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Abstract: The deformation of structural alloys presents problems for power plants and 
aerospace applications due to the demand for elevated temperatures for higher efficiencies 
and reductions in greenhouse gas emissions. The materials used in such applications 
experience harsh environments which may lead to deformation and failure of critical 
components. To avoid such catastrophic failures and also increase efficiency, future designs 
must utilise novel/improved alloy systems with enhanced temperature capability. In 
recognising this issue, a detailed understanding of creep is essential for the success of these 
designs by ensuring components do not experience excessive deformation which may 
ultimately lead to failure. To achieve this, a variety of parametric methods have been 
developed to quantify creep and creep fracture in high temperature applications. This study 
reviews a number of well-known traditionally employed creep lifing methods with some 
more recent approaches also included. The first section of this paper focuses on predicting 
the long-term creep rupture properties which is an area of interest for the power generation 
sector. The second section looks at pre-defined strains and the re-production of full creep 
curves based on available data which is pertinent to the aerospace industry where components 
are replaced before failure. 

Keywords: creep; creep lifing methods; long-term creep behaviour; stress rupture;  
the Wilshire equations 
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1. Introduction 

There are many applications where materials are required to operate for long periods in severe 
environments of high stresses and temperatures without failure. Examples of this are the power 
generation industry and the gas turbine sector where components are experiencing higher temperature 
environments as designers seek to increase thermal efficiency. Because of these harsh engineering 
environments, both areas are dependent on appropriate methods of creep lifing even though the specific 
requirements of each industry differ significantly. In the power generation sector, a significant part of 
the industry entails static parts experiencing pressure loads where creep is often the most critical 
damage mechanism. These plants are designed to operate for periods in excess of 100,000 h and often 
to 250,000 h, and, with vast amounts of material being required, it is clear there is an opportunity for 
significant cost savings through the employment of new alloys. However, working over such long 
timeframes means that it is not feasible to conduct 100,000 h creep tests on new materials in order to 
establish safe operating stresses for the life of the plant. Therefore, appropriate extrapolation methods 
are required in order to derive crucial design stress limitations from short term creep tests.  

Many approaches to predicting creep have been proposed in an effort to infer long-term deformation 
behaviour. As such, parametric creep methods play a key role in design as they are essential in 
predicting the specific life of high temperature components [1,2]. Each of these approaches is a 
technique where short-term creep-rupture data can be extrapolated to longer-term scenarios using a 
time-temperature parameter. This concept is based on the assumption that all creep-rupture data for a 
given material can be combined to produce a single “master curve” where stress is mapped against a 
parameter that combines the effect of time and temperature. This can then be used to extrapolate to 
longer time frames such as those experienced in the power generation sector. 

Contrastingly, for a gas turbine engines there are different design requirements due to the number of 
rotating parts which are more likely to fail from fatigue rather than creep. However, fatigue damage 
models rely on input stresses, which are dependent on stress relaxation, governed by creep deformation. 
Accurate creep models which describe creep strain evolution, particularly for relatively low creep 
strains, are therefore extremely desirable. Clearly, the goal of both industries is an all encompassing 
model capable of each of these requirements whilst being transferable across materials and providing 
confidence through supportive observations from experimental data. This is a goal which thus far has 
eluded engineers. Indeed, as recently as 2010 the extrapolation of creep data was rated as the most 
important challenge in the UK Energy Materials Strategic Research [3].  

This paper critically reviews some of the most commonly used creep lifing methods available. It is 
structured with two themes; models capable of creep life extrapolation, and, models able to re-produce 
full creep curves based on limited creep data. Creep life extrapolation methods are evaluated using the 
National Institute of Materials Science (NIMS) creep data of a well-understood power generation 
alloy, Grade 22 Steel (2.25Cr-1Mo) [4]. Reproduction of creep curves from limited data is undertaken 
for the aerospace alloy Titanium 834. It should be noted that this paper is not an exhaustive review of 
all possible creep models but rather an overview and evaluation of the most commonly employed creep 
models. Previous studies have undertaken more thorough reviews of traditional methodologies providing 
guidance on acceptability criteria [5,6]. These criteria assisted in the assessment of methodologies 
explored in this paper prior to application of a mean squared error-based approach.  
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2. Approaches to Creep Life Predictions  

Generally, the traditional approach to creep lifing has been based on a power law relationship 
between temperature, T and stress, σ. Arrhenius [1] relates these parameters to the creep rate through:  

έs α exp(−Qc/RT) (1) 

and by Norton [1]:  

έs α σn (2) 

where έs is the secondary or steady-state creep rate; Qc is the activation energy for creep; n is the stress 
exponent and R is the gas constant. Combining these two relationships yields the basic power law 
Equation (1): 

έs = A∙σn∙exp(−Qc/RT) (3) 

where A is a proportionality constant. The initial assumption when this law was introduced was that Qc 
and n are constants. However, after further research, it was observed that these “constants” varied 
according to the imposed creep conditions and mechanisms involved in different stress and 
temperature regimes [7]. With pure metals, a decrease from n  4 to n  1 with decreasing stress, has 
been widely attributed to a change from diffusion-controlled dislocation processes to diffusional creep 
mechanisms not involving dislocation movement. However, at high stresses strengthened alloys with 
fine precipitate or insoluble particles can produce values of n >> 4 where the value for Qc easily 
exceeds that of the activation energy for lattice diffusion, QSD [8]. No generally accepted interpretation 
has been agreed upon to account for these anomalously large n and Qc values. 

