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Abstract: The antibacterial properties of the excretions/secretions of the medicinal maggot, 

L. sericata have long been known and the effectiveness of maggot debridement therapy in 

relation to the clearance of bacteria from the surface of wounds has been the source of 

much research over recent years. Less well known however, are the antifungal properties of 

L. sericata ES. Here we show by means of the colony forming unit assay and optical density 

assays, that L. sericata native excretions/secretions possess significant antifungal properties 

and appears to possess a highly heat stable, freeze/thaw and lyophilisation resistant 

antifungal component. We also show that the antifungal activity present in the native 

excretions/secretions consists of a number of antifungal components present in three 

fraction masses consisting of >10 kDa, 10 – 0.5 kDa and <0.5 kDa, with the greatest level of 

activity being seen in the <0.5 kDa fraction.  
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Introduction. 

The larval stage of the common green bottle, Lucilia (Phaenicia) sericata (Diptera: 

Calliphoridae), is one of the few members of Diptera that can be applied clinically to chronic 

wounds (1). Maggot debridement therapy (MDT) using L. sericata larvae is now considered a 

viable option for the treatment of certain chronic wounds (2), with the secretions from L. 

sericata having been shown to possess a number of digestive proteases, including serine 

proteases (3, 4) and collagenase (5), which contribute to the debridement of chronic 

wounds allowing healing to take place (6). 

Although in modern medicine, MDT is used primarily for the debridement of chronic 

wounds, there are other associated advantages which go beyond the removal of necrotic 

tissue. As far back as the Napoleonic wars, field hospitals began reporting soldiers with non-

infected, maggot-infested battle wounds showing accelerated healing and no signs of 

infection (7). While there is still much debate as to the precise mechanisms involved in 

wound healing, the antibacterial properties for L. sericata have been thoroughly 

investigated and many antibacterial factors described (8-13).  

It had been suggested that some antimicrobial activity may be attributed to the 

process of debridement, during which ingested bacteria are eradicated as they pass through 

the alimentary tract of the maggot (14). More recent investigations into this activity have 

focused on discerning the identities of the antibacterial components present in the 

excretions/secretions (ES) of L. sericata. Such investigations are driven in part by the 

emergence of microorganisms resistant to conventional therapies, such as methicillin 

resistant Staphylococcus aureus. Recent studies into L. sericata secretions using separation 
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techniques, such as ultrafiltration, have revealed the presence of two antibacterial moieties; 

one 0.5 - 0.3 kDa, heat-stable, protease resistant antibacterial compound and a <0.5 kDa 

component with activity against MRSA (8). These findings suggest that the 

inhibition/extermination of bacteria can occur outside the maggot digestive system and may 

contribute to their ability to thrive on carrion in nature (15). 

In their natural environment, maggots have to compete with several decomposers, 

including fungi, as well as bacteria. Although there is an extensive volume of literature 

available on the antibacterial properties of L. sericata larvae, the antifungal properties have 

attracted considerably less attention, comprising, to our knowledge thus far, of only three 

reports. One showing activity against the agricultural pathogens Fusarium sambucinum and 

Fusarium verticillioides (16), another demonstrating activity of a novel antifungal peptide, 

lucimycin, against the agricultural pathogens F. graminearum and Phytophthora parasitica, 

along with some opportunistic fungal pathogens, including Aspergillus fumigatus and 

Candida albicans (17) and  the other demonstrating activity against Trichophyton terrestre, a 

cause of some superficial fungal infections (18).  

Fungal infections which are unresponsive to conventional antifungal therapies are 

becoming an increasing problem in a clinical setting. Candida species for example represent 

a significant cause of morbidity in patients with chronic conditions (19) with Candida 

albicans accounting for >50% of fungal species isolated from infected wounds, with other 

species of Candida accounting for around 19% (20). Identifying new antifungal agents which 

can be used in a clinical setting, perhaps systemically to treat fungal infections unresponsive 

to conventional therapy is therefore of growing importance. 
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This paper describes the detection of, and preliminary investigations on antifungal activity 

found in L. sericata larval native excretions/secretions (nES).  

 

Materials and Methods. 

Larvae. 

 Sterilised L. sericata eggs were supplied in saline by Biomonde®, Bridgend, UK in 

plastic vials and allowed to hatch at 30OC. Hatchlings were then immediately treated as first 

instar (L1) larvae.  Sterile late L2 and L3 L. sericata larvae were supplied by Biomonde®, 

Bridgend, UK in petri dishes on growth media.  

