the purpose of nutrient extraction and 441 

fractionation, simple estimates on equipment and operational requirements were carried 442 

out(Table 5). Guideline prices for equipment were obtained from Axium Process Ltd 443 
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(Swansea, Wales, UK) while the estimate on the operational costs accounted for water and 444 

power based on the process flow volume. The expenditure with chemicals was determined as 445 

40 L/day, with an estimated bulk cost of $ 100/ton (98 % H2SO4 from Guangzhou Baochu 446 

Chemical Co., Ltd (China)and bulk 99% sodium hydroxide from Chengdu Hengyi Chemical 447 

Industry Co., Ltd (China) as in November 2014).Finally, costs related with power usage were 448 

estimated considering the pumping requirement based on flow and pressure (Fristam Pumpen 449 

KG (GmbH & Co.), centrifugal pumps and multistage centrifugal pumps): 2.5 kW for solid-450 

liquid separator, 1.5 kW for MF and 5 kW for NF.The solid-liquid separator was estimated to 451 

have a throughput of 2 m3/h giving a total of 5 hours/day operation and a daily power 452 

consumption of 12.5 kWh. Using a 9 m2MF membrane, the throughput for a stabilised flux of 453 

125 LMH would be 1.125 m3/h, with a total operating time of 5.33 hours/day and a power 454 

consumption of 8 kWh/day in order to achieve 6 m3 permeate. Finally, the NF unit fitted with 455 

a 30 m2membrane would have a throughput of 1.35 m3/h for a stabilised flux of 45 LMH. 456 

This would lead to a 2.22 hours/day operating time and a power consumption of 11.11 457 

kWh/day. If DF strategies are employed, which improve the separation of NH3-N from PO4-458 

P, energy consumption during the operation of NF would increase to 44.44kWh/day. A total 459 

of 64.9 kWh/day, 9 m3/day water and 40 L/day of chemicals are needed to support such 460 

nutrient extraction plant. Thus, the daily operational cost is $23.93/day or $2.40/m3with a 461 

total output of 15 m3 resulting from the NF separation when including DF strategies. 462 

Table 6 highlights the operational costs from the initial solid-liquid separator to fractionate 463 

the nutrients by means of NF. These include power, water and chemicals as estimated in 464 

Table 5. Single processing by NF has an estimated cost of $1.12/m3 and achieves 465 

considerable separation ofNH3-Nat a cost of $0.70/kg NH3-N obtained in the 3 m3 permeate. 466 

On the other hand, the retentate obtained still contains relatively high amounts of NH3-N. 467 

After the three DF steps, the remaining NH3-N is separated at a cost of $2.40/m3 or $5.23/kg 468 
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NH3-N. The corresponding retentate would contain around 99 % of the PO4-P obtained at a 469 

cost of $1.99/kg PO4-P in 3 m3. Overall, the expenditure of separating the 94 % of NH3-N as 470 

permeate and 99 % of the PO4-P as retentate (Figure 6), can be accounted as the cost of 471 

processing 3 m3 by NF plus the 12 m3 by NF-DF. Thus for a total amount of 8.89 kg NH3-N 472 

fractionated, the final cost is $3.62/kg. 473 

The value of any fractions obtained via membrane filtration is dependent upon the 474 

concentration of the nutrients in the aqueous phase of the manure digestate. Such 475 

concentration is highly variable and is certain to influence the feasibility of recovering 476 

nutrients from manure digestate.Table7 demonstrates how the composition in terms of 477 

nutrients of the manure digestate affects the overall cost. 478 

The estimations given above are taken as guidance only particularly since other costs such as 479 

person-hours, taxes, maintenance, utilities, storage e and transportation have not been 480 

accounted for. In addition, savings may be achieved when scaling upand optimisingsuch 481 

processes. Nonetheless, the plan designed (Figure 7 and Table5)to give 8 hour/day operation 482 

using membrane filtration systems, NF permeates are produced at a cost of $1.12/m3and 483 

$2.40/m3 for one NF step or three DF steps, respectively.  484 

The design process considered here is very general and capable of processing any given 485 

sludge. Some dairy manure farms already employ solid-liquid separations of the digestate as 486 

a means to reduce nutrient load onto the land. In addition, the level of phosphorus recovered 487 

from the dairy manure sludge used in this work was particularly low and thus the 488 

acidification-neutralisation treatments are likely to be deemed redundant and not suitable as 489 

an economically feasible source of phosphorus. In such case scenario, the capital costs would 490 

be reduced by 10 % with a processing cost of $0.41/m3 for one NF step or $1.69/m3 when 491 

including DF steps. 492 
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For a concentration of 1572.8 mg NH3-N /L in the DMDL used in this work, which 493 

corresponds to$0.26/kg NH3-N or $3.68/kg NH3-N using one NF step or three DF steps, 494 

respectively.Average (anhydrous) ammonia retail prices reported by the US Department of 495 