2.1. Traditional Power Law Creep Models 

A wide variety of parametric approaches to creep lifing based on the above power law equation, 
Equation (3), have been developed over the past 60 years with varying degrees of success. A number 
of the most widely used power law approaches are explored in this section. 

2.1.1. The Larson-Miller Approach 

This parametric method is one of the most widely employed techniques for stress-rupture behaviour 
prediction in metals. It was originally derived from the basic power law equation, Equation (3),  
by assuming a constant stress over a variable temperature range. The Larson-Miller approach is given 
by [9]:  

PLM = f(σ) = T∙(CLM + logtf) (4) 

where CLM and PLM are the Larson-Miller constant and parameter, respectively. 
Larson and Miller expanded their original proposal suggesting that the value of CLM to be taken  

as 20 for metallic materials [9,10]. This presented a problem because if the value of CLM is  
universally 20 for all metallic materials, then this implies that for the same testing conditions the time 
to fracture is the same for all metallic materials. In addition, this suggestion means that for a given 
material, once a set of stress-rupture curves at different temperatures are established, then over the 
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same temperature range these curves would be valid for any other material provided the stress scale is 
altered [11]. However, it was subsequently found that the value CLM varies from one alloy to another 
and is influenced by factors such as cold-working, thermo-mechanical processing, phase transitions 
and/or other structural modifications [10]. To address this complexity, CLM is a “fitted constant” 
acquired purely from the data with no physically meaningful description. 

Although the Larson-Miller approach is widely used to model creep, it does have inherent 
limitations. Even though CLM is given as a constant, it is known from observation that it is not constant 
for all conditions [7]. Furthermore, the parameters and constants described here have yet to be linked 
to any physical phenomena. Therefore, what the constants represent and how to predict them remains 
unclear, highlighting two common issues for many creep models. The first issue is that these empirical 
equations employ constants which upon investigation are often no longer constant over the conditions 
considered. The second is that the parameters used in the equations cannot be linked to any physical 
phenomena and hence, it is unclear what they represent. This means that it is difficult to expand such 
models to be able to extrapolate more widely and include factors such as cold-working, thermo-mechanical 
processing, phase transitions and/or other structural modifications known to change creep properties. 

2.1.2. The Manson-Haferd Approach 

Manson and Haferd [12] developed a linear time-temperature relationship for creep and stress-rupture 
data. This methodology was introduced in order to address the inaccuracy of the Larson-Miller approach 
resulting from the suggestion of a fixed CLM for metallic materials [12,13]. The Manson-Haferd 
approach, like the Larson-Miller, assumes steady-state creep is dominated by power law behavior. 
However, the innovation of the Manson-Haferd approach assumes that the logarithm of the time varies 
linearly with temperature at a constant initial stress, according to [12,14]:  

PMH = f(σ) = (logt − logta)/(T − Ta) (5) 

where PMH, ta and Ta are the Manson-Haferd parameter, time and temperature constants, respectively. 
The variable t refers either to the time to fracture, tf, or, to a pre-defined strain level, tε, and T is the 
absolute temperature of the creep test. Mapping iso-stress data as a function of time and temperature, 
i.e., f(σ) = f(t, T) at σ = constant, ta and Ta are obtained from the intercepts of a linear fit, i.e., at  
(t, T) → (ta, 0), (0, Ta). This means that the Manson-Haferd parameter, PMH, is composed of two 
constants unlike the Larson-Miller parameter, PLM, which involves only one. The Manson-Haferd 
parameter, PMH, can therefore be derived graphically from the point of intersection of the extrapolated 
iso-stress lines of logtf vs. T. Moreover, plotting PMH vs. σ, forces all creep data to collapse onto a 
single “master curve” providing an equation that relates the stress to time and temperature [12].  

The perceived advantage of this method over the Larson-Miller’s approach is that the parameter, 
PMH, is composed of two constants relating time to temperature, thus, possibly giving this model better 
sensitivity to the time-temperature relationship. Once again, the physical meaning of ta and Ta is not 
known and as such what they represent is unclear. 
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2.1.3. The Orr-Sherby-Dorn Approach 

The Orr-Sherby-Dorn (OSD) [15] approach involves a time-temperature constant, COSD, based on 
the linear relationship of log t vs. 1/T. In the OSD approach, the initial premise of Larson and Miller 
has been modified such that the constant CLM becomes a function of stress, and PLM becomes a 
constant [13,14]. Based on these assumptions, the Larson-Miller relation, Equation (4), can be  
re-arranged to yield the Orr-Sherby-Dorn equation [15]: 

POSD = f(σ) = logtf − COSD/T (6) 

where POSD and COSD are the Orr-Sherby-Dorn parameter and constant, respectively. This method 
offers a different perspective on the relationship between parameters and constants which leads to it 
producing smooth creep curves rather than sigmoidal ones. This distinction in the curve shape is one 
reason the OSD method may produce better creep rupture predictions than other methods. 