Microorganisms. 

 Candida albicans SC5134 and Saccharomyces cerevisiae (turbo yeast, Gert strand AB) 

were obtained from the College of Science, Swansea University. C. krusei (Issatchenkia 

orientalis) 6258, C. maltosa 28140 and Saccharomyces boulardii MYA-796 were purchased 

from the ATCC®, Middlesex, UK. All strains were cultured on Sabouraud dextrose agar for 24 

hours at 37OC prior to testing. 

Chemicals. 

 All chemicals used were purchased from Sigma-Aldrich, Dorset, UK, unless stated 

otherwise. 

Collections of larval secretions. 
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 Collection of L. sericata ES was modified from the method previously described by 

Bexfield et al., (8) as described in the supplementary methodology material.  

Unless stated as L1, all experiments were undertaken using secretions collected from late 

L2/L3 larvae. 

Size fractionation of larval secretions. 

 Fractionation of nES took place sequentially. Firstly, 5 ml aliquots of nES were 

filtered through an Amicon Ultra 10 kDa molecular weight cut off (MWCO) centrifugal filter 

(Millipore UK Ltd., Herefordshire, UK) at 4,000 g. Five hundred µl of sterile Milli-Q water 

were added to the retentant and spun for 15 minutes to ensure total volume (i.e. 5 ml) <10 

kDa materials were filtered. The unfiltered ES was then reconstituted to its original volume 

in sterile Milli-Q water and retained as the >10 kDa ES fraction (ES>10). The filtrate was 

passed through a 0.5 kDa MWCO membrane (Sterlitech Corp., WA, USA) in an Amicon 

stirred ultrafiltration cell (Millipore UK Ltd., UK) under ≤75 PSI at 4OC until approximately 0.5 

- 1 ml <10 kDa ES remained. This material was reconstituted to its original volume (5 ml) in 

sterile Milli-Q water and retained for testing as a 10-0.5 kDa ES fraction (ES10-0.5). The filtered 

material was retained as a <0.5 kDa ES fraction (ES<0.5). All fractions were filter sterilised 

through a 0.2 µm filter and stored at -20OC prior to analysis. 

Detection of antifungal activity. 

Colony forming unit (CFU) assay for the detection of antifungal activity. 

 To determine the antifungal activity of L. sericata ES, C. albicans was grown as 

previously described and prepared as recommended by the CLSI M27-A3 document and 
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EUCAST definitive document (EDef 7.2 revision for the determination of broth dilution 

minimum inhibitory concentrations of antifungal agents for yeasts). Briefly, a single colony 

of cultured C. albicans was suspended in 300 µl of sterile Milli-Q water, and mixed for 15 

seconds on a vortex mixer. The cell density was adjusted to 5 x 106 cells/ml and 40 µl of 

inoculum were incubated with 360 µL ES (nES, ES>10, ES10 – 0.5 and ES<0.5) and 40 µl 10-fold 

concentrated SDB prepared in 200 mM HEPES, pH 8.5 for 24 hours at 37oC, whilst being 

agitated. For controls, the fungal inoculum was replaced with sterile Milli-Q water (negative 

growth control) or amphotericin B [4µg/ml] (positive antifungal control). For the positive 

growth control, ES was replaced with sterile Milli-Q water. After the first incubation, each 

sample was diluted 1:700 in sterile PBS and 5µl aliquots spread onto Sabouraud dextrose 

agar plates. The plates were then incubated for a further 24 hours at 37OC before the 

number of colonies on each plate were counted. Each assay was carried out in triplicate and 

the experiment repeated at least three times. 

Optical density (OD) assay for the detection of antifungal activity. 

The OD assay was a modification of the method originally described by Thomas et 

al., (21) and details are elaborated in the supplementary materials section. For controls, ES 

was replaced with sterile Milli-Q water (positive growth control) amphotericin B at a 

concentration of 4 µg/ml (positive antifungal control). For negative growth controls, 50 µl of 

4x concentrated SDB were incubated with 150 µl sterile Milli-Q water. To check for sterility 

of the ES samples, 150 µl of 0.2 µm filtered ES were incubated with 50 µl of 4x concentrated 

SDB. All tests were carried out in triplicate and repeated at least three times. For its ease of 

application, the OD assay was chosen as the primary assay for the detection of antifungal 

activity for all subsequent experiments. 
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Survival Index (SI). 

