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Abstract 

The risk of new-onset arrhythmia during pregnancy is high, presumably relating to changes 

in both haemodynamic and cardiac autonomic function. The ability to non-invasively assess 

an individual’s risk of developing arrhythmia during pregnancy would therefore be clinically 

significant. We aimed to quantify electrocardiographic temporal characteristics during the 

first trimester of pregnancy and to compare these with non-pregnant controls.  

Ninety-nine pregnant women and sixty-three non-pregnant women underwent non-invasive 

cardiovascular and haemodynamic assessment during a protocol consisting of various 

physiological states (postural manoeurvres, light exercise and metronomic breathing). 

Variables measured included stroke volume, cardiac output, heart rate, heart rate 

variability, QT and QT variability and QTVI (a measure of the variability of QT relative to that 

of RR). 

Heart rate (p<0.0005, p<0.0005, p<0.0005) and cardiac output (p=0.043, p<0.0005, 

p<0.0005) were greater in pregnant women in all physiological states (respectively for the 

supine position, light exercise and metronomic breathing state), whilst stroke volume was 

lower in pregnancy only during the supine position (p<0.0005). QTe (Q wave onset to T 

wave end) and QTa (T wave apex) were significantly shortened (p<0.05) and QTeVI and 

QTaVI were increased in pregnancy in all physiological states (p<0.0005). QT variability 

(p<0.002) was greater in pregnant women during the supine position, whilst heart rate 

variability was reduced in pregnancy in all states (p<0.0005).   

Early pregnancy is associated with substantial changes in heart rate variability, reflecting a 

reduction in parasympathetic tone and an increase in sympathetic activity. QTVI shifted to a 

less favourable value, reflecting a greater than normal amount of QT variability. QTVI 

appears to be a useful method for quantifying changes in QT variability relative to RR (or 

heart rate) variability, being sensitive not only to physiological state but also to gestational 

age.  We support the use of non-invasive markers of cardiac electrical variability to evaluate 

the risk of arrhythmic events in pregnancy, and we recommend the use of multiple 

physiological states during the assessment protocol. 

  



 
 

1. Introduction 

Women tend to have higher intrinsic heart rates (Jose & Collison, 1970) and more prolonged 

QT intervals (Molnar et al., 1996) compared with men. Some cardiac arrhythmias are also 

more prevalent in women, such as the increased incidence of supraventricular tachycardias 

(SVT) (Porter et al., 2004). The risk of new onset SVT is further elevated during normal 

pregnancy (Kron & Conti, 2007) with 24 per 100,000 pregnancies experiencing SVT (Li et al., 

2008), as is the incidence of symptomatic ectopic activity, with up to 50% of pregnant 

women experiencing non-sustained ventricular arrhythmias at some point during their 

pregnancy (Kron & Conti, 2007). The incidence of pregnancy-induced arrhythmia appears to 

be uniform throughout pregnancy with perhaps an increased frequency during late 

pregnancy (Shotan et al., 1997; Nakagawa et al., 2004), although information on this is 

limited. This elevated incidence is presumably related to changes in both cardiac autonomic 

function (for supraventricular events) and in ion channel conduction (for ventricular events) 

within the myocardium. Pregnancy is also associated with substantial haemodynamic 

changes, which can cause myocardial stretching and may thus promote arrhythmogenic 

events (Kanoupakis & Vardas, 2005; Adamson & Nelson-Piercy, 2007). The ability to non-

invasively assess (and act upon) an individual’s risk of developing arrhythmia during 

pregnancy would therefore be clinically significant. 

Changes in autonomic activity during pregnancy are poorly documented (Kuo et al., 2000). 

The general consensus is that heart rate variability (HRV, a surrogate marker of cardiac 

autonomic control that describes beat-to-beat variation in cardiac (RR) interval) decreases 

with advancing gestation (Speranza et al., 1998; Kuo et al., 2000; Chamchad et al., 2007). 

However, these findings are mainly based on measurements taken during late pregnancy 

and then compared with non-pregnant controls. The extent of changes in cardiac autonomic 

function during earlier stages of pregnancy is not known, but marked increases in 

sympathetic activity have been observed in other body systems within the first few weeks of 

conception (Jarvis et al., 2012). Clearly a comprehensive description of normal cardiac 

autonomic changes from the earliest stages of pregnancy would be necessary in the context 

of developing a biomarker of antenatal arrhythmogenic risk (Nakagawa et al., 2004).  