Once again, this approach suffers from its empirical nature. Similar to the Larson-Miller and 
Manson-Haferd approaches, the OSD utilises a constant, COSD, based on Qc which is usually obtained 
from sparse data [15]. The effect of this is that any variation in Qc will consequently ensure that the 
superimposed parametric plots will be non-linear [16]. Indeed, there is evidence that in some cases, 
creep activation energy appears to systematically increase through the primary creep region [17]. The 
variation in the value of COSD has been observed experimentally by Murray and Truman [18]. Given 
that COSD is the gradient of logtf vs. 1/T, it was proposed by OSD that the adjacent logσ vs. logtf curves 
will be equidistant from each other along the time scale [11]. In principle, this approach can be used by 
obtaining COSD from a single plot, but in reality, COSD is usually an average value obtained from a 
number of logtf vs. 1/T values. 

2.1.4. The Manson-Succop Approach 

The Manson-Succop approach [19] describes the iso-stress values to be proportional to logtf and T. 
This differs from OSD method which relates the iso-stress data to logtf and 1/T. The Manson-Succop 
parameter and constant, PMS and CMS, are related by [19]:  

PMS = f(σ) = logtf + CMS∙T (7) 

This approach produces similarly shaped curves to the OSD approach, however, differs in its 
method of describing the time-temperature relationship. This method was reviewed by Zharkova and 
Botvina [20] who confirmed that during long-term creep tests, fracture mechanisms changed according 
to the applied stress and the loading time. Although the mechanism changed, it was concluded that the 
derived constant did not change for the Manson-Succop, Larson-Miller or Manson-Haferd approaches. 
In the opinion of these authors [20], this claim has not been definitively adopted as there is evidence to 
both support and counter the idea that the constants in these approaches are independent of the  
creep mechanism. 

2.1.5. The Goldhoff-Sherby Approach 

This approach is similar to the Manson-Haferd method with the difference being that the 
constructed iso-stress lines will converge to a point (1/Ta, ta) such that [21]: 
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PGS = f(σ) = (logt − logta)/(1/T − 1/Ta) (8) 

where ta and Ta are the time and temperature constants, respectively. The mathematical procedures are 
similar to those applied using the Manson-Haferd approach, however, logtf is plotted against 1/T at 
constant stresses with the slope being the value of the Goldhoff-Sherby parameter, PGS. An average 
value for log ta and 1/Ta should then be chosen in order to construct the stress vs. time to fracture 
curves. This model contains the potential time-temperature sensitivity of the Manson-Haferd but offers 
a slightly different curve shape. 

2.1.6. The Soviet Prediction Approach 

This method can be described by two models; Soviet models (1) and (2), given by [22,23]:  

Soviet Model (1): logt = a + blogT + clogσ + d/T + f∙σ/T (9) 

Soviet Model (2): logt = a + blogT + clog(σ/T) + d∙σ/T + f/T (10) 

where a, b, c, d and f are constants to be determined from fitting the equations to data. This method 
uses a large number of constants which allows for greater sensitivity, but the constants are not easily 
separable from the variables T and σ, meaning that multiple constants need to be fitted simultaneously. 
This might result in more than one possible set of values for a, b, c, d and f. From the experience of the 
authors of this paper, fitting constants can lead to unphysical curves and this should be noted when 
employing this method. A means of fitting these multiple constants simultaneously is provided by the 
software PD6605 which iterates the numerical coefficients of each equation, first to optimise their 
values and then to determine which has the greatest likelihood of providing the most accurate results [24]. 
Evans [22] expressed that Soviet Model (1) was highly effective in modeling the known rupture times, 
but was totally inadequate for predicting beyond the range of input data. However, this inability to 
generalise or the tendency to overfit the interpolative data set, is a characteristic of all parametric 
techniques [22].  

2.1.7. The Minimum Commitment Approach 

This method was proposed by Manson and Ensign [25,26] in an effort to give larger flexibility to 
parametric analysis of creep data. In addition, it was proposed as a way to unite conflicting approaches 
into a single equation with sufficient generality. The Minimum Commitment approach is given  
by [25,26]: 

logt = a + blogσ + c∙σ + d∙σ2 + f∙T + g/T (11) 

In the above equation there are six constants that need to be determined via regression  
analysis. Similar to the Soviet approach, the large number of constants coupled to variables introduces 
analysis issues when performing any fitting process but gives greater detail and sensitivity to the  
time-temperature-stress relationship. Among those who have studied this methodology was  
Jow-Lian Ding et al. [27] who found that the results of regression analyses indicated that the Minimum 
Commitment model fitted the creep data studied only slightly better than the Larson-Miller model 
regardless of the high number of constants. 
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2.2. Modern Creep Lifing Approaches 

2.2.1. The Hyperbolic-Tangent Approach 

Developed by Rolls-Royce plc (London, UK) in the 1990s for creep strain and life predictions, this 
approach implements the idea that the highest stress that can be applied to a specified material at a 
certain creep temperature is the ultimate tensile strength, σTS, of the material. The stress rupture 
behaviour is described by hyperbolic tangent curves over a wide range of temperatures, such that [28–30]: 

σ = σTS/2{1 − tanh[k∙log(t/ti)]} (12) 

where k and ti are fitting parameters that can be obtained via regression analysis by plotting at constant 
temperatures, tanh−1(1 − 2(σ/σTS)) vs. logtf. Once these values are obtained, they can then be inserted 
into Equation (12) to produce the stress rupture curves. The inflection point of these curves at σ = 0.5σTS 
provides a different shape to that of the previous methods and therefore may provide a better fit for 
creep data with changes in mechanism that significantly impact creep lifetime. 