 Antifungal activity was quantified using the survival index as described previously by 

Bexfield et al. (8). A sample SI of ≤25% was deemed to be the cut-off point to indicate 

antifungal activity. All SI values represent percentage growth of untreated fungal control 

cells which had a growth rate of 100%. 

Physiochemical properties of L. sericata ES. 

 The thermal stability of L. sericata antifungal activity present in nES and ES<0.5 was 

assessed by subjecting samples to heating, freezing/thawing and storage at room 

temperature. For heat inactivation, 1 ml aliquots of nES were placed in sealed microfuge 

tubes in a heating block and incubated at 50OC, 75OC and 100OC for 15, 30 and 60 minutes. 

For heat treatment of ES<0.5, 1ml aliquots of ES<0.5 were incubated at 50OC, 75OC and 100OC 

for 60 minutes. To determine thermal stability, 1 ml aliquots of nES and ES<0.5 were subject 

to 10 cycles of freezing to -80OC and rapid thawing to 37OC. To further assess the thermal 

stability of L. sericata nES, several 1 ml aliquots of nES and ES<0.5 were placed in sealed 

microfuge tubes and left at room temperature for up to 14 days. Following treatment, all 

samples were cooled to 4OC for 24 hours and then stored at -20OC until testing. 

ES<0.5 stability was also investigated after lyophilisation. Ten ml aliquots of sterile -

ES<0.5 were placed in a 30 ml universal container and covered with punctured aluminium foil. 

Samples were then frozen to -80OC for 30 minutes before being placed in a freeze drier 

cooled to -20OC and allowed to completely lyophilise under vacuum. For reconstitution, 

lyophilised samples were heated to 37OC for 30 minutes and then 1ml sterile Milli-Q water 

at 37OC was added. Samples were then vigorously vortexed before being passed through a 
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0.2 µm filter to remove any particulates and to sterilise the sample prior to being bio-

assayed.  

Statistical testing. 

 All experiments were repeated in triplicate at least three times. Data demonstrating 

differences in SI represent the mean % of fungal growth from each experiment compared to 

100% growth of the positive control. All error bars express the arithmetic mean of three 

repeats, ± S.E.M. Differences between sample absorbance at t0 and t mid-log were assessed 

for significance by stacking all experimental data (omitting outliers) with n = ≥6 in all 

experiments. The two-tailed unpaired Students t-test was then used with P ≤0.05 being 

determined to be significant. 
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Results 

Detection of antifungal activity in L. sericata native larval secretions. 

 The CFU assay demonstrated that L. sericata ES possess antifungal capabilities in 

nES, ES10-0.5 and ES<0.5 fractions. Incubation of C. albicans with ES>10 did not show antifungal 

activity and an increase in CFUs was observed (Figure 1a). Compared to the growth of 

control C. albicans (Figure 1b), fungal growth was found to be significantly reduced when 

exposed to nES (Figure 1c), as well as the ES fraction between 10 kDa and <0.5 kDa (Figure 

1a), with fungal cells subjected to ES<0.5 showing the greatest reduction of CFUs (Figure 1d). 

Antifungal activity was also detected in nES by the OD assay. Figure 2 shows that nES 

inhibits the growth of both C. albicans and S. cerevisiae, with C. albicans exhibiting growth 

inhibition for up to 25 hours (Figure 2a). C. Krusei, C. maltosa, S boulardii and S. cerevisiae 

remained inhibited for the entire duration of the assay (Figure 2b - e). No fungal inhibition 

was seen during treatment of C. albicans with L1 nES (Figure 2f). 

Analysis of physiochemical properties of antifungal activity in nES. 

 The antifungal components of L. sericata nES were found to be remarkably thermally 

stable (Figure 3) retaining activity across all temperatures investigated. Interestingly, activity 

was found to significantly increase after treatment at 50OC for 15, 30 and 60 minutes and 

there was found to be no significant difference in nES activity when heated to 100OC for 15 

minutes, but there was a very highly significant increase in activity after treatment of nES at 

100OC for 60 minutes. These findings indicate that nES becomes more active after exposure 

to higher temperatures for longer periods of time. The antifungal activity of nES was also 

stable after repeated freeze-thawing, retaining significant antifungal activity after ten such 
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cycles (Figure 4). Although there was a slight decrease in the SI between untreated nES and 

nES which had been repeatedly frozen and thawed, there was no significant difference in 

the activity between the two samples (P >0.05). Antifungal activity was also retained by L. 

sericata nES after storage at room temperature for 24 hours, 48 hours, 7 days and 14 days 

(Figure 4). However storage of nES for 14 days at room temperature did show a significant 

increase in antifungal activity.  

