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Suspensions can be deformed through rearrangement of grains during the motion of a gas-liquid
interface. Regions of jammed beads at the interface, can lead to intermittent behavior in the
dynamics. We study the stability of layers of saturated jammed beads around stuck air bubbles,
and the deformation mechanism leading to air channel formations in these layers. We describe a
two-dimensional extension of a previous model of the effective stress in the jammed packing. We
discuss how the tangential stress component alters the yield stress, in particular how arching effects
may impact the yield threshold. We further develop a linear stability analysis, to study undulations
which develop under certain experimental conditions at the air-liquid interface. The linear analysis
gives estimates for the most unstable wavelengths for the initial growth of the perturbations. The
estimates correspond well with peak to peak length measurements of the experimentally observed
undulations.

I. INTRODUCTION

Multiphase flow involving unconsolidated granular me-
dia and granular-fluid mixtures occur in a wide range of
environmental and engineered processes. Examples in-
clude gas venting in sediments, volcanic eruptions, soil
wetting and drying, oil and gas recovery, hydraulic frac-
turing and carbon geo-sequestration [1–6]. Similar flow
systems are also attracting an increasing scientific inter-
est. A range of flow behaviors have been observed, in-
cluding destabilized viscous fingers [7], granular decom-
paction fingers [8–10], channeling [1, 11], gas expulsion
of imbibated nanoparticle aggregates [12], aerofractures
[13, 14] and fractures involving immiscible fluids [15–19].
In particular, when a layer of granular material accumu-
lates at the fluid interface, a rich set of flow morpholo-
gies have been observed [20], such as labyrinth patterns
of frictional fingers [21, 22], frictional fingers aligned by
gravity [23] and bubble structures [15, 24]. Examples of
frictional fingers and bubble patterns are shown in Fig. 1.

Consider a horizontal Hele-Shaw cell, filled with a liq-
uid mixture containing beads which sediment out of the
liquid. Air is compressed into the cell. The compression
rate is so slow (0.01− 0.03 ml/min) that the process can
be considered quasi-static. The air displaces the liquid
mixture in small intermittent incremental steps. The in-
vading air-liquid interface bulldozes up the beads from
the sedimented region, and accumulate the beads into
a compacted region adjacent to the air-liquid interface.

(a) (b) (c)

FIG. 1. The Hele-Shaw cell as seen from above (20× 30 cm).
Air (white region) is injected into a liquid mixture with a layer
of sedimented beads on the bottom plate (gray region). The
front is the accumulated region of beads along the air interface
(the dark rim around the white regions). The different images
correspond to different normalized filling fractions φ, i.e. the
height of the sedimented layer relative to the cell gap. (a)
φ = 0.35, (b) φ = 0.49, and (c) φ = 0.53. We see a gradual
transition from frictional fingers (a), to bubble dynamics (c)
as φ increases.

This accumulated region, will in the following be referred
to as the front.

An important control parameter for the experiment
is the normalized filling fraction, φ, i.e. the height of
the sedimented region relative to the cell height. This
parameter determines the rate of accumulation of new
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FIG. 2. (Color online) A closeup view of connected bubbles
of air, which displace a liquid containing glass beads. The
front is the accumulated region of beads adjacent to the air
interface, and is identified as the dark region. The white
dashed line indicates parts of the separation path between
the front and the sedimented region. This path can develop
cusps, as front segments from different bubbles merge. The
front thickness (L) is only defined where this separation path
runs parallel to the air-front interface. Grids of 1 mm spacing,
are superposed on the image to reveal the scales. The front
thickness (L) is ' 3 mm thick. The channels that connect the
bubbles are ' 1 mm. The cell gap is 0.5 mm, and the bead
diameter is 0.1 mm. The numbers refer to the order in which
the bubbles are formed. The air-front interface of the bubble
develops undulations. The arrows in bubble N o. 4 points to
peaks of these undulations.

beads onto the front, as the air-liquid interface advances.
As the pattern develops, most of the front is jammed,
and only a small section of the interface evolves in in-
termittent, stick-slip like increments. For φ < 0.4, the
system generates tree-like structures of frictional fingers
(see Fig. 1 a), with a characteristic finger width [21, 22].
When the filling fraction, φ, increases, the displaced vol-
ume per increment also increases, and the increment fre-
quency decreases. The increments start to form bubbles,
rather than small deformations at a finger tip, and the re-
maining pattern consists of a series of bubbles connected
by thin channels of air [24] (see Fig. 1 (b) and (c)). After
a bubble is formed, the front around the bubble settles
down in a static configuration. As the pressure increases
beyond a certain level, the front slowly deforms and un-
dulations along the air-liquid interface develop. One of
the peaks of these undulations gets ahead of the others
and forms a narrow channel through the front. Once the
channel approaches the sedimented region, it accelerates,
and bursts into a new bubble. A closeup picture of the
structure of the bubbles is shown in Fig. 2, videos of the
dynamics are provided as supplementary material [25].