 
 

The QT interval is a measure of ventricular depolarisation and repolarisation within the 

cardiac cycle, which is strongly influenced by heart rate as well other chronotropic factors. 

The QT interval has not been extensively studied during pregnancy. QT interval shortens 

during the second-half of pregnancy and remains reduced for up to three days post-partum, 

reflecting its heart rate-dependence (Baumert et al., 2010). The QT variability index (QTVI; 

Berger et al., (1997)) extends the concept of HRV to a comparison of the relative 

magnitudes of temporal variability within the electrocardiographic RR and QT intervals. 

QTVI is a good indicator of elevated risk for ventricular arrhythmic events – for example, 

QTVI is associated with an independent risk for ventricular tachycardia or ventricular 

fibrillation events (Haigney et al., 2004). QTVI has not been assessed during pregnancy, 

although Baumert et al. (2010) observed that QT variability is higher by late pregnancy (post 

28 weeks gestation) in comparison with non-pregnant women. 

The aim of this study was to quantify changes in RR and QT variabilities (including QTVI) 

during relatively early stages of pregnancy (the end of the first trimester) in the context of 

assessing their use as possible biomarkers for antenatal maternal arrhythmia risk. 

 

2. Method 

2.1 Participants 

2.1.1 Non-pregnant: Eligible participants were women aged between 18 and 40 years, were 

not pregnant at the time of measurement, and had no history of cardiovascular or chronic 

respiratory disease, sleep apnoea or central or peripheral nervous system disorders. Written 

informed consent was taken at the initial meeting and participants were provided with a 

participant information sheet. Ethical approval was obtained from the College of 

Engineering’s Applied Sport and Technology Exercise and Medicine (A-STEM) Ethics 

Committee and all procedures were conducted in accordance with the Declaration of 

Helsinki. 

2.1.2 Pregnant: Eligible participants were apparently healthy pregnant women aged 18 

years or over, with no existing complications of pregnancy at their 12-week dating scan.  

Participants were recruited via a number of methods (via direct contact at the antenatal 



 
 

clinic, strategically placed posters, advertisements in local newspapers and via email). 

Exclusion criteria were: a history of cardiovascular or chronic respiratory problems, sleep 

apnoea, or a central/peripheral nervous system disorder.  Recruited participants were 

provided with details about the study, including practical requirements and potential risks, 

and were given one week to consider whether they wished to take part. Individuals who 

wanted to participate gave their written consent. Participants were informed that they were 

free to leave the study at any time and this would not affect their standard antenatal care. 

Ethical approval was obtained from the local (South West Wales) Research Ethics 

Committee and all procedures were conducted in accordance with the Declaration of 

Helsinki. 

2.2 Physiological measurements 

HRV can be quantified reproducibly during rest and exercise (McNarry & Lewis, 2012) and 

our previous observations indicate that this is also generally true for beat-to-beat 

haemodynamic variables (D'Silva et al., 2014). Consequently single physiological 

assessments were considered appropriate at each defined stage of the assessment 

schedule. Physiological monitoring was carried out on four occasions for pregnant 

participants: at 12-16, 24 -26 and 34-36 weeks gestational age, corresponding to the end of 

the three trimesters (T1, T2, T3) and also at 12-weeks post-partum (PP).  Non-pregnant 

participants underwent physiological assessment on one occasion only. All participants were 

asked to perform a series of postural manoeuvres and various interventions designed to 

provoke changes in the cardiovascular and autonomic nervous systems. Participants were 

asked to refrain from drinking tea, coffee, alcohol or a heavy meal within 2 hours prior to 

assessment and to not exercise within 24 hours prior to assessment. 

2.2.1 Experimental protocol: Participants were first asked to lie in a 45o reclined-supine 

position for six minutes, after which they were asked to stand for the same duration.  