Determination of antifungal activity in L. sericata ES fractions. 

Incubation with L. sericata ES fractions revealed that there was significant inhibition 

of fungal growth against all fungal species tested (Figure 5a). Although all fungal species 

were inhibited at t mid-log, there were changes in growth profiles of different fungal 

species. For example, both ES>10 and ES10-0.5 (Figure 5b) were able to inhibit C. albicans 

growth at t mid-log. However, growth increased at a more rapid rate after 20 hours of 

incubation in the ES10-0.5 sample whereas in the sample incubated with ES>10 a small increase 

in fungal growth was seen after 25 hours. Strong antifungal activity was found in the ES<0.5 

fraction (Figure 5c), often comparable to the activity seen in unfractionated nES, but 

stronger than the activity detected in the ES>10 fraction, as indicated by the lower SI values 

(Figure 5a). Although there was no significant difference in activity between ES<0.5 and ES10-

0.5 treated C. krusei and S. cerevisiae (P >0.05), ES<0.5 was found to inhibit fungal growth for a 

longer period of time than the ES10-0.5 fraction (Figure 5b).  

Analysis of physiochemical properties of antifungal activity present in ES<0.5. 

 Thermal stability testing of the ES<0.5 fraction revealed that very strong antifungal 

activity was maintained after heating between 50OC and 100OC for 60 minutes as well as 10 
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cycles of freezing and thawing and this activity significantly increased after 14 days storage 

at room temperature (Figure 6). However, all fractions of ES<0.5 exposed to different 

conditions still retained the potent activity shown in untreated ES<0.5 (Figure 6). 

 

 

Lyophilisation of ES<0.5.   

ES<0.5 also appeared to retain significant antifungal activity after lyophilisation, with 

lyophilised ES<0.5 reconstituted in Milli-Q water (x10 concentrated) completely inhibiting C. 

albicans growth for up to 30 hours (Figure 6). 

Determination of antifungal activity in L. sericata L1 ES fractions. 

Following incubation with all L. sericata L1 ES fractions, there was found to be no 

significant inhibition of fungal growth against C. albicans (supplementary material figures 1 

and 2), indicating that neither L1 ES>10, L1 ES10-0.5, or L1 ES<0.5 were able to inhibit normal C. 

albicans growth.  

Discussion 

The antimicrobial properties of many insects including maggot ES have been widely 

demonstrated against numerous species of bacteria (9, 11, 22), viruses (23) and fungal 

pathogens (16-18), although to our knowledge, this is the first time that antifungal activity 

against several Candida and saccharomyces spp. has been demonstrated and investigated in 

L. sericata nES and its fractions (according to molecular weight). 
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In this investigation, we demonstrate the antifungal activities of L. sericata larval nES 

and ES<0.5 by means of the CFU and OD assay. The findings suggest that there may be a 

number of antifungal components present in L. sericata nES that contribute to the high level 

of activity seen in both assays. Most significantly, this activity includes the presence of at 

least one potent antifungal compound with a low Mr of <0.5 kDa.  

Considering that a number of low-Mr antimicrobial components have previously 

been isolated from other Diptera species, such as 1-lyso-phosphatidylethanolamine (451 Da) 

from Musca domestica (24) and p-hydroxybenzoic acid (138 Da), p-hydroxyphenylacetic acid 

(152 Da) and cyclo propro (194 Da) (10) from L. sericata, it is possible that low-Mr antifungal 

compounds may also be produced by L. sericata.  

  Using the OD assay, a high degree of antifungal activity was detected in all ES 

fractions. The activity seen in the higher molecular weight fractions of ES>10 and ES10-0.5 is 

most likely due to the presence of large (>0.5 kDa) antifungal molecules/peptides, perhaps 

including the recently reported lucimycin (17). The activity seen in these fractions could also 

be derived from other broad spectrum antimicrobial peptides. Drosomycin, isolated from 

Drosophila melanogaster (25) is one such antimicrobial peptide which shows activity against 

fungi and bacteria. The antifungal activity seen in the ES<0.5 fraction however, is most 

certainly due to a novel, smaller Mr compound of molecular weight of <0.5 kDa. 