The frictional finger behavior gradually transitions into
the bubble behavior, either by increasing φ or the volume
of the air in the syringe pump used to compress the air.

The transition, and the experimental conditions, are de-
scribed in detail in [15].

The dynamics of the finger behavior is understood, at
least to the extent that the patterns can be reproduced
by simulations. The patterns are simulated both for a
horizontal cell [21, 22], and for a tilted cell [23], where
gravitational effects also are present. Central to the the-
oretical understanding is a model of the effective stress in
the front. In particular, the description of how the stress
component normal to the air-liquid interface gives rise to
frictional stresses along the plate boundaries. This model
does neither account for the curvature of the front in the
expression for the effective stress, nor does it account the
tangential stress component. It is, however, reasonable
to assume that the tangential stress becomes important
for highly curved interfaces, which indeed are present in
the experimental observations of the bubble behavior, in
particular around the channels which connect the bub-
bles (see Fig. 2).

The aim of this paper is twofold. First, we present a
natural extension of the stress model, which also accounts
for the curvature of the interface and the tangential stress
component inside the packing. We will assume that the
tangential and the normal stresses are linearly related.
This assumption implies that the tangential stress can
have a large impact on the yield stress of the interface.
We will also discuss how arching effects are captured by
the model, and how they may be important for describing
the dynamics of the interface as it moves through the
front of a bubble.

Second, we present a linear stability analysis of the
deformations at the interface. This analysis gives predic-
tions for the most unstable wavelength of the interface,
which agrees well with the experimentally observed peak
to peak distance of the undulations.

II. THEORETICAL CONSIDERATIONS

There are two local variables along the interface which
are of special interest. One is the in-plane signed cur-
vature of the air-liquid interface, κ = ±|~κ|, where ~κ is
the curvature vector, shown in Fig. 3. Note that, while
the air-liquid interface may be convoluted at the scale of
a single bead, we are here interested in the curvature of
the averaged interface, at the scale of several neighboring
beads. The absolute value of the curvature is reciprocal
to the radius of curvature, |~κ| = R−1, and its sign is
defined to be positive if the radius of curvature can be
drawn into the air phase, and negative otherwise. Ex-
amples of different configurations are shown in Fig. 4.
The other variable of interest is the thickness of the front
in the direction perpendicular to the interface, L, indi-
cated in Fig. 2 and 3. This variable is, however, not
applicable to every point along the interface. For exam-
ple, if two front segments from different sections of the
interface merge together, the corresponding sections of
the interface stagnate, and remain in-active in the sub-
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FIG. 3. (Color online) Schematics of a section of the interface,
with the adjacent front, seen from above. At every point
along the interface we introduce a coordinate system (u, v),
such that the point is placed in the origin. The unit vectors
~eu and ~ev point respectively perpendicular and parallel to the
interface.

air convex pt. concave pt. concave pt.

front

sed.
beads

κL < −1κ < 0
κ > 0

(a) (b) (c)

FIG. 4. (Color online) Schematic examples of different config-
urations. (a) convex interface, positive curvature. (b) concave
interface, negative curvature. (c) negative curvature with ra-
dius of curvature which is smaller than the front thickness.

sequent evolution of the interface (see for example the
front enclosed between the bubbles labeled 3 and 4 in
Fig. 2). Note also that the separation path between the
front and the sedimented region (see the white dashed
line in Fig. 2) may develop singular points (cusps), as it
evolves, in contrast to the air-front interface which ap-
pears smooth everywhere due to the effective surface ten-
sion. The front thickness, L, is only defined where the
separation path between the front and the sedimented
region runs parallel to the air interface. We will, in the
subsequent discussion, only consider points along the in-
terface were L can be defined.

It is convenient to introduce a set of coordinates rel-
ative to the points along the interface. Let (u, v) be an
orthogonal coordinate system, such that u runs in the
direction perpendicular to the interface, and v runs par-
allel, as shown in Fig. 3. The interface in a small neigh-
borhood around a given point is therefore approximated
by (0, v). The separation between the front and the sedi-
mented region, if it exists at that point, is approximated

air
front liquid

sedimented beads

z
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h
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σb
zz−σb

uz
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FIG. 5. (Color online) Schematic cross section of the cell at
the front. The front thickness (L) is defined to be the length
of the region of beads which fills the whole cell gap.

by (L, v). The (u, v) coordinates will be Cartesian around
straight segments and inflection points, i.e. points which
correspond to R → ±∞, or κ → 0. For straight seg-
ments we have that u = x, and v = y in the notation
used in [22]. We can identify a polar coordinate system
(r, θ), at curved segments, with origin at the center of
the circle corresponding to the radius of curvature, such
the interface is located at r = R. The separation path
between the front and the sedimented region is located
at r = R + L for positively curved segments, and at
r = R − L for negatively curved segments. We have the
following transformations,

r = sgn(κ)u+R,

θ =
sgn(κ) v

R
, (1)

where sgn is the sign function. Front lengths which are
longer than the radius of curvature, L > R, when the
interface curves negatively, are not properly accounted
for (see Fig. 4 (c)). These points are rare, and we as-
sume that they are immobile. We will also use z as the
coordinate of the height direction, such that the bottom
boundary is located at z = 0, and the top boundary at
z = h, see Fig. 5.