2.2.2. The Wilshire Approach 

Developed at Swansea University by Wilshire [16,31], this methodology has been applied widely 
for long-term creep predictions [16,31]. The innovation of this method is that the stress applied is 
normalised by the ultimate tensile strength, σTS. The stress can also be normalised by the yield stress, 
σy, however, the obtained data fit is generally less accurate as the value of σy is more difficult to be 
precisely measured than the σTS [32]. Normalisation by the σTS also provides the advantage of values 
of (σ/σTS) being between 0 and 1, meaning that property comparisons for different metals and alloys 
can be significantly simplified [31].  

Normalising the applied stress in the power law equation, έm = A∙σn∙exp(−Qc/RT), and defining the 
minimum creep rate, έm, as in the Monkman-Grant relationship, έm = M/tf , gives [16]: 

έm = M/tf = A*∙(σ/σTS)n∙exp(−Qc*/RT) (13) 

where A* ≠ A and Qc* ≠ Qc. In this case, Qc* is determined from the temperature dependence of έm 
and/or tf at constant (σ/σTS), unlike Qc which is normally calculated at constant σ. As it stands, this 
equation does not permit reliable extrapolation of the short-term measurements due to the unpredictable 
fall in n values as (σ/σTS) decreases. However, Equation (13) reduces the scale and the number, but not 
the maximum duration, of experimental tests needed to be undertaken to obtain long-term strength  
data [16,31]. 

Since σTS represents the maximum stress that can be applied on a material at a specific creep 
temperature, the data sets can be described over the entire stress range from (σ/σTS) = 1 to (σ/σTS) = 0. 
In addition, it is evident that έm → ∞ and tf → 0 as (σ/σTS) → 1, whereas έm → 0 and tf → ∞ when 
(σ/σTS) → 0. These essential criteria are met by augmenting Equation (13) so that the stress and 
temperature dependences of the creep life are described by [16,31,32]: 

σ/σTS = exp(−k1[tf∙exp(−Qc*/RT)]u) (14) 

where the values of the coefficients k1 and u are fitting constants. To obtain k1 and u, a linear fit of log 
(tf∙exp(Qc*/RT)) vs. log(−log(σ/σTS)) is produced with gradient equal to u, and, intercept equal to logk1. 
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This method, unlike the others, produces more physically realistic curves as έm→ ∞ and tf → 0 when 
(σ/σTS) → 1, and έm → 0 and tf → ∞ when (σ/σTS) → 0. It also has only two fitting constants easily 
determinable from limited data that remain conditionally constant. This statement means that when 
plotting to obtain k1 and u, it has been observed that up to two linear regimes are sometimes obtained, 
referred to as the high and low stress regimes. This means that k1 and u may have different values 
above and below a certain normalised stress threshold thought to arise from a change in creep mechanism. 
Although this change in constants has been observed, k1 and u in their respective high and low stress 
regimes have so far proven to be constant. 

3. Approaches to Reproducing Full Creep Curves 

In the same manner in which stress-rupture prediction has been approached, this section considers 
approaches for creep strain predictions and hence the prediction of full creep curves. As stated 
previously, this study investigates only a small number of available methods, focusing mainly on more 
recently published techniques. The ECCC report published in 2003 provides a more extensive review 
of these and other methods [33]. 

3.1. The θ-Projection Approach 

The principle of the θ-Projection approach is that creep curves under uniaxial constant stress 
measured over a range of stresses and temperatures can be “projected” to other stress/temperature 
conditions re-constructing full creep curves. The required properties can then be read off the newly 
constructed curves [34]. The θ-Projection concept in its most general form is the 4-θ equation [35]: 

ε = θ1[1 − exp(−θ2∙t)] − θ3[1 − exp(θ4∙t)] (15) 

where θ1 and θ3 are “scaling” parameters that define the extent of the primary and tertiary creep with 
respect to strain. Whereas θ2 and θ4 are “rate” parameters characterising the curvature of the primary 
and tertiary creep curves [36,37]. This method has been found to provide quite poor fits to 
experimental creep data for small strain values [35]. Deviations from experimental creep measurements 
were also found particularly in the late tertiary stage by Evans and Wilshire [37] when this method was 
used. In response to these deviations, a modification was suggested by Evans [38] to improve the fit at 
very small strain values. This has been achieved by adding another two extra parameters to  
Equation (15) to produce 6-θ equation [38]: 

ε = θ1[1 − exp(−θ2∙t)] − θ3[1 − exp(θ4∙t)] + θ5[1 − exp(−θ6∙t)] (16) 

In this equation, the first two terms have the same physical meaning as in Equation (12). The 
additional third term describes the early primary creep behaviour that results from initial sliding 
relaxation across grain boundaries [36]. According to Evans [35,36,38], this modified equation 
provided better results when applied to creep data.  