The high level of activity suggested by the OD assay can be demonstrated by the 

presence of negative SI values. In this study, we have presented a number of data with 

negative SI values, which were typically associated with samples demonstrating antifungal 

activity. These negative SI values resulted from a decrease in sample absorbance, below its 
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starting optical density. Decreases in absorbance due to aberration in instrumentation were 

ruled out by measuring the mean change in absorbance in each well over 18 hours at 30OC 

using a 2x diluted ES10-0.5 sample. This revealed that there was a mean increase in 

absorbance of 0.0 ± 0.0 (n = 192, CI = 4.4%) which could be attributable to the plate reader. 

Decreases in absorbance (like those seen when fungi were exposed to ES fractions) however 

were not observed. It is possible that the decreases in absorbance seen are associated with 

lysis of fungal cells and this could be confirmed following detailed analysis of the mode of 

action of the purified antifungal compounds present. 

Differences observed between the CFU and OD assays can be explained by the 

nature of the different assays. For instance, in the CFU assay, C. albicans is incubated in the 

presence of nES or its fractions. These were then removed to allow growth to occur on an 

agar plate. Therefore, the CFU assay measures colony growth after the first incubation stage 

which takes place in the presence of the antifungal compound/test sample. Thus, during the 

second 24 hour growth period on the agar plate, any suppressive growth components which 

the fungi are exposed to during the first incubation stage are removed (through dilution) 

and fungal growth appears to resume. 

The OD assay however, in which the antifungal agents are present during the 

complete growth period appears to better demonstrate fungal growth kinetics during the 

first incubation stage of the CFU assay, as fungal growth can be monitored within the first 

24 hours. Our data suggest that both the ES>10 and ES10-0.5 fractions may be fungistatic in 

nature against C. albicans. Strong antifungal activity was seen during (OD assay) and 

following (CFU assay) treatment of fungal cells with the ES<0.5 fraction with a 100% reduction 

of fungal cells in the CFU assay, demonstrating fungicidal properties within the ES<0.5 
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fraction. Although the exact mechanisms of the antifungal components in this fraction 

require further investigation, the level of antifungal activity in both assays is clearly greater 

in the ES<0.5 fraction than the ES>10 and ES10-0.5 fractions. For this reason, the ES<0.5 fraction 

was chosen for further investigation.  

 Thermal stability testing of L. sericata nES and ES<0.5 revealed that antifungal activity 

in both was retained despite excessive heating, freezing/thawing and storage at room 

temperature. Heat-stable antibacterial compounds have previously been described in L. 

sericata nES (8) and the perseverance of activity after heating indicates the presence of a 

heat stable antifungal compound in the L. sericata ES<0.5 fraction. This finding however is not 

uncommon, as several peptide and non-peptide based heat stable antifungal compounds 

have been identified in nature, including a broad-spectrum proteinaceous antifungal 

compound produced by Lactobacillus coryniformis (26) and an antimicrobial, β-alanyl-

tyrosin (27).  

Interestingly, the antifungal activity of nES in this study appeared to increase after 

heating to 50OC for 15 minutes compared to untreated nES, a finding also reported by 

Bexfield et al., (8) who attributed this increase in activity to the abrogation of inhibition 

complexes and enhanced activation of the antibacterial factor. Further heating of nES also 

appeared to increase the antifungal activity, with nES also remaining stable after rapid 

freezing and thawing, as well as after prolonged incubation at room temperature. These 

findings support the view that there are small (<0.5 kDa) non-proteinaceous antifungal 

components present in nES.  
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Strong antifungal activity was also retained by ES<0.5 after lyophilisation. Given that 

ES<0.5 appears to retain antifungal activity after freezing, it is perhaps not surprising that 

activity remains after lyophilisation. However the fact that the compound still retains 

activity after all water has been removed from the sample suggests that the compound is 

highly stable when subject to a variety of extreme treatments. 