A. Yield Pressure at the Interface Without
Tangential Stresses

We will in the following first review a simplified version
of the stress model used in [21, 22]. This derivation will
naturally motivate the inclusion of the tangential stress,
presented in the next subsection.

The yield pressure associated with a deformation of
a section of the interface, i.e. the air pressure at which
a section of the front transitions from a sticking to a
slipping state, arises from two different effects. Firstly,
the air-liquid surface tension of the menisci between the
beads will generate an effective surface energy at the scale
of several neighboring beads. This surface energy gener-
ates a surface stress which acts to minimize the curva-
ture, κ. The pressure difference which corresponds to
the effective surface tension, γ, is given by γκ.

Secondly, force chains in the front transmit stresses
from the boundary of the cell to the beads at the inter-
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face, resulting in an effective normal stress at the inter-
face of the bead packing. Let σ be the effective stress
tensor field in the bead packing, which we assume to be
smooth and continuous at the scale of several bead di-
ameters. We employ a positive sign convention for com-
pressive stresses, and we ignore the z-dependence in the
stress field, i.e. we consider height averaged stresses. We
further assume that variations in the v dependence are
negligible, such that σ = σ(u). The normal stress at the
interface is denoted σuu(u = 0).

Previous papers [15, 21, 22] have, in the context of fric-
tional fingers, successfully modeled the yield pressure at
the interface by assigning an L-dependent yield thresh-
old, σY (L), to the effective bead stress, such that a local
section of the interface evolves if σuu(u = 0) > σY (L).
The slip criterion for a section of the interface is,

p > γκ+ σY (L), (2)

where p is the air pressure. Note that we have ignored
the pressure drop associated with the curvature in the
out-of-plane direction on the right hand side of the in-
equality. This pressure drop is, however, constant along
the interface, and does not change the location of the
weakest section. In order to describe how the thresh-
old, σY (L), depends on the front thickness, L, we first
describe how the effective stress field varies through the
front.

Consider a straight segment of the front (κ = 0) such
that the (u, v) coordinates are Cartesian. Imagine a
representative elementary volume in the front which is
bounded by u0 < u < u0 + δu and 0 < v < δv. The
volume fills the height of the cell such that 0 < z < h. A
cross section of this volume is shown by the black square
region in Fig. 5. The force balance of the u component of
the force on this volume gives us a differential equation
for σuu(u),

hδv [σuu(u0)− σuu(u0 + δu)]

= δuδv
[
−σbuz(u0) + σtuz(u0)

]
⇒ ∂

∂u
σuu(u) = − 1

h

[
−σbuz(u) + σtuz(u)

]
= −F, (3)

where σbuz and σtuz are the u-components of the shear
stresses acting on the bottom and the top cell boundaries
respectively, as shown in Fig. 5. In the last equation we
also introduce the force density, F , for later convenience.

To close the system, we need to approximate how these
shear stresses change with u. We will, as [21, 22], follow
Janssen’s analysis for stresses in a silo [26], which rests on
the following two assumptions. First, we assume that the
stresses in the z and the u directions are proportional,

σbzz = K1σuu and σtzz = K1σuu, (4)

where K1 is the Janssen parameter [27]. We ignore the
contribution of the weight of the beads on the bottom
plate, which induces an asymmetry in the comparison
of the top and bottom boundaries. This contribution

was accounted for in the expression developed in [22],
but gives only a minor correction to the exponential L-
dependence of σY (L), described below. Second, we as-
sume that the frictional stresses are proportional to the
normal stresses acting on the plates (see Fig. 5), i.e.
we assume Coloumb friction. The maximum frictional
stresses at the plate boundaries are given by σtuz = µσtzz
and σbuz = −µσbzz, where µ is the static friction coeffi-
cient. The result of the above assumptions is that,

F =
2µK1

h
σuu. (5)

Limitations of Janssen’s assumtions (Eq. (4)) is discussed
in [28, 29]. The result of using a relation like Eq. (5)
is, however, in accordance with experimental evidence
in the context of frictional fingers [22], for aerofractures
[8, 13, 14] and for the original application of the stresses
in silo geometries [26, 30].