Participants then performed a light stepping exercise for six minutes, using the Nintendo Wii 

games console and ‘balance board’ platform (to provide a visual stimulus for exercise).  This 

was followed by a six minute seated recovery period.  Participants then undertook a three 

minute cognitive test in the seated position (to provoke a sympathetic autonomic response), 

during which they were asked to repeatedly subtract the number seventeen from a four 



 
 

digit number.  The arithmetic test was carried out in the participant’s head (they did not 

need to give a verbal answer). Participants then breathed in time to a metronome for three 

minutes at a rate of 20 breaths per minute (designed to initiate a parasympathetic 

response) and then to return to their normal (spontaneous) breathing pattern for three 

minutes.  The total duration of the measurement protocol was thirty-three minutes. 

2.2.2 Physiological variables quantified: Participants underwent continuous Holter ECG 

monitoring (Pathfinder/Lifecard Digital system; Spacelabs Medical Ltd., UK), providing ECG 

data with a 1024 Hz sampling frequency. The ECG recordings were assessed for quality by 

human observation using the Pathfinder system, primarily to verify the absence of excessive 

noise or artefact. Beat-to-beat cardiac interval (RR) was measured automatically by the 

Pathfinder system (using a proprietary algorithm) and visually assessed to identify and 

delete any obvious artefacts (which occurred infrequently, with less than 0.1% of beats 

edited in this way). Heart rate variability (HRV) was quantified in terms of RMSSD (square 

root of the mean squared differences in successive RR intervals), SDRR (standard deviation 

of the RR intervals), LF (low frequency power), HF (high frequency power), VLF (very low 

frequency power), LFn (normalised low-frequency component), HFn (normalised high-

frequency component) and Total Power.  

QTe (Q wave onset to T wave end), QTa (Q wave onset to T wave apex) and RR intervals 

were measured for each sinus beat and exported for further analysis using the Reynolds 

Research Tools software (Del Mar Reynolds Medical Ltd., UK). QTeVI and QTaVI were 

calculated according to the equation described by Berger et al (1997):  

QTVI = Log10[(QTv/QTm2)/(RRv/RRm2)] 

where QTv and RRv are the variabilities of QT and RR, respectively, and QTm and RRm are 

the mean values of these parameters for each defined period.  

RMSSDQT (square root of the mean squared differences in successive QT intervals) and 

SDQT (standard deviation of the QT intervals) were also calculated. The Task Force 

Haemodynamic monitor (CNSystems Medizintechnik GMBH, Austria) recorded beat-to-beat 

cardiovascular performance via impedance cardiography (transthoracic bioelectrical 

impedance analysis) and beat-to-beat systolic and diastolic blood pressures (SBP, DBP) via 



 
 

vascular unloading photoplethysmography. The following variables were also determined; 

heart rate (HR), stroke volume (SV), cardiac output (CO), total peripheral resistance (TPR), 

compliance, stiffness, left ventricular ejection time (LVET) & end diastolic index (EDI).  

2.3 Statistical Analysis 

Normality of the data was assessed using the Kolmogorov-Smirnov test. Independent 

samples t-tests were used to assess between group differences at each stage of the 

protocol. Data are presented for the non-pregnant participants (NP) and for the first 

antenatal measurement (T1). Results for the gestational changes will be presented 

elsewhere. Statistical significance was accepted as p<0.05. All data are presented as Mean ± 

SEM (standard error of the mean).  

 

3. Results 

3.1 Participant characteristics 

Ninety-nine pregnant women completed the first antenatal measurement (T1) at a mean 

gestational age of 15.1 ± 1.7 weeks and sixty-three non-pregnant participants were 

assessed. Participant characteristics are displayed in Table 1. 49.5% of pregnant women 

were nulliparous and 50.5% primiparous or multiparous. 

Table 1. Participant characteristics (mean ± SD) 

 
Non-pregnant 

(n=63) 

T1 

(n=99) 

Age (years) 23.5 ± 5.6 29.1 ± 4.9 

Height (cm) 167.1 ± 6.7 164.0 ± 5.3 

Weight (kg) 63.9 ± 9.8 68.8 ± 14.1 

BMI (kg·m-2) 22.9 ± 2.9 25.6 ± 5.2 

 

3.2 Haemodynamics 

Figure 1 compares the HR, SV, CO and SBP for pregnant and non-pregnant groups during the 

supine, exercise and metronomic breathing states. In summary: (1) HR (p<0.0005, p<0.0005, 

p<0.0005 respectively for physiological state) and CO (p=0.043, p<0.0005, p<0.0005) were 



 
 

significantly greater in pregnant women than in non-pregnant controls in all three states; (2) 

SV was lower during pregnancy but only in the supine position (p<0.0005); (3) TPR was 

lower during pregnancy in all states (p=0.004, p<0.0005, p<0.0005); (4) Blood pressure 

(MBP, SBP, DBP) (p=0.010, p=0.008, p=0.011) and EDI (p<0.001) were significantly reduced 

in pregnancy only during metronomic breathing; (5) Compliance (p=0.001), EDI (p<0.0005) 

and LVET (p<0.0005) were all reduced in pregnancy but only in the supine position (Table 2). 

a.)  