We also discovered that first instar larval nES possesses no detectable antifungal 

activity. This was surprising, considering that in nature, oviposition of L. sericata eggs occurs 

primarily on carrion and decaying organic matter (15). Our finding that sterile late L2 and L3 

larvae secrete strong antifungal components may suggest that L sericata larvae do not 

possess these antifungal components within the first few hours of hatching. L. sericata 

larvae do however appear to be resistant to cuticle degradation by fungal proteases, while 

adult L sericata promptly die when exposed to sporulating fungi (28). It may be that during 

hatching, the protection provided by the cuticle is adequate in the initial stages of cadaver 

colonisation, with the excretion/secretion of antifungals coinciding with the fungal 

colonisers becoming more established. 

Although the antibacterial properties of L. sericata ES have long been known, the 

antifungal properties have received less attention. Here we show the robust activity of L. 

sericata nES and its fractions against several species of fungi, including C. albicans. Further 

work on the isolation and purification of the active component(s) of the ES<0.5 fraction is 

currently being undertaken with the aim of identifying and chemically defining the small, 

low Mr antifungal found in L. sericata excretions/secretions. Once we have purified and 

isolated the antifungal compound its activity will be assessed against a greater range of 

fungal pathogens and MIC testing will be undertaken. 
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Figure Captions 

Figure 1. Antifungal activity of L. sericata nES and its fractions assessed by means of the CFU assay. 

(A) Percentage growth of C. albicans following incubation with L. sericata nES, ES10-0.5 and ES<0.5 was 

found to be reduced, suggesting significant antifungal activity (P <0.05) as calculated by the CFU 

assay. Incubation of C. albicans with ES>10 however resulted in a significant increase in the number of 

CFUs; * = P <0.05, ** = P <0.005, *** = P <0.001; n = 9. (B) Positive growth control (normal C. 

albicans colony growth). (C) CFU growth following incubation with nES. (D) CFU growth following 

incubation with the ES<0.5 fraction. 

 

Figure 2. The antifungal effect of L. sericata nES on fungal growth: The effect of incubating fungal 

strains in the presence of L. sericata nES was evaluated using the OD assay. A high level of antifungal 

activity was seen after nES treatment of C. albicans (A), with complete inhibition being observed in 

C. krusei (B), C. maltosa (C), S. boulardii (D) and S. cerevisiae (E). No inhibition of C. albicans was 

observed after treatment with L1 nES (F). 

 

Figure 3. Survival index of C. albicans after incubation with heat treated nES, calculated by the OD 

assay and SI. Antifungal activity of nES was not found to be adversely affected by heating, still 

retaining significant activity despite exposure to extreme temperatures. Following heat treatment, 

there was generally found to be a significant increase in activity, compared to untreated nES (n = 9, 

50OC for 30 minutes, n = 8). There was however no significant difference in activity seen in the nES 

fraction heated to 100OC for 15 minutes; * = P <0.05, ** = P <0.005, *** = P <0.001. Negative SI 

values represent a negative difference between samples t mid-log and t0. This reduction in 

absorbance was found to be within the accepted 4.4% confidence value. All SI values are relative to 

100% growth of the positive growth control. 
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Figure 4. Survival index of C. albicans after incubation with nES treated by 10 cycles of freezing and 

thawing and storage at room temperature, calculated by the OD assay and SI. There was found to 

be no significant difference in antifungal activity in nES samples which had been subjected to 10 

cycles of freezing and thawing (n = 8) or storage at room temperature for up to seven days (n = 9). 

However, a statistically significant increase in antifungal activity was seen in samples which had been 

incubated for 14 days at room temperature (P <0.001, n = 9). All SI values are relative to 100% 

growth of the positive growth control. 

 

Figure 5. Effects of L. sericata nES and its fractions on Candida and Saccharomyces spp growth. (A) 

Survival index of Candida and Saccharomyces spp during incubation with nES and its fractions, 

calculated by the OD assay and SI. Both nES and its fractions possess strong antifungal properties, as 

indicated by the low SI across all fractions and fungal species tested compared to 100% growth of 

the positive growth control. There was also found to be a very highly significant difference in fungal 

growth of the positive control (100%) and fungi treated with ES fractions (P <0.001, n = ≥6). A high 

level of sensitivity was seen by C. albicans against ES>10 and ES10-0.5 fractions (B), as well as ES<0.5 (C). 

 

Figure 6. Survival index of C. albicans after incubation with treated ES<0.5, determined by the OD 

assay and SI. As seen with nES, heating, freeze/thawing, storage at room temperature for 14 days  

and lyophilisation appeared to have no significant negative effect on the antifungal activity of L. 

sericata ES<0.5. Negative SI values represent a negative difference between samples t mid-log and t0. 