Agriculture on the 13th November 2014 was $725.83/ton (or $0.73/kg NH3, see Table 7 for 496 

comparison). In contrast, cost estimates presented for the manure digestate used in this work 497 

demonstrate that the recovery of NH3-N may compete in the open market particularly for 498 

digestate streams containing above 1.5 g NH3-N/L. Considering the environmental impact of 499 

producing NH3 and the ever rising cost of energy, the recovery and recycling of NH3 from 500 

wastewater sources may become a viable option in the near future. Possible applications 501 

include integration with other technologies such as reverse osmosis for concentration of the 502 

dilute streams and consequent purification of water, air stripping of NH3, hydroponics and 503 

cultivation of microalgae. 504 

 505 

5. Conclusions 506 

The extraction and separation of nutrients from dairy manure digestate was demonstrated to 507 

be possible by means of membrane filtration. pH was demonstrated to be instrumental in 508 

maximizing the effective separation of nitrogen from phosphorus. Higher permeate 509 

throughput was possible at pH 11, nonetheless separation of nitrogen from phosphorus was at 510 

all times higher at pH 7 with 97-98% rejection of phosphorus and 5-23 % of ammonia. 511 

Quantitative separation of nutrients was possible using DF, nonetheless processing costs were 512 

substantially higher and led to dilute nitrogen fractions. The process economics highlighted 513 

that the sustainable recovery of nutrients from dairy manure digestate is viable, however this 514 

certainly depends on the concentration of the nutrients and on the process design adopted. 515 

The use of chemicals to adjust pH was found to be costly and determinant in the process 516 

economics.  517 
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Table 1. Characteristics of the NF270 manufactured by Dow Liquid Separations 

 

Surface material Polyamide 
Support material Polysulphone 

pH range (continuous operation) 3-11 
Maximum operating pressure 41 bar 

Maximum pressure drop 1.0 bar 
Maximum operating temperature 45 oC 

Stabilised salt rejection 
CaCl2 40-60 % 

MgSO4 97 % 
Clean water flux (López-Muñoz et 

al. 2009, Semião and Schäfer 
2011) 

13-18 LMH.bar 

Pore size (diameter) (Oatley et al. 
2012) 

0.86 nm  

MWCO (Da) (Pontié et al. 2008) 120 
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Table 2. Concentration of the elements analysed for DMDL extracted at pH 3 and with a 

conductivity of 80.4 mS/cm. 

Element Concentration (mg/L) 
NH3-N 1572.8 
PO4-P 61.01 

Cu 44.5 
Mn 27.5 
Zn 58.0 
Ca 744.0 
Si 118.0 

Mg 172.0 
K 450.0 
Cr 53.4 
Fe 29.0 
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Table 3. Influence of pH on membrane rejection and P/N selectivity during filtration of 

DMDL by NF270. 

pH 
Flux (LMH) 

% Rejection  
P/N selectivity 

NH3-N PO4-P 
Initial Final Initial Final Initial Final Initial Final 

3.0 50.3 22.2 30.3 1.0 84.0 86.6 0.64 0.99 
7.3 64.6 45.0 23.9 4.6 97.9 96.7 0.76 0.95 

11.0 149.7 125.4 33.6 30.1 97.2 96.4 0.65 0.69 
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Table 4. Experimental rejection of nutrients and metals at different feed pH values using the 

NF270 membrane. 

Ion 
Rejection (%) 

pH 3 pH 7 pH 11 

H2PO4
- 83.4 

96.8 
- 

HPO4
2- - 95.3 

NH3 - - 25.9 

NH4
+ 8.6 7.2 - 

K+ 63.3 61.0 50.2 

Ca2+ 66.2 56.7 33.2 

Cu2+ 47.3 46.7 46.3 

Fe2+ 75.9 70.6 69.0 

Mg2+ 26.8 26.3 24.6 

Mn2+ 77.0 74.7 73.2 

Zn2+ 83.9 80.9 77.7 

Cr3+ 74.3 72.3 71.0 
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Table 5. Cost estimations for equipment and operation based on the proposed plant in Figure 

7. * Estimate obtained from Chemical Engineering Design C&R vol 6 (1993). **Guideline 

prices obtained from Axium Process Ltd (Swansea, Wales, UK). ***Considers a 40 L/day of 

chemicals at a bulk cost of $100/ton. $0.142/kWh (UK prices from International Industrial 

Energy Prices. www.gov.uk) $1.19/m3 water from Welsh Water rates for non-household. 