 

b.)  

 

c.)  

 

d.)  

 

* Statistically different from non-pregnant values. 

Figure 1. Haemodynamic variables during the supine, exercise and metronomic breathing states for pregnant 

and non-pregnant groups. Box plots display the median and upper/lower quartiles of the data, whilst the 

whiskers show the maximum and minimum values. Solid boxes represent non-pregnant participants and 

shaded bars represent pregnant participants.  

* 

* 

* * 

* 

* 

* 

* 



 
 

 

3.3 QT Variability 

Figure 2 compares QTe, RMSSDQTe, SDQTe and QTeVI for pregnant and non-pregnant 

groups during the supine, exercise and metronomic breathing states. All QTa variables can 

be found in Table 3. In summary: (1) QTe and QTa were significantly shortened in pregnant 

women than in non-pregnant controls in the supine position (p<0.0005, p<0.0005), during 

exercise (p=0.013, p=0.012) and during metronomic breathing (p=0.001, p=0.001); (2) QTeVI 

and QTaVI were significantly increased (became less negative) with pregnancy in all 

physiological states (p<0.0005); (3) RMSSDQTe and SDQTe were significantly greater in 

pregnant women than in non-pregnant controls but only in the supine position (p<0.0005, 

p=0.002); (4) RMSSDQTa was greater in the supine posture (p=0.009) and reduced during 

exercise (p<0.0005) (Table 3).  

 

3.4 Heart Rate Variability 

Figure 3 compares the RMSSD, SDRR, HFn, LFn and Total Power for pregnant and non-

pregnant groups during the supine, exercise and metronomic breathing states. In summary: 

(1) RR (p<0.0005), RMSSD (p<0.0005), SDRR (p<0.0005), Total Power (p<0.0005, p=0.014, 

p<0.0005), HF (p<0.0005, p=0.002, p<0.0005), and LF (p<0.0005) (Table 4) were lower in 

pregnant women than in non-pregnant controls in all three states; (2) LFn was higher during 

pregnancy but only in the supine position (p<0.0005); (3) HFn and VLF were lower during 

pregnancy in the supine position (p<0.0005, p<0.0005 respectively) and during metronomic 

breathing (p=0.015, p<0.0005 respectively) (Table 4). 

  



 
 

a.)  

 

b.)  

 

c.) 

 

d.)  

 

* Statistically different from non-pregnant values. 

 

Figure 2. QT variables during supine, exercise and metronomic breathing states for pregnant and non-pregnant 

groups. Box plots display the median and upper/lower quartiles of the data, whilst the whiskers show the 

maximum and minimum values. Solid boxes represent non-pregnant participants and shaded bars represent 

pregnant participants.  

* * * * 

* 

* 

* 

* 



 
 

* Statistically different from non-pregnant values. 

Figure 3. Heart Rate Variability variables during the supine, exercise and metronomic breathing states for 

pregnant and non-pregnant groups. Box plots display the median and upper/lower quartiles of the data, whilst 

the whiskers show the maximum and minimum values. Solid boxes represent non-pregnant participants and 

shaded bars represent pregnant participants.  

a.) 

 

b.)  

 

c.) 

 

d.) 

 
 

e.) 

 

 

* 
* 

* * * 
* 

* 
* 

* 

* 
* 
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Table 2. Haemodynamic variables during the supine, exercise and metronomic breathing states for pregnant 

and non-pregnant groups (mean ± SEM).  