This reduction in absorbance was found to be within the accepted 4.4% confidence value on two 

occasions. All SI values are relative to 100% growth of the positive growth control. 

 

Page 20 of 32

Wound Repair and Regeneration

Manuscript under review - CONFIDENTIAL

This article is protected by copyright. All rights reserved.



21 
 

Supplementary material figure 1. Survival index of C. albicans during incubation with nES and its 

fractions, calculated by the OD assay and SI. Neither L1 nES nor any of its fractions were found to 

possess antifungal properties, as indicated by the increased SI. P >0.05; n = 9.  

Supplementary material figure 2. C. albicans growth following incubation with L. sericata L1 ES 

fractions. Fungal sensitivity was not observed during incubation with ES>10 and ES10-0.5 fractions (A) or 

ES<0.5 (B). 

Supplementary material table 1. Activity of fungal species against commonly used antifungal 

agents.  

Table indicating activity of amphotericin B, azoles and the ES<0.5 maggot fraction against the fungal 

species tested (As S. boulardii is related to S. cerevisiae it was not included in the table): “+” 

antifungal activity; “-” no antifungal activity. (1) European committee on antimicrobial susceptibility 

testing, antifungal agents, Breakpoint tables for interpretation of MICs. Version 7.0, 2014. (2) 

Enache-Angoulvant, A., Hennequin, C, Invasive Saccharomyces infection: A comprehensive review. 

Clinical infectious diseases, 2005. 41: p1559-68. 
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Figure 1. Antifungal activity of L. sericata nES and its fractions assessed by means of the CFU 
assay. (A) Percentage growth of C. albicans following incubation with L. sericata nES, ES10-0.5 and ES<0.5 was 
found to be reduced, suggesting significant antifungal activity (P <0.05) as calculated by the CFU assay. 

Incubation of C. albicans with ES>10 however resulted in a significant increase in the number of CFUs; * = P 
<0.05, ** = P <0.005, *** = P <0.001; n = 9. (B) Positive growth control (normal <I>C. albicans colony 
growth). (C) CFU growth following incubation with nES. (D) CFU growth following incubation with the ES<0.5 

fraction.  
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Figure 2. The antifungal effect of L. sericata nES on fungal growth: The effect of incubating fungal 
strains in the presence of L. sericata nES was evaluated using the OD assay. A high level of antifungal 

activity was seen after nES treatment of C. albicans (A), with complete inhibition being observed in C. krusei 

(B), C. maltosa (C), S. boulardii (D) and S. cerevisiae (E). No inhibition of C. albicans was observed after 
treatment with L1 nES (F).  
124x75mm (300 x 300 DPI)  
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Figure 3. Survival index of C. albicans after incubation with heat treated nES, calculated by the 
OD assay and SI. Antifungal activity of nES was not found to be adversely affected by heating, still 

retaining significant activity despite exposure to extreme temperatures. Following heat treatment, there was 

generally found to be a significant increase in activity, compared to untreated nES (n = 9, 50OC for 30 
minutes, n = 8). There was however no significant difference in activity seen in the nES fraction heated to 
100OC for 15 minutes; * = P <0.05, ** = P <0.005, *** = P <0.001. Negative SI values represent a 

negative difference between samples t mid-log and t0. This reduction in absorbance was found to be within 
the accepted 4.4% confidence value. All SI values are relative to 100% growth of the positive growth 

control.  
124x99mm (300 x 300 DPI)  
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Figure 4. Survival index of C. albicans after incubation with nES treated by 10 cycles of freezing 
and thawing and storage at room temperature, calculated by the OD assay and SI. There was found 
to be no significant difference in antifungal activity in nES samples which had been subjected to 10 cycles of 
freezing and thawing (n = 8) or storage at room temperature for up to seven days (n = 9). However, a 

statistically significant increase in antifungal activity was seen in samples which had been incubated for 14 
days at room temperature (P <0.001, n = 9). All SI values are relative to 100% growth of the positive 

growth control.  
124x100mm (300 x 300 DPI)  
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Figure 5. Effects of L. sericata nES and its fractions on Candida and Saccharomyces spp growth. 
(A) Survival index of Candida and Saccharomyces spp during incubation with nES and its fractions, 