We also assume that the maximum stress the beads
at the end of the front (i.e. at u = L) can withstand
before the front segment slips is a constant σT , i.e. the
front slides if σuu(u = L) > σT . Note that this constant
is assumed to be independent of the local parameters, κ
and L, of the interface. Using σT as a boundary condition
at u = L, we can integrate equation Eq. (3) and get,

σuu(u) = σT e
−2µK1(u−L)/h, (6)

which corresponds to the normal stress profile through
the front at the yield transition. It is convenient to in-
troduce a characteristic length,

ξ =
h

2µK1
. (7)

If we evaluate Eq. (6) at the interface (u = 0), we get the
final expression for the yield stress,

σY (L) = σT e
L/ξ. (8)

Inserting this into Eq. (2), gives

p > γκ+ σT e
L/ξ. (9)

The weakest section along the interface is identified by
having κ and L such that γκ + σT exp(L/ξ) is minimal.
This criterion is used to simulate fingering behavior in
[21, 22], with the exception of the correction term for
the weight of the grains mentioned above. σT can be
estimated from the friction of the weight of the grains
at the transition between the front and the sedimented
beads, assuming a wedge-like bead profile [22]. Note also
that the numerical value of K1 is hard to determine, as
it only appears multiplied with the friction coefficient, µ,
in Eq. (7). Approximate values for the different param-
eters are listed in Tab. I. In the context of fingers in a
tilted cell [23], it was adequate for the level of detail in
the simulation-experiment comparison, to linearize the
exponential behavior, i.e. using the first order term from
the L expansion of σY (L) in Eq. (2).
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TABLE I. Approximate values of the parameters of the model.

parameter value units

effective surface tension γ 60 mN/m a

characteristic length ξ 0.06 cm b

threshold at end of front (u = L) σT 10 Pa c

a This is lower than the table value of glycerol-water mixture
(65-70 mN/m). Note that the complex geometry of the
air-liquid interface, due to the menisci between the beads, may
change the effective surface tension from that of a pure liquid
value. This value has, however, been used to reproduce the
finger structures in simulations [22, 23].

b ξ = h/(2µK1). Assuming friction constant for glass beads,
µ = 0.5 and the Janssen parameter K1 = 0.8 [22]. The cell
height is h = 0.05 mm.

c Order of magnitude estimate based on the average
over-pressure presented in [15].

B. Including the Tangential Stress Component

Eq. (8) is a reasonable approximation as long as the
curvature is small relative to the front thickness κL� 1.
We therefore do not expect it to hold in the context of
bubble formation, as the geometry of the front curves sig-
nificantly, especially near the channels between the bub-
bles. A closer inspection will reveal that σY in Eq. (8),
also depends on the curvature, σY = σY (L, κ).

We can write the mechanical equilibrium in Eq. (3) in
a more general form,

divσ = ∇ · σT = −F~eu, (10)

where F is defined in Eq. (3), ~eu is the unit vector in the
u-direction. We have that the r component of Eq. (10),
in the cylindrical coordinates introduced in Eq. (1) is (see
for example Chap. 2 in [31])

1

r
∂r(rσrr)−

σθθ
r

= −F, (11)

⇒ ∂rσrr = −σuu
ξ
− σrr − σθθ

r
, (12)

where we use Eqs. (5) and (7) to substitute for F in the
last line. Since we already assume a Janssen approxima-
tion for the normal stress in the z direction, it is rea-
sonable to also assume a similar linear relationship for
the normal stress in the θ direction. Note that r and θ
are the principal directions of the stress tensor, due to
the symmetry of the annulus (see Fig. 3). Analogous to
Eq. (4), we assume that

σθθ = K2σrr. (13)

The principal stresses are thereby assumed to be linearly
dependent on each other, but note that the K1 parameter
is used in a height averaged setting in Eq. (4), whereas
K2 relates σrr to σθθ everywhere in the (r, θ) plane. The
assumption of a local linear relation between the princi-
pal stresses is also used to describe stress distributions in
piles of granular material [32–34].

Using the linear dependence assumption in Eq. (13),
we can rewrite Eq. (12) as,

∂r lnσuu(r) = −1

ξ
− 1−K2

r
, (14)

Assume that the interface is positively curved, such that
the interface is located at r = R, and the end of the front
at r = R + L. Integrating this, with similar boundary
conditions as before, σuu(R + L) = σT , and evaluating
σrr(r) at r = R, gives the yield stress, σY (L, κ). We have
that,

σY (L, κ) = σT e
L/ξ (1 + κL)

1−K2 , (15)

where we use κ = 1/R. One can verify that we obtain
the same result if we instead consider a negatively curved
section of the interface.

If we use the expression for the effective yield
stress which incorporates the radial stress contribution
(Eq. (15)) in the previous yield criterion (Eq. (2)), we
finally have the new yield criterion,

p > γκ+ σT e
L/ξ (1 + κL)

1−K2 . (16)

Note that if we only consider the correction to Eq. (8)
in the radial direction, i.e. we disregard the σθθ contri-
bution by setting K2 = 0 in Eq. (15), the correction will
always give a higher yield stress for positive curvature.
If we set K2 = 1, i.e. we consider isotropic stress in the
(u, v) plane, we get the same stress law as in the one
dimensional model approximation in Eq. (8).