 Supine Exercise Metronomic Breathing 
 NP T1 p NP T1 p NP T1 p 

HR (bpm) 65.5± 1.3 83.0 ± 1.0 * 91.6 ± 1.4 103.8 ± 1.3 * 75.1 ± 1.5 84.1 ± 1.1 * 
SV (ml) 101.4 ± 2.4 86.2 ±1.5 * 93.4 ± 2.0 93.2 ± 1.3 0.924 88.7 ± 2.0 85.9 ± 1.1 0.228 

CO (L·min-1) 6.6 ± 0.2 7.1 ± 0.1 0.043 8.5 ± 0.2 9.6 ± 0.1 * 6.6 ± 0.1 7.2 ± 0.1 * 

TPR 
(dyn.sec.cm-5) 

1025 ± 32 915 ± 18 0.004 839 ± 21 721 ± 13 * 1047 ± 23 906 ± 15 * 

Compliance 

(ml·mmHg-1) 
2.6 ± 0.1 2.3 ± 0.05 0.001 2.2 ± 0.1 2.0 ± 0.05 0.107 2.1 ± 0.1 2.2 ± 0.04 0.608 

Stiffness 

(mmHg·ml-1) 
0.4 ± 0.01 0.5 ± 0.01 0.001 0.5 ± 0.02 0.5 ± 0.01 0.105 0.5 ± 0.01 0.5 ± 0.01 0.608 

SBP (mmHg) 111.5 ± 1.3 108.5 ± 1.0 0.065 117.5 ± 2.2 118.9 ± 1.6 0.524 115.2 ± 1.4 110.4 ± 1.2 0.008 
DBP (mmHg) 71.0 ± 1.0 69.8 ± 0.8 0.345 71.7 ± 1.4 70.4 ± 1.1 0.454 72.8 ± 1.0 69.6 ± 0.9 0.011 
MBP (mmHg) 83.0 ± 1.1 81.5 ± 0.9 0.299 87.1 ± 1.6 86.6 ± 1.2 0.807 86.2 ± 1.1 82.5 ± 1.0 0.010 
LVET (ms) 319.4 ± 2.1 290.2 ± 1.8 * 271.0 ± 2.0 255.3 ± 1.6 * 287.6 ± 2.9 282.9 ± 2.0 0.169 

EDI (ml·m-2) 93.9 ± 1.9 79.8 ± 1.3 * 92.9 ± 1.4 91.2 ± 1.1 0.350 88.5 ± 1.5 82.3 ± 1.1 0.001 

 

* p < 5x10-4 

 

 

Table 3. QT variables during the supine, exercise and metronomic breathing states pregnant and non-pregnant 

groups (mean ± SEM). 
 

 Supine Exercise Metronomic Breathing 
 NP T1 p NP T1 p NP T1 p 

QTe (ms) 376.4 ± 3.8 346.3 ± 2.3 * 347.2 ± 3.3 337.3 ± 2.2 0.013 358.9 ± 3.9 344.4 ± 2.3 0.001 
QTeVI -1.4 ± 0.04 -0.9 ± 0.03 * -0.7 ± 0.04 -0.4 ± 0.03 * -1.1 ± 0.05  -0.8 ± 0.04 * 
RMSSDQTe (ms) 8.9 ± 0.4 10.6 ± 0.2 * 12.6 ± 0.2 12.3 ± 0.2 0.322 9.2 ± 0.4 9.9 ± 0.3 0.120 
SDQTe (ms) 7.4 ± 0.3 8.4 ± 0.2 0.002 9.8 ± 0.2 10.1 ± 0.1 0.053 7.2 ± 0.3 7.5 ± 0.2 0.361 
QTa (ms) 312.4 ± 3.5 284.5 ± 2.1 * 286.7 ± 2.7 278.3 ± 1.9 0.012 295.8 ± 3.5 282.7 ± 2.1 0.001 
QTaVI -1.3 ± 0.04 -0.9 ± 0.03 * -0.7 ± 0.04 -0.4 ± 0.03 * -1.0 ± 0.04 -0.7 ± 0.03 * 
RMSSDQTa (ms) 8.6 ± 0.2 9.3 ± 0.2 0.009 10.6 ± 0.2 9.8 ± 0.1 * 9.5 ± 0.2 9.3 ± 0.2 0.475 
SDQTa (ms) 6.8 ± 0.2 7.2 ± 0.2 0.065 8.3 ± 0.1 8.4 ± 0.1 0.481 7.1 ± 0.2 7.0 ± 0.2 0.564 

 

* p < 5x10-4 

  



 
 

Table 4. Heart rate variability indices during the supine, exercise and metronomic breathing states pregnant 

and non-pregnant groups (mean ± SEM). 