3.2. The Uniaxial Creep Lifing Approach 

This deformation mechanism-based approach was recently developed at Rolls-Royce Canada by 
Wu [38] in an effort to describe the entirety of creep strain curve vs. time. It considers that creep 
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deformation occurs by grain boundary sliding (GBS), dislocation glide (DXNG), dislocation climb 
(DXNC) and diffusion (DFN) mechanisms such that for a polycrystalline material, the total strain rate, 
έ, is equal to the sum of the contributions from each mechanism [39]: 

έ = έgbs + έg + έc (17) 

Re-arranging this equation and expressing the strain rate, έ, in terms of strain, ε, gives [39]: 

ε = ε0 + εp [1 − exp(−t/ttr)] + 1/M [exp(M∙k∙t) − 1] (18) 

The primary strain, εp, is obtained from the linear projection of the secondary/steady-state region of 
the creep curve at t = 0. The transient time, ttr, is defined as the transition point from primary to 
secondary/steady-state creep. The slope k corresponds to the minimum creep rate and M is a factor 
obtained from the slope of log έ against t. For creep curve analysis, one needs to extract the creep 
curve parameters, εp, ttr, k and M from actual creep strain vs. time curves and then apply Equation (18) 
to predict the creep strain accumulation (see [39]). The parameters in Equation (18) can be expressed 
in terms of stress and σTS such that: 

ttr, k and M = f(σ/σTS) (19) 

ε = ε0 + εp∙f(σ/σTS, t) (20) 

The advantage of this approach is that once the parameters are expressed in terms of σ and σTS at a 
given temperature, Equation (18) can then be used to construct full creep curves at any specified stress 
for that temperature. In other words, only few tests are required at a given temperature to obtain the 
relationship, i.e., f(σ/σTS), and the unknown parameters from which a database of creep curves can be 
generated at any given stress level outside the experimentally investigated range.  

3.3. The Wilshire Approach 

In addition to the ability to describe the stress-rupture behaviour, this technique has been extended 
to accurately re-construct full creep curves [40]. The time to fracture, tf, in Equation (14) can be 
replaced by the time to a pre-defined strain level, tε, which yields [16,31,40–42]: 

σ/σTS = exp(−k3[tε∙exp(−Qc*/RT)]w) (21) 

where k3 and w, are constants to be determined following the similar process previously described. It 
was found elsewhere [40] that the value of w and k3 used in Equation (21) is independent of stress and 
temperature at any selected strain level and thus they can be expressed over a range of selected strains 
such that: 

w = f1(ε) (22) 

k3 = f2(ε) (23) 

Inserting these two expressions into Equation (21) gives: 

σ/σTS = exp(−f2(ε)∙[tε∙exp(−Qc*/RT)]f1(ε)) (24) 

Re-arranging this equation yields an equation that relates the strain, ε; to stress, σ; temperature, T; 
over time, t, such that: 
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ε = f(t, σ, T) (25) 

Obtaining Equation (25) means that full creep curves at various stresses and temperatures can  
be re-constructed.  

4. Results 

This section is divided into two parts, namely; those for the creep life prediction approaches, and, 
those for full creep curve representation. In the first section, the material used is Grade 22 Steel 
whereas for full reproduction of creep curves Titanium IMI834 creep data was employed. Grade 22 
steel was selected for this review as it is a widely used material with data covering appropriate creep 
lives and also because it is a difficult material to effectively life, aiding in exposing limitations of the 
approaches assessed here. Similarly, Titanium 834 has been selected as the model material due to its 
wide employment in the aerospace industry, in particular the compressor of gas turbine aeroengines. 
The reasons for this selecting Titanium 834 are the relevance of this material to the aerospace industry 
and the availability of creep data. 

4.1. Grade 22 Steel Data 

As already noted, the values of Qc and n are important when studying creep properties. The creep 
data of Grade 22 Steel was obtained from the National Institute of Materials Science (NIMS). Figure 1a 
depicts the exponent n at various conditions whereas Figure 1b shows the value of Qc at various 
conditions. From these two plots, it is evident that both n and Qc are not constants under the investigated 
conditions which implies that any involvement of such constants in the parametric approaches will 
ensure inaccuracies in their predictions. 

Figure 1. The calculation of the: (a) stress exponent n; (b) the activation energy Qc at 
various conditions for Grade 22 Steel. 
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Figure 1. Cont. 

 
(b) 

4.2. Titanium IMI834 Data 

An extensive matrix of creep testing has been carried out at Swansea University using Uniaxial 
constant-stress creep machines performed in air according to ISO 204:2009 [43] on this material. The 
alloy IMI834 is widely used in the rings, compressor discs and blades for gas turbines and jet engine 
applications [44]. The results of these creep tests are used here for reconstructing full creep curves 
utilising the various approaches. 

4.3. Creep Life Predictions (Steel 22 NIMS Creep Data) 

In each creep lifing predictive approach explored, data of stress rupture lives <5000 h was used to 
determine the constants and parameters for each approaches and then applied to the larger complete 
dataset. In each of the following figures experimental values are represented as “points” and creep 
rupture model predictions are shown as “solid lines”.  

4.3.1. The Larson-Miller Approach 

Using the Larson-Miller approach, log tf vs. 1/T was plotted at constant stress with the value of CLM 
assumed constant although observed otherwise [14,16,45]. Predicted curves based on <5000 h data are 
shown alongside the available NIMS data in Figure 2. 

The fits in Figure 2 are considered reasonable for the lower temperatures. As the temperature 
increases, the model flattens out and no longer reflects the shape or trend of the measured data. This 
supports the idea that the Larson-Miller model was developed based on low temperature deformation 
results making extrapolation at the high temperatures inaccurate [46].  
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4.3.2. The Manson-Haferd Approach 

Figure 3 shows the application of the Manson-Haferd approach. This fit shows a similar sigmoidal 
shape to Larson-Miller but with a substantially worse fit in this case. From Figure 3, it can be observed 
that the best fits are obtained at the intermediate temperatures. For the extreme temperatures, i.e.,  
723 and 923 K, the Manson-Haferd model fails to predict the experimental results. The exaggerated 
sigmoidal and flat shapes at 723 and 923 K, respectively, mean that the curves are unable to describe 
the actual creep properties at these conditions. 