It is hard to estimate the value of K2 in our experi-
ments. Its local value may be very sensitive to how the
beads are compacted, and may also vary along the inter-
face. In the context of a silo geometry, Janssen coefficient
less than one and greater than one have been reported,
depending on the packing procedure [30]. Note that the
yield stress changes qualitatively as K2 grows beyond 1,
as illustrated in Fig. 6, and that K2 > 1 naturally de-
scribes arching mechanisms in the front for negatively
curved segments. We will in the following assume that
K2 < 1 for straight segments (κ ' 0), this is in agreement
with numerical estimates from discrete element method
simulations, K2 ' 0.8± 0.1 [35]. We will further discuss
K2 in light of the subsequent stability analysis and how
it may change with the curvature in Section III.

C. Linear Stability Analysis of a Straight Front
Segment

We will in the following present a stability analysis by
considering perturbations of a straight interface, with a
constant front thickness, L. Consider an infinitesimal
perturbation, fq(x), with wave number, q, such that

fq(x) = ε(1 + cos(qx)). (17)

This perturbation is shown in Fig. 7. The perturbation
amplitude, ε, is infinitesimal. Note that we only consider
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FIG. 6. (Color online) Effective yield stress, σY (κ, L), defined
in Eq. (15), for values of K2, less than and greater than 1. (a)
K2 = 0.6. (b) K2 = 1.4. The contour lines are logarithmically
spaced. The threshold increases as Eq. (8), along the dashed
line (κ = 0). The white region in the top left corner corre-
sponds to κL < −1, and is not accounted for by the theory.
The numerical values of the other parameters are presented
in Tab. I.
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FIG. 7. (Color online) Illustration of the perturbation. The
front is originally enclosed between the stapled lines. After
the perturbation, it is enclosed between gq(x) and fq(x). A
perturbation is considered unstable, if the yield threshold at
the peaks of the perturbations, is lower than the threshold at
the troughs, and otherwise stable.

displacement towards the front, in the positive y direc-
tion, fq(x) ≥ 0.

A reasonable condition for growth of a perturbation
can be based on the static properties of the front. We
assume that the perturbation grows if the threshold at
the peaks of the perturbations, i.e. at cos(qx) = 1, is
lower than the threshold at the troughs of the perturba-
tion, i.e. at cos(qx) = −1. Otherwise, the interface at the
troughs will move before the peaks, and the perturbation
will flatten out.

Let pp and pt be the pressure threshold of Eq. (16)
(evaluated at equality), for the peaks and the troughs
respectively. We introduce the stability criterion function

Γ(q) =
pp − pt
C

, (18)

where C is a positive constant independent of q, which
will be determined later. Γ is analogous to the negative
of the growth rate of the perturbation, as used in linear
stability analysis on systems where the dynamics are de-

δu δu′

L

L+ δL

h
hφair front sedimented beads

liquid

FIG. 8. Schematic representation of the cross section of the
cell. The front is assumed to be incompressible. A volume
associated to a displacement of a straight air-front interface
(κ = 0), shown by the white striped pattern, is therefore
coupled to an equal volume associated to the displacement of
the front-liquid boundary (the outer boundary in Fig. 7). The
regions which are marked as ’liquid’ and ’sedimented beads’,
corresponds to the ’sed. beads’ in Fig. 7. The accumulation
of the sedimented beads results in the increased displacement
of the front-suspension boundary; δu′ = δu/(1−φ) and δL =
δuφ/(1− φ).

fined. The condition for the growth of the perturbation
is now given by Γ(q) < 0, and the most unstable pertur-
bation wave vector, q∗, is given by the minimum of Γ(q),
such that Γ(q∗) ≤ Γ(q).

We assume that the infinitesimal displacement results
in infinitesimal pressure threshold variations, pp = p0 +
δpp and pt = p0 + δpt, where δpp and δpt are the changes
of the threshold pressure induced by the perturbation at
the peak and trough respectively, and p0 is the thresh-
old of the initial flat interface. We can therefore rewrite
Eq. (18) as

Γ(q) =
δpp − δpt

C
. (19)

The pressure variations can be written in terms of
changes in the curvature, δκ, and in the front length, δL.
We can expand Eq. (16), again evaluated at equality, to
first order in δκ, and δL,

δp =
∂p

∂κ
δκ+

∂p

∂L
δL

=

(
γ + σT e

L/ξL
1−K2

(1 + κL)K2

)
δκ

+ σT e
L/ξ(1 + κL)1−K2

(
1

ξ
+ κ

1−K2

1 + κL

)
δL. (20)

Note that σT , which is the stress threshold at the sep-
aration between the front and the sedimented region, is
assumed to be constant and independent of L and κ. Us-
ing this we have that Eq. (19) can be written as

Γ(q) =
1

C

(
γ + σT e

L/ξL
1−K2

(1 + κL)K2

)
(δκp − δκt)

+ σT e
L/ξ(1 + κL)1−K2

(
1

ξ
+ κ

1−K2

1 + κL

)
(δLp − δLt),

(21)
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where δLp and δLt are the changes in the front length at
the peak and the trough respectively, and similarly for
the changes in the curvature δκp and δκt.