 

 Supine Exercise Metronomic Breathing 
 NP T1 p NP T1 p NP T1 p 

RMSSD (ms) 77.0 ± 6.3 29.9 ± 1.5 * 28.3 ± 1.6 19.3 ± 0.9 * 53.4 ± 3.7 29.5 ± 1.5 * 
SDRR (ms) 83.9 ± 4.4 44.3 ± 1.6 * 51.9 ± 2.5 39.5 ± 1.6 * 73.0 ± 4.2 50.2 ± 2.1 * 
RR (ms) 951.6 ± 20.6 733.0 ± 8.7 * 710.5 ± 11.3 622.2 ± 7.4 * 833.8 ± 19.3 683.4 ± 9.5 * 
HFn 0.44 ± 0.01 0.37 ± 0.01 * 0.32 ± 0.01 0.31 ± 0.01 0.317 0.40 ± 0.01 0.37 ± 0.01 0.015 
LFn 0.38 ± 0.01 0.43 ± 0.01 * 0.49 ± 0.01 0.49 ± 0.01 0.817 0.42 ± 0.01 0.43 ± 0.01 0.582 
Total Power 
(ms2) 

146.0 ± 4.4 106.4 ± 1.9 * 111.3 ± 2.3 104.2 ± 1.9 0.014 121.9 ± 3.2 99.3 ± 1.7 * 

HF (ms2) 14.9 ± 1.1 6.9 ± 0.4 * 5.7 ± 0.3 4.5 ± 0.2 0.002 10.5 ± 0.7 7.0 ± 0.4 * 
LF (ms2) 12.5 ± 0.8 7.8 ± 0.3 * 8.9 ± 0.5 7.0 ± 0.3 * 11.0 ± 0.8 7.9 ± 0.4 * 
VLF (ms2) 112.4 ± 2.7 88.1 ± 1.6 * 93.4 ± 1.9 89.3 ± 1.6 0.073 95.7 ± 2.1 80.7 ± 1.1 * 

 

* p < 5x10-4 

 

 

4. Discussion 

We measured cardiac performance indices continuously during a protocol consisting of 

various standardised physiological states, thus providing a comprehensive characterisation 

of cardiovascular and haemodynamic responses to ‘early’ pregnancy. The main findings 

were that, compared with non-pregnant values, early pregnancy is associated with (1) 

increased heart rate and cardiac output in all physiological states, (2) decreased stroke 

volume but only in the supine position, (3) shortening of QTe and QTa intervals in all 

physiological states, (4) increases in QTeVI and QTaVI in all physiological states, (5) increases 

in RMSSDQTe and SDQTe only in the supine position, and (6) reductions in RMSSD, SDRR,  

and HFn in all states.   

Previous studies have strongly debated the time course of haemodynamic changes during 

early pregnancy (Capeless & Clapp, 1989; Duvekot et al., 1993).  We therefore also 

measured haemodynamic changes, allowing us to characterise the influence of our protocol 

on conventional measures of cardiovascular performance. We observed (1) an increase in 

heart rate and a decrease in stroke volume in the supine position (suggesting that at this 

stage of pregnancy heart rate is the predominant mechanism for increasing cardiac output), 

(2) a reduction in total peripheral resistance (TPR) during pregnancy in all states, (3) a 

reduction in end diastolic volume index (EDI) during the supine posture and in response to 



 
 

metronomic breathing, (4) a reduction in left ventricular ejection time (LVET) in the supine 

posture and exercise state, and (5) a reduction in blood pressure in pregnancy but only 

during metronomic breathing. Consistent with our findings, Duvekot et al. (1993) found an 

increase in cardiac output, caused by a rise in heart rate, by the tenth week of gestation. 

Similarly, Capeless & Clapp (1989) found a rise in cardiac output by 8 weeks gestation in 

comparison to pre-conception values; however this rise was predominantly as a result of 

increased stroke volume as opposed to heart rate. In contrast to our results Mahendru et al. 

(2014) found no increase in cardiac output, despite an increase in heart rate at 6 weeks 

gestation. The early time point at which this measurement was taken may be the reason for 

this difference. Our observation of a reduction in TPR is also consistent with other authors 

(Duvekot et al., 1993; San-Frutos et al., 2011). The reduction in blood pressure observed 

during metronomic breathing may be associated with a reduction in parasympathetic 

activity with pregnancy.  