4.3.3. The Orr-Sherby-Dorn Approach 

The OSD predictive curves are shown in Figure 4. This approach, unlike the previous ones, 
produced a smooth decaying curve. From these results it can be seen that this curve shape fits well 
with the longer life data at lower temperatures. It no longer provides a good fit for higher temperature 
data, nor the shorter rupture lives possibly due to changes in creep mechanism. 

4.3.4. The Manson-Succop Approach 

Figure 5 shows the results of applying the Manson-Succop approach to predicting creep rupture 
time. This method produced a similar creep curve shape to OSD shown in Figure 4. This is to be 
expected as these two methods are very similar with the difference between them lying in the  
time-temperature relationship (T vs. 1/T). However, this approach provides the best fit for creep 
rupture data at the intermediate temperatures and intermediate lifetimes. 

Figure 2. The Larson-Miller’s stress vs. time to fracture predictive curves using Grade 22 
Steel creep data. 
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Figure 3. The Manson-Haferd’s stress vs. time to fracture predictive curves using Grade 22 
Steel creep data. 

 

Figure 4. The Orr-Sherby-Dorn’s stress vs. time to fracture predictive curves using  
Grade 22 Steel creep data. 
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Figure 5. The Manson-Succop’s stress vs. time to fracture predictive curves using  
Grade 22 Steel creep data. 

 

4.3.5. The Goldhoff-Sherby Approach 

This approach, shown in Figure 6, produced similar results to the Manson-Haferd approach in 
Figure 3. The similarity of methods arises from their form with the difference arising from each approach’s 
time-temperature relationship (T vs. 1/T). Unlike the Manson-Haferd method, the Goldhoff-Sherby 
approach produces better fits to the experimental data with its best fits in the intermediate to high 
temperatures, long and very short lifetime range. 

The above models are considered the most simplistic of those reviewed in this paper. It can be seen 
that they do not provide good fits to experimental data, and as such, are often implemented in a more 
flexible way. The more practical application of these models provides individual fits at each 
temperature such that their parameters function, P, change with temperature rather than being tied to 
an initially derived value [47–49]. This produces substantially better fits but also introduces the 
unknown dependency of these parameters, and hence constants, to temperature. It also means more 
tests need to be done in order to satisfy the minimum statistical threshold as each temperature is 
effectively a new “unique” set of data. 

4.3.6. The Soviet Prediction Approach 

Figures 7 and 8 depict the predictive curves of the Soviet Prediction approach. Both Soviet 1 and 
Soviet 2 produced very flat σ vs. t curves that did not reflect the trend of the data. This is 
demonstrative of the point made by Evans [22] that extrapolation beyond the input data using these 
models was found to be highly inaccurate possibly due to the model not replicating the trending behaviour. 
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Figure 6. The Goldhoff-Sherby’s stress vs. time to fracture predictive curves using  
Grade 22 Steel creep data. 

 

Figure 7. The stress vs. time to fracture curves of Soviet Model 1 using Grade 22 Steel 
creep data. 
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Figure 8. The stress vs. time to fracture curves of Soviet Model 2 using Grade 22 Steel 
creep data. 

 

4.3.7. The Minimum Commitment Approach 

Figure 9 displays the results obtained from the Minimum Commitment approach. This method is a 
vast improvement upon the previous ones as it provides a better fit to the experimental data and more 
importantly reflects the trend of the data. This is seen through the change in the curve shape from the 
highest to the lowest temperature. This shift in the curve shape and consequential good prediction may 
be attributed to the increased flexibility and sensitivity of the approach gained from having a larger 
number of constants.  

4.3.8. The Hyperbolic-Tangent Approach 

The alternative shape of stress-rupture curves produced by the hyperbolic tangent approach is 
evident in Figure 10. Using this approach, the constructed curves show reasonable fits to the observed 
creep behaviour as a result of the hyperbolic functions in its equation providing smooth curvatures.  
It is also observed that there is an inflection point at around 50% σTS at each corresponding temperature. 
This agrees with other observations [28–30] and implies that the creep mechanism is dependent on the 
applied stress level above and below σy (or σTS). Another observation is that at intermediate temperatures 
(773, 823 and 873K) the curves deviate from the experimental data, in particular at the low stresses. 
This indicates that the shape of the outliers (highest and lowest temperature) dominate curve shapes 
and hence when using this method due care needs to be taken over the range of temperature it is 
applied to, and the amount of intermediate points included in the initial fitting of the constants.  
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Figure 9. The stress vs. time to fracture curves of the Minimum Commitment method 
using Grade 22 Steel creep data. 

 

Figure 10. The Hyperbolic Tangent’s stress vs. time to fracture predictive curves using 
Grade 22 Steel creep data. 
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4.3.9. The Wilshire Approach 

Curves predicted by the Wilshire approach shown in Figure 11, are considered to be a good fit to 
the experimental measurements in both the high and the low stress regimes at all temperatures. It can 
also be observed from these curves that there are “kink” points at which the trend of the creep data 
changed according to the stress level involved (and hence a change in the constants k1 and u). In recent 
studies, it was found that these inflection points separate regions of different activation energies in 
different stress regimes [50] signifying the role deformation mechanisms have in determining  
creep behaviour. 