  

 Quantity Costs ($) 

Solid liquid separation 
Conditioning tank* (15 m3)  1 6,000 
Separator** (2.5 kW, 10 m3/day or 2 m3/h)  1 5,000 
Nutrient extraction from the digestate 
MF, 9 m2, 1.5 bar** (1.5 kW, 8 m3/day or 1 m3/h) 1 30,000 
Nutrient fractionation 
NF unit, 30 m2, 20 bar** (5 kW, 6 m3/d or 0.8 m3/h) 1 60,000 
Operation 
Chemicals, L/day (acid and alkali***) 40 4 
Energy, kWh/day  64.9 9.22 
Water, m3/day (150 % of NF feed) 9 10.7 
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Table 6. Operational costs for the recovery and fractionation of nutrients from manure 

digestate by membrane filtration. NF – nanofiltration, R – retentate, P – permeate, DF3 – 

three consecutive DF steps, n.d. – not determined. *Cost per m3 is given as  
∑�����	�	
�

�
���	�	����
. 

**Accounts for 3 m3 from retentate of the previous NF step and a total of 9 m3 of water. 

 

Input 

volume 

(m
3
) 

Output 

volume 

(m
3
) 

Time of 

operation 

(h) 

Energy 

(kWh) 

Σ Daily 

cost ($) 

Σ Cost* 

($/m
3
) 

Nutrients extracted 

(kg) 

NH3-N PO4-P 

Separator 10 8 5.00 12.50 3.77 0.38 n.d. n.d. 

MF 8 6 5.33 8.00 4.91 0.52 9.44 3.66 

NF 
Ret. 

6 
3 

2.22 11.11 8.49 1.12 
4.68 3.65 

Perm. 3 4.76 0.02 

NF-DF3 
Ret. 

12** 
3 

6.67 33.33 23.93 2.40 
0.55 3.61 

Perm. 9 4.13 0.06 
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Table 7. Influence of the concentration of nutrients on the operational costs for nutrient 

extraction and fractionation using membrane technology. Costs were determined based on 

Table 6 using $1.115/m3 for the NF and $2.402/m3 for the NF-DF3. NF – one fractionation 

step using NF. NF-3DF – three DF steps subsequent to initial NF step. 

Sludge composition NF NF-3DF 

NH3-N (g/m3) PO4-P (g/m3) $/kg NH3-N $/kg NH3-N $/kg PO4-P 
250 70 4.43 32.91 17.42 
400 150 2.77 20.57 8.13 
750 300 1.48 10.97 4.07 
1000 400 1.11 8.23 3.05 
1250 500 0.89 6.58 2.44 
1500 600 0.74 5.49 2.03 
2000 750 0.55 4.11 1.63 
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Figure 1 
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Figure 1. Experimental setup for the fractionation of DMDL by nanofiltration 
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Figure 2 

 

 

Figure 2. Zeta potential of the NF270 membrane in solutions of KCl salt and DMDL under 

different conditions of pH and concentration. 
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Figure 3 

 

 

Figure 3. Influence of the feed solution pH on permeate flux at 20 bar. 
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Figure 4 

 

 

Figure 4. Influence of pH on the conductivity of the permeate during the nanofiltration of 

DMDL. 
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Figure 5 

 

 

 

Figure 5. Influence of pH on the rejection of (a) NH3-N and (b) PO4-P during NF of DMDL 

with NF270 at 20 bar. 
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Figure 6  
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 Figure 6. Further fractionation of nutrients from DMDL by consecutive filtration and DF 

steps using NF270 for high separation of NH3-N and PO4-P. Feed solutions was 130 mL of 

DMDL at pH 7. 
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Figure 7.  
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Figure 7. Process flow diagram for the extraction and fractionation of nutrients from dairy 

manure digestate using membrane filtration technology. 
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Highlights 

 

 NF270 membrane was used for the fractionation of nutrients from manure digestate. 

 Membrane flux was highest at pH 11 but nutrient separation was more effective at pH 7. 

 P was mostly retained however the permeation of N was highly dependent on the pH. 

 94.2 % of N was obtained as a series of permeates by DF strategies. 

 Nutrient recovery may be economically feasible under certain conditions. 

 