Baumert at al. (2010) have previously found that QT interval is shortened by the second half 

of pregnancy (post 28 weeks) in comparison to non-pregnant controls but they found no 

changes at earlier gestational ages. These authors also observed that rate-corrected QT 

(QTc) was not changed by pregnancy and so concluded that the duration of ventricular 

repolarisation is entirely rate-dependent. Gondoni et al. (2011) found a strong relationship 

between ejection fraction and QTc and since it is well documented that ejection fraction is 

unaltered with pregnancy (Capeless & Clapp, 1989), this may explain the unaltered QTc with 

gestation. We have extended these observations by showing that uncorrected QTe and QTa 

are significantly reduced even by the end of the first trimester and notably in all 

physiological states. This suggests that pregnant women are able to maintain cardiac 

repolarisation at a safe level, during rest and light exercise, without exposing them to high 

risk arrhythmia. We did not separately assess rate-corrected QT as our objective here was to 

examine QT variability and (using QTVI) the relative magnitudes of QT and RR variabilities.   

The HRV indices RMSSD, SDRR and HFn were all reduced during pregnancy, whilst LFn 

increased. Notably HFn was reduced in both the supine and metronomic breathing states, 

both of which are associated with dominant parasympathetic control. Thus these changes in 

HRV appear to reflect a substantial reduction in parasympathetic tone and an increase in 

sympathetic activity by the end of the first trimester of pregnancy.  Sympathetic activity has 



 
 

previously been noted to increase by late pregnancy (measured using HRV) (Speranza et al., 

1998; Kuo et al., 2000; Voss et al., 2000), with sympathetic hyperactivity at this stage 

indicating an increased risk of hypertension and pre-eclampsia (Greenwood et al., 2003) but 

its relative influence during early pregnancy has not been convincingly determined. Jarvis et 

al. (2012) observed marked increases in systemic sympathetic neural activity within the first 

weeks of conception (via muscle sympathetic neural activation). Conversely, Kuo et al. 

(1997) reported a higher vagal and a lower sympathetic modulation in three different 

recumbent positions (in particular the supine position) during pregnancy.  An increase in 

baseline (supine) sympathetic activity during the early stages of pregnancy might have 

advantageous effects as it enhances the ability of pregnant women to adapt to 

haemodynamic changes and thus reduces the risk of orthostatic hypotension upon standing. 

Interestingly, LFn (a surrogate measure of sympathetic activity) was the same for both 

pregnant and non-pregnant women during light exercise, despite a further increase in 

cardiac output in the pregnant participants. This suggests that light exercise poses no 

increased risk to women during the early stages of pregnancy. Further longitudinal 

characterisations of HRV are therefore required to clarify the dynamics of cardiac autonomic 

control during pregnancy. 

Whether these observed alterations in autonomic control of heart rate (supraventricular 

influences) also influence ventricular myocardial repolarisation (i.e. QT interval duration and 

variability) is yet to be clearly determined. Myocardial repolarisation might be influenced by 

pathological, physiological or other structural changes in the heart, or by autonomic neural 

activity changes (Piccirillo et al., 2007). Using an analogous approach to the time-domain 

assessment of HRV we assessed QT variability in terms of two statistical measures: 

RMSSDQTe and SDQTe. We found that in the supine position QT variability was increased by 

the end of the first trimester in comparison to non-pregnant controls, whilst no changes 

were seen during exercise or metronomic breathing states. It might be speculated that the 

autonomic nervous system could influence ventricular repolarisation independently of the 

sino-atrial node, considering the observed reduction in parasympathetic activity during the 

first trimester, as studies have shown parasympathetic withdrawal to have an important 

influence on the shortening of the QT interval at higher heart rates during exercise 

(Magnano et al., 2002) and therefore the same mechanism might be relevant to the 



 
 

physiological changes during pregnancy. However ventricular repolarisation is thought to be 

predominantly controlled by the beta-adrenergic system and any vagal effects are indirect 

and secondary to changes in heart rate (Can et al., 2002). Advancing gestation is also 

associated with hypervolaemia, leading to structural changes in the left ventricle. These 

changes may alter specific regions and layers of the ventricular tissue thus altering ion 

channel activity.  