The curvature of the perturbation is given by the neg-
ative of the second derivative of fq(x), to first order in
ε. The curvature is 0 for the straight segment, and after
the perturbation,

δκ = −f ′′q (x) +O(ε2) = εq2 cos(qx) +O(ε2). (22)

The difference between the changes of the curvature at
the peak, δκp, and the changes at the trough, δκt, is
therefore,

δκp − δκt = 2εq2. (23)

We now need to express the difference of front length
changes, between the peak and the trough, δLp − δLt.
Let gq(x) be the path which separates the front from
the sedimented layer of beads, as shown in Fig. 7, such
that the front length after the perturbation is given by,
gq(x)− fq(x). The perturbation gives rise to a displace-

ment field of the front, ~d(x, y); we will use this displace-
ment field to find gq(x). We assume for simplicity that

the displacement field is irrotational, ∇× ~d = 0, and in-

compressible, ∇ · ~d = 0. We can therefore write the dis-
placement as the negative of the gradient of a harmonic

field ψq(x, y), i.e. we have ∇2ψq = 0, and ~d = −∇ψq.
We are only interested in displacements in the first order
of ε, and we can limit ourselves to the y component of
the deformation.

One can verify that the following field is harmonic,

ψq(x, y) = −εy +
ε

q
e−qy cosxq. (24)

Note also that the y component of the displacement cor-
responds to the perturbation when evaluated at y = 0,

− ∂

∂y
ψq|y=0 = fq(x). (25)

The separation path, gq(x), between the front and the
sedimented region, is given by the displacement field,
~d(x, y), at y = L. As the separation path moves out-
wards it also accumulates new beads to the front. We
can simply increase the displacement of the separation
path between the front and the sedimented beads by a
factor 1/(1−φ) to account for the bead accumulation, as
shown in Fig. 8. The separation path, gq(x), given the
perturbation at the air-front interface, is therefore,

gq(y) = L− 1

1− φ
∂ψq
∂y
|y=L +O(ε2)

= L+
ε

1− φ
(
1 + e−Lq cos(qx)

)
+O(ε2). (26)

The change in front length along the perturbation is given
by,

δL = gq(x)− fq(x)− L+O(ε2)

= ε

(
φ

1− φ +

(
e−Lq

1− φ − 1

)
cos(qx)

)
+O(ε2). (27)

0 1 2 3 4 5 6

qL

−1.0

−0.5

0.0

0.5

1.0

Γ

α = 0.5 α = 0.1

α = 0.05

α = 0.01

FIG. 9. (Color online) Stability criterion function Γ (Eq. (29))
versus the product of the wavenumber and the front length,
qL, for various values of α. The normalized filling fraction
is set to φ = 0.5. The gray shaded region corresponds to
qL < − ln(1 − φ), which is a stable region, independent of α
(see Eq. (31)).

The difference between the change of the front length at
the peak, δLp, and the changes at the trough, δLt, is,

δLp − δLt = 2ε

(
e−Lq

1− φ − 1

)
. (28)

We can now rewrite Eq. (21). We choose C =
2εσT e

L/ξ/ξ, to make Γ(q) dimensionless. By using
Eqs. (23) and (28), we get,

Γ(q) = α(Lq)2 +
e−Lq

1− φ − 1, (29)

where, α =
ξ

L

(
γ/L

σT eL/ξ
+ 1−K2

)
. (30)

The first term in the parentheses in Eq. (30), is of order
∼ 10−2, when we use the approximate value of L = 3 mm
(see Fig. 2), and the values in Tab. I. This means that
high values of qL are unconditionally unstable for K2 >
1 + 10−2 ' 1, as α is negative. We will assume that
K2 < 1 for straight front segments, and therefore α > 0,
in the subsequent discussion. Plots of Γ versus qL, for
different values of α, and φ = 0.5, are shown in Fig. 9.
Note that Γ(q = 0) = φ/(1−φ), and that variations of φ
changes the behavior in the range of low qL. Variations
of φ are unimportant for larger qL, as e−qL → 0. Note
also that the stability criterion function is always stable
for low wavenumbers; Γ is positive when,

e−Lq

1− φ > 1 ⇒ − ln(1− φ) > qL. (31)