Figure 11. The Wilshire Equation’s stress vs. time to fracture predictive curves using 
Grade 22 Steel creep data. 

 

4.3.10. Errors and Accuracy 

The accuracy of each of the above approaches in predicting creep was evaluated using a Mean 
Squared Error (MSE) method where the error is calculated by: 

    
 

 
                      

 
 

   

 (26) 

where tactual and tpredicted are the experimental and predicted times to failure, respectively, and n is the 
number of the available data points. Error calculations shown in Figure 12 and in Table 1 were 
evaluated by taking the total number of error for all temperatures for each of the approaches. Whilst 
there are numerable approaches to error calculation, the MSE was considered the most applicable as it 
is an aggressive approach and it provides a simple and clear means to distinguish between the various 
approaches. In Figure 12 it can be seen that the simpler models return larger errors, whilst the more 
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complex ones such as the SM2, Hyperbolic Tangent and Wilshire better represent the material’s  
creep properties.  

Figure 12. Error analysis of the conventional and modern predictive approaches. 

 

Table 1. Error values for the conventional and modern predictive approaches. 

Temperature  
(K) 

Errors in each extrapolation technique (Years) Minimum  
Error LM MS MH OSD GS HT SM1 SM2 MCM WE 

723 2.9406 3.783 3.819 1.824 4.03 1.541 3.0745 3.674 3.6367 2.425 HT 
748 0.657 1.243 0.67 0.095 1.007 0.582 0.8212 1.022 1.05086 1.072 OSD 
773 1.5671 3.171 356.3 1.489 25.46 2.038 2.7496 2.178 2.60138 0.376 WE 
798 0.1366 0.079 0.523 0.109 0.397 0.408 0.0051 0.035 0.02743 0.056 SM1 
823 1.0737 4.125 532.8 3.822 32.44 4.249 4.2348 3.284 3.63002 5.621 LM 
873 22.675 3006.4 30,968 108.1 274.2 2.819 407.24 1 × 10−7 477.314 0.641 SM2 
923 0.4621 36.804 0.613 5.303 0.382 0.515 12.078 13.91 11.2147 0.145 WE 

Taking a closer look at Soviet Model 1 and Minimum Commitment approaches, these results should 
be expected. As highlighted when describing the approach, the Soviet and Minimum Commitment 
approaches rely on a large number of fitted constants meaning these equations have greater flexibility 
and sensitivity. Although this reproduces experimental data more accurately, it also means that these 
methods require greater care in application as the ability to produce unphysical curves or unreasonable 
constants is possible.  

In considering the error associated with the two best methods, Hyperbolic Tangent and Wilshire,  
it is important to qualitatively and quantitatively consider each approach. The Hyperbolic Tangent 
approach provides a good fit to the creep-rupture data but from a visual inspection the region splitting 
Wilshire approach looks more accurate. The reason this is not reflected in the above error calculation is 
that the measurement of error is the difference in rupture times, which for the Wilshire approach 
produces an exaggerated error with higher temperatures due to the very flat nature of the curves 
produced. This limitation needs to be kept in mind when applying any creep lifing method as there are 
numerous ways to quantify error which may not reflect the quality of fit. In acknowledging these 
limitations, the Wilshire approach does not suffer the complexity of a large number of constants 
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requiring the determination of only two constants which have so far have proven to be constant, 
although the constants vary in different regimes. Therefore, from this treatment it can be seen that the 
more complex methods provide better results when predicting creep properties with the most 
promising methods for now being the Wilshire and Hyperbolic Tangent approaches due to their 
relative simplicity and prediction capability. 

4.4. Approaches to Reproducing Full-Creep Curves (Titanium IMI834 Data) 

4.4.1. The θ-Projection Approach 

The θ-projection approach was examined using the available Titanium IMI834 data. A comparison 
is shown in Figures 13 and 14 for the 4-θ and 6-θ methods, respectively. It is evident from these 
figures that the 6-θ method is more capable of describing the whole creep curve, in particular, providing 
a more accurate description of primary creep. The limitation of this approach is that full creep curves 
need to be available prior to carrying out analysis using this approach.  

Figure 13. Creep curve for 823 K, 600 MPa fitted using the 4-θ approach. 

 

Figure 14. Creep curve for 823 K, 600 MPa fitted using the 6-θ approach. 
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4.4.2. The Uniaxial Creep Lifing (UCL) Approach 

The Uniaxial Creep Lifing approach is shown in Figure 15. From these results it can be seen that 
this approach was not able to accurately describe the primary creep region. This is not desirable for the 
aerospace industry as engineers are often faced with design problems that need to account for a 
material undergoing small strains. 

Figure 15. Creep curve for 923 K, 260 MPa predicted using the Uniaxial Creep Lifing approach. 

 

4.4.3. The Wilshire Approach 

The Wilshire technique has provided an impressive description of the whole creep curve, as well as, 
the primary region as seen in Figure 16. This description of the creep process stands alone as the most 
accurate description of the previously discussed methods. 

Figure 16. Creep curve for 923 K, 260 MPa predicted using the Wilshire approach. 
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Listed in Table 2 are the model equations used to fit the data for the creep rupture approaches used 
(Sections 4.3 and 4.4). In Table 3, the values of the constants for the various approaches are listed.  

Table 2. Equations and parameters of creep life approaches. 