calculated by the OD assay and SI. Both nES and its fractions possess strong antifungal properties, as 

indicated by the low SI across all fractions and fungal species tested compared to 100% growth of the 
positive growth control. There was also found to be a very highly significant difference in fungal growth of 

the positive control (100%) and fungi treated with ES fractions (P <0.001, n = ≥6). A high level of 
sensitivity was seen by C. albicans against ES>10 and ES10-0.5 fractions (B), as well as ES<0.5 (C).  
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Figure 6. Survival index of C. albicans after incubation with treated ES<0.5, determined by the OD 
assay and SI. As seen with nES, heating, freeze/thawing, storage at room temperature for 14 days and 

lyophilisation appeared to have no significant negative effect on the antifungal activity of L. sericata ES<0.5. 
Negative SI values represent a negative difference between samples t mid-log and t0. This reduction in 

absorbance was found to be within the accepted 4.4% confidence value on two occasions. All SI values are 
relative to 100% growth of the positive growth control.  
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Supplementary Methodology 

Collections of larval secretions. 

Briefly, larvae were transferred from petri dishes to cell culture flasks and incubated with a small 

volume (200 µl/g
-1

 of larvae) of sterile Milli-Q ultrapure water (Millipore UK Ltd., Herefordshire, UK) 

in darkness for one hour at 30
O
C. ES were then collected from the larvae under sterile conditions in a 

class 2 fume hood (Nuaire, Caerphily, UK) and centrifuged at 10,000 g for 5 minutes to remove 

particulates. The supernatant was then retained as native ES (nES) and stored at -20
O
C until required 

for testing. For collection of first instar larval ES (hereafter referred to as L1 ES), 400 µl of sterile 

Milli-Q ultrapure water/g
-1

 of eggs were added to each vial after saline had been removed. Eggs 

were then incubated at 30
O
C and upon hatching, were incubated for a further hour. Collection and 

treatment of L1 ES took place as previously described. 

Optical density (OD) assay for the detection of antifungal activity. 

Fungi were grown and prepared for testing as previously described. A single colony of cultured fungi 

was suspended in 300 µl sterile Milli-Q water and mixed for 15 seconds on a vortex mixer. The cell 

density was then adjusted to 5 x 10
6
 cells/ml and a working fungal suspension prepared by further 

diluting this suspension x100. Fifty µl of 4x concentrated Sabouraud dextrose broth (SDB), prepared 

in 80 mM HEPES, pH 8.5, was added into the wells of a sterile, flat bottom 96-well plate to give a 

final concentration of 1x concentrated Sabouraud dextrose broth (SDB) in 20 mM HEPES. Four µl of 

working fungal suspension was then inoculated into each well and 146 µl of each ES sample was 

then added to give a final volume of 200 µl per well. Plates were then incubated at 30
O
C in a 

Thermoscan FC plate reader (Thermo Fisher Scientific Inc., Loughborough, UK) for between 30 and 

45 hours (depending on species tested) to obtain optimum growth curves demonstrating all phases 

of growth up to stationary phase, with the optical density at 550 (OD550) being measured hourly 
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following 10 seconds agitation. All readings were blanked against time zero to account for 

differences in the starting opacity. 
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Supplementary material figure 1. Survival index of C. albicans during incubation with nES and its 
fractions, calculated by the OD assay and SI. Neither L1 nES nor any of its fractions were found to 

possess antifungal properties, as indicated by the increased SI. P >0.05; n = 9.  
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Supplementary material figure 2. C. albicans growth following incubation with L. sericata L1 ES 
fractions. Fungal sensitivity was not observed during incubation with ES>10 and ES10-0.5 fractions (A) or 

ES<0.5 (B).  
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Supplementary material table 1. Activity of fungal species against commonly used antifungal 
agents. Table indicating activity of amphotericin B, azoles and the ES<0.5 maggot fraction against the fungal 

species tested (As S. boulardii is related to S. cerevisiae it was not included in the table): “+” antifungal 

activity; “-” no antifungal activity. (1) European committee on antimicrobial susceptibility testing, antifungal 
agents, Breakpoint tables for interpretation of MICs. Version 7.0, 2014. (2) Enache-Angoulvant, A., 

Hennequin, C, Invasive Saccharomyces infection: A comprehensive review. Clinical infectious diseases, 
2005. 41: p1559-68.  
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