This stable region is identified as the gray shaded region
in Fig. 9. The stability in the low range of qL is imposed
by the filling fraction, φ, whereas the stability for high
qL is imposed by the effective surface tension, γ, through
α (Eq. (30)).
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FIG. 10. (Color online) (a) Stability criterion function, Γ,
as defined in Eq. (29), versus the wavelength λ = 2π/q. A
wavelength is unstable if Γ(λ) < 0. Γ(λ) is drawn 15 times, to
visualize the sensitivity to the parameters σT , ξ, γ and L. For
each realization, the parameters are drawn from uncorrelated
uniform distributions on the interval defined by ±15% of the
mean value, L = 0.3 cm, γ = 60 mN/m, ξ = 0.06 cm and
σT = 10 Pa in accordance with Tab. I. The filling fraction
is fixed at φ = 0.5, and K2 = 1.0, 0.9 and 0.8, for the green
dashed, red dotted and blue solid lines respectively. The thick
black dashed/dotted/solid lines correspond to the mean val-
ues of the parameters, for each value of K2. (b) Histograms of
the theoretically estimated wavelengths, λ∗, which minimize
Γ (i.e. the most unstable wavelength), based on 105 realiza-
tions similar to the one plotted in (a), and for the three values
of K2. (c) Experimental observations of the wavelength, λe,
of the undulations. Estimated by measuring the linear peak
to peak distance in the experimental pictures (see arrows in
Fig. 2). This histogram is based on 214 measurements.

The wavenumber, q∗, which minimizes Γ, can be writ-
ten in terms of Lambert’s W -function [36], which is im-
plicitly defined by y = W (y)eW (y). We have that,

Γ′(q∗) = 2αL2q∗ − Le
−Lq∗

1− φ = 0

⇒ q∗ =
1

L
W

[
1

2α(1− φ)

]
. (32)

This wavenumber corresponds to the most unstable wave-
length, defined by λ∗ = 2π/q∗. Lambert’sW (y) function,
is monotonically increasing for growing positive argu-
ments [36]. As the argument of W in Eq. (32) is increas-
ing with increasing φ, higher φ generally corresponds to
a smaller wavelength λ∗.

Different realizations of Γ (Eq. (29)) versus the wave-
length λ = 2π/q, are plotted in Fig. 10 (a), for different

values of K2. The plot illustrates also how Γ is sensitive
to variations in the parameters, by superposing realiza-
tions with varying parameters ξ, L, σT and γ. A his-
togram of the corresponding most unstable wavelengths,
λ∗, are shown in Fig. 10 (b). These results are compared
to a histogram of experimental estimates of the wave-
lengths of the undulations along the bubble interfaces,
λe, in Fig. 10 (c). The experimental estimate is based on
the measured linear peak to peak distance; examples of
these peaks are shown by the arrows in Fig. 2.

III. DISCUSSION

The linear stability analysis above has omitted a num-
ber of complicating factors. We have for example left
out the effect of the initial curvature of the interface, by
considering a straight segment. We have also ignored
the complications of the intermittency, and the local-
ity of the deformation, by assuming harmonic perturba-
tions. Moreover, we have assumed that the parameters in
Tab. I, the front length L, and K2, all are constant along
the interface, although they may very well be subject
to systematic variations. For these reasons, the linear
stability analysis is only expected to give a first order
approximation. In light of the expected accuracy of the
prediction, we conclude that the prediction of the lin-
ear analysis agrees well with the experimental results,
for 0.8 < K2 < 1.0 (Fig. 10). We note that the most
unstable wavelength increases with a decreasing K2. An
additional averaging over the range of K2, will make the
histograms of the theoretically estimated λ∗ (Fig. 10 (a)),
closer to the histogram of the experimentally observed λe
(Fig. 10 (c)).

The range of plausible K2 parameters, in agreement
with the linear stability analysis (Fig. 10), is consistent
with numerical estimates from discrete element method
simulations [35], which estimated K2 = 0.8 ± 0.1 for a
straight moving interface with a similar geometry. The
values of K2 may, however, change with the curvature of
the front. This is analogous to variation of the Janssen
parameter in silo experiments; the Janssen parameter is
highly sensitive to the packing procedure [30]. The pack-
ing geometry of the beads in the front in our experiments,
may be a result of the curvature of the interface as it
moves into the cell.