Creep Lifing 

Technique 
Stress Function Note 

LM 
PLM = −1.44 × 10−6σ4 + 8.048 × 10−4σ3 + 2.73 × 

10−2σ2 − 9.21×10σ + 57175.13 
constants explained in Table 3 

MH 
PMH = 3.54×10−11σ4 − 7.83 × 10−8σ3 + 5.07 × 

10−5σ2 − 1.311 × 10−2σ + 1.464 
constants explained in Table 3 

OSD σ = 4 × 10−7 [(44250/T) − logt]5.3787 constants explained in Table 3 
MS σ = 4 × 1019 [logt + 0.0705T]−9.389 constants explained in Table 3 

GS 
PGS = −9.63 × 10−6σ4 − 5.51×10−3σ3 + 1.017 × 

10σ2 − 3.65 × 103σ + 5.609 
constants explained in Table 3 

HT σ = UTS/2 (1 − tanh[klog(t/ti)]) k is constant 
WE σ/UTS = exp (−k1[tf∙exp(−Qc*/RT)]u) u and k1 = f(σ) 
SM1 logt = a + blogT + clogσ + d/T + f∙σ/T constants explained in Table 3 
SM2 logt = a + blogT + c(logσ)/T + d∙σ/T + f/T constants explained in Table 3 
MCM logt = a + blogσ + c∙σ + d∙σ2 + fT + g/T constants explained in Table 3 

Table 3. Determined constants of creep life approaches. 

Category Method Parameters Note 

Creep Lifing 
Techniques 

LM CLM = 41.5 constant 

MH 
logta = −77.6 

constant 
Ta = 986 

OSD COSD = 44250 constant 
MS CMS = 0.0705 constant 

GS 
logta = −48 

constant 
1/Ta = 0.00093 

HT k = 0.144, ti = exp(−0.007T + 7.7992) ti = f(T) 
SM1 a = 410.05, b = −53.734, c = −6.99, d = 4.68, f = −0.24 constants 
SM2 a = 560.26, b = −77.68, c = −7129.34, d = 8.3, f = 14363.1 constants 

MCM 
a = 101.83, b = −6.47, c = −0.0139, d = 0.000027,  

f = −0.065, g = 2.0097 
constants 

WE 
Low stress regime: u = 0.2944, k1 = 624 

u and k1 = f(σ) Intermediate stress regime: u = 0.0714, k1 = 6.45 
High stress regime: u = 0.3072, k1= 3584 

Full creep 
representation 

(923 K/ 
260 MPa) 

θ-projection 
4-θ method: θ1 = 0.9244, θ2 = 0.3118, θ3 = 0.0162, θ4 = 3.833 

θ = f(σ, T) 6-θ method: θ1 = 30.00021, θ2 = 0.00966, θ3= 0.01297,  
θ4 = 3.99825, θ5 = 0.00064, θ6 = 1000.284 

WE 
Low stress regime: w = 0.21, k3 = (3.815484/ε0.8) + 350 w = constant,  

k = f(ε) High stress regime: w = 0.8, k3 = (3 × 109/ε) + 2 × 1010 

UCL k = 0.000695, ttr = 3.34069, Mʹ = 31.092 
k, ttr, and  
Mʹ = f(σ) 
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5. Discussion and Conclusions 

The requirement for reliable methods of predicting long-term creep behaviour is more critical now 
than it has ever been. With conventional power plant building still widespread, the opportunity to 
increase operating temperatures and/or reduce material costs through higher stresses, is highly 
desirable but unrealised. One of the reasons for this is that there is little confidence in creep prediction 
on the timescales required for industrial applications without extensive and protracted testing. 

The limitations of traditional power law based approaches have long been recognised [51] although 
designers have been reticent to move away from these approaches due to their simplicity and ease of 
use. Presumably, this is also because no alternative approach offers a significant enough increase in 
confidence to warrant a change in creep behaviour prediction and characterisation methodology. The 
Larson-Miller approach shown in Figure 2 aptly demonstrates the nature of the problem. Fits based on 
rupture data seem reasonable for lower temperatures and the behaviour of the material is well described. 
However, for higher temperatures the accuracy of the fits decreases markedly and non-conservative 
predictions of rupture time occur. Obviously this presents a significant problem and results in the 
undesired need for further testing.  

Looking at the next generation of creep lifing approaches provides no better alternative to the 
Larson-Miller approach. This is evident from the Manson-Haferd approach providing poor fits at the 
highest and lowest temperatures, the Orr-Sherby-Dorn approach fitting poorly at short lifetimes and high 
temperatures, the Manson-Succop approach fitting poorly at the temperature extremes and short 
lifetimes, and the Goldhoff-Sherby approach fitting poorly at low temperature and short lifetime. To 
try and overcome this, more complex models were developed. The Soviet Prediction approach offers 
better fits, but has very limited extrapolation ability and inherits complexity due to the number of 
constants that need to be fitted. The Minimum Commitment approach offers good fits but still suffers 
the need to fit a large number of constants to sample data.  

Regaining simplicity in implementation by reduction of constants, both the Hyperbolic Tangent and 
Wilshire approaches provide good fits with minimum associated complexity. For the Hyperbolic 
Tangent approach developed by Rolls-Royce plc, the creep curves trend to σTS for each temperature as 
t → 0, and trend to an infinite life as σ → 0. This represents the expected physical behaviour of the 
material under such conditions. As such, the Hyperbolic Tangent approach has been applied to a 
number of materials [30] and clearly offers a step forward in prediction of