The QT variability index (QTVI), first proposed by Berger et al. (1997), describes the relative 

magnitude of temporal variability in myocardial depolarisation and repolarisation phases. It 

has been suggested that QTVI can be used to quantify the relative autonomic influences on 

the atrial and ventricular myocardium during rest and exercise, and that it might reflect the 

balance between heart rate-dependent and heart rate-independent influences on the QT 

interval (Lewis & Short, 2008). Previously an increase in QTVI has been associated with a 

greater susceptibility to ventricular arrhythmias and sudden death (Berger et al., 1997; Atiga 

et al., 2000). However, ours is the first study to investigate the influence of pregnancy on 

QTVI. We found that QTVI was elevated as a result of early physiological changes associated 

with pregnancy in all physiological states. QTVI was highest during exercise in both the 

pregnant and non-pregnant women, further increased in the pregnant women. This increase 

in QTVI suggests that QT variability is more predominant over changes in RR variability at 

this time, indicative of a parasympathetic shift in the sympatho-vagal balance with 

pregnancy. As pregnancy is associated with an increase in arrhythmogenic events (Siu et al., 

2001; Nakagawa et al., 2004; Li et al., 2008) the use of QTVI as a potential biomarker for 

screening patients at such an early stage might be of great clinical importance. QTVI is 

known to be further increased with exercise (Lewis et al., 2006; Lewis & Short, 2008). At 

moderate intensities of exercise Lewis et al. (2006) reported a progressive increase in QTVI 

with work rate. Healthy non-pregnant individuals typically have a QTVI value of around -1 or 

lower at rest: Dobson et al. (2013) reported a mean QTVI of -1.34 in 173 healthy volunteers 

(unpublished data). Consistent with Dobson et al. (2013) we noted non-pregnant values of -

1.4 and -1.3 (for QTeVI and QTaVI respectively) but higher values of around -0.9 in pregnant 

women. Despite increased values with pregnancy, at no point did QTVI become positive or 

exceed a value of 0.1, a value proposed as a discriminator for higher risk of arrhythmogenic 

events (Atiga et al., 1998). This indicates that QT variability is not markedly influenced by 



 
 

pregnancy during the first trimester, suggesting that it is unlikely to be the cause of the 

increased risk of arrhythmia in pregnancy. It remains to be seen whether QTVI increases 

further during later gestation, and more work is needed to evaluate whether QT variability 

might be the cause of increased arrhythmia susceptibility during that stage of pregnancy. 

Our study has shown that QTVI is a sensitive marker of not only physiological state but also 

of gestational age and therefore its use to determine arrhythmogenic events in normal and 

abnormal pregnancy should be considered. Using QTVI as a marker of arrhythmogenic 

activity during pregnancy might enable non-invasive assessment of the need for anti-

arrhythmic treatment as well as quantifying the influence of lifestyle factors such as exercise 

on cardiac electrical function.  

 

Limitations 

We used late first trimester/early second trimester values as a baseline measure to 

characterise the extent of cardiovascular changes within ‘early’ pregnancy. Ideally we would 

have recruited women prior to conception because it is known that physiological changes 

are evident as early as the sixth week of gestation, and this would have enabled a true 

assessment of ‘early’ pregnancy changes. However, owing to time constraints and a specific 

period of funding for our work this was not feasible in the present study. We did not assess 

heart rate-corrected QT and were thus not able to comment on the likely determinants of 

QT interval shortening at this early stage of pregnancy.  

 

Conclusion 

The early stages of pregnancy are associated with substantial changes in cardiac autonomic 

control, with reductions in parasympathetic tone and increases in sympathetic activity. 

Whether these changes influence ventricular myocardial repolarisation and thus predispose 

women to arrhythmogenic events is yet to be determined. We have shown that QTVI is a 

sensitive marker of not only physiological state but also of gestational age. The use of QTVI 

as a marker of arrhythmia risk during pregnancy is feasible and could provide clinically 

important information regarding the need for prophylactic anti-arrhythmia treatment. We 



 
 

have used unique and novel concepts to assess cardiovascular responses to early pregnancy. 

These non-invasive methods have great clinical potential in predicting and identifying 

normal and abnormal responses to increased physiological stress, such as occur during 

orthostatic manoeuvre and light intensity exercise. 
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