We conjecture that K2 increase with decreasing curva-
tures, i.e. fronts adjacent to a convex interface (see Fig.4
(a)) develop a K2 which is smaller than fronts adjacent
to concave interface (see Fig.4 (b)). This qualitative re-
lation is suggested by the following two-dimensional sim-
ulation of the compaction of initially uniformly displaced
discs inside an annulus shown in Fig. 11. The beads are
either slowly compacted by the outward motion of the
inner boundary (Fig. 11 (a)), or by the inward motion
of the outer boundary (Fig. 11 (b)). The simulation is
made using the soft sphere discrete element method code
MercuryDPM [37], assuming a damped linear spring in-
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(a)

(b)

FIG. 11. (Color online) Compaction of beads in two dimen-
sion. Black connections indicate contacts with more than
double the average contact force. Contacts are overlaid for
50 consecutive time steps of the simulation. The beads are
compacted as (a) the inner boundary moves outwards or as
(b) the outer boundary slowly moves inwards. Note how the
chains of contacts tend to orient radially in (a), which suggests
that the average stress in the radial direction, σrr, is bigger
than the stress in the orthoradial direction σθθ, i.e. K2 < 1. In
contrast, the chains tend to orient orthoradially in (b), which
suggests that σθθ > σrr and K2 > 1.

teraction between particles in the normal direction, and
damped linear spring-sliders in the tangential direction.
The walls are modelled as rough, i.e. particles cannot
rotate while in contact with the boundary. Shaded con-
nections in Fig. 11 indicate contacts with more than dou-
ble the average contact force. The Figure suggests that
the force chains, indicated by consecutive black connec-

air

front

sed. beads

A

B B

FIG. 12. (Color online) Schematic of the channeling of air
through the front. Consider two regions of the front. A: The
front adjacent to the tip of the channel is compacted as an
interface segment of high curvature, κ, moves outwards (to-
wards the sedimented beads). B: The front at the shoulders
of the channel are compacted as the negatively curved inter-
face moves outwards. Undulations along the interface are not
shown in the Figure.

tions, tend to align with the radial direction when the
inner boundary moves outwards, and orthoradially (tan-
gentially to the circle), if the beads are compacted by the
inward motion of the outer boundary. This suggests that
the average effective normal stress is higher in the tan-
gential direction (compared to the radial stress) when the
outer boundary moves inwards (K2 > 1), and that the
radial average effective stress is higher when the inner
boundary move outwards (K2 < 1), if we assume that
the bulk part of the stress is mediated by force chains.
The simulations are not meant to be a faithful repre-
sentation of the compaction of the front, as the front is
three-dimensional. In addition, gravity is likely to af-
fect how the beads in our experiments settle down, so we
cannot use estimated values from the two-dimensional
simulations directly. We assume, however, that the gen-
eral direction of the force chains in the front, in the (r,
θ) plane, is similar to that of the two-dimensional simu-
lations (Fig. 11). We will therefore assume that K2 is a
decreasing function of κ.

This curvature dependence ofK2 may be of importance
when the yield threshold (Eq. (16)) is applied to the in-
terface of the channels which make their way through the
front of a bubble, shown in Fig. 12. The channel configu-
rations contain regions of high positive curvatures, region
marked A in Fig. 12, and with low negative curvatures,
region marked B in Fig. 12. If we assume that K2 grows
beyond 1 in the B region, and that K2 takes a value below
1 in the A region, the yield stress of the front will behave
qualitatively different in the different regions, as shown
in Fig. 6. The growing yield threshold for decreasing cur-
vatures in region B (Fig. 6 (b)), may therefore result in
arching effects, and prevent the front from further de-
formation. Note that the channel growth is well beyond
the presented linear stability analysis. It is hard to de-
termine the experimental values of κ at interfaces which
correspond to region B; it is possible that these config-
urations are mobile, and correspond to κL < −1 (see
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Fig. 4). In that case, we may need to modify the theo-
retical framework further. We leave the details of these
mechanisms for future work.

In summary, we have derived a natural extension to the
yield stress model of bead fronts, used to simulate fric-
tional finger structures [15, 22]. The new expression for
the yield pressure threshold (Eq. (16)) incorporates the
tangential stress component, and the geometrical modi-
fications due to the curvature of the front, by assuming
a linear relationship between the radial and the tangen-
tial stress, σvv = K2σuu, (or σθθ = K2σrr in cylindrical
coordinates). These modifications are important for the
bubble dynamics shown in Fig. 1, as κL takes values
which cannot be neglected, in particular at the channels
between the bubbles.

We have also presented a linear stability analysis for
a straight front segment, based on the threshold crite-
rion in Eq. (16). This linear stability analysis gives a
closed form expression for the most unstable wavenum-
bers in Eq. (32). The numerical values of the wavelengths
agree with the wavelengths of the undulations seen along
the interface of bubbles in experiments, for reasonable
choices of parameters. In particular, the results are con-
sistent with 0.8 < K2 < 1 (Fig. 10).

The theoretical results we have presented will be of

importance for future attempts to simulate the bub-
ble formation. The discretization scheme presented in
[38] provides a natural framework for such a simula-
tion. Such simulations may also need to take into ac-
count the K2 dependence of the curvature, to faithfully
represent the channeling through the front around the
bubbles (Fig 12). We suggest that this dependence can
be determined from a three-dimensional bead simulation
based on the discrete element method, similar to the two-
dimensional example in Fig. 11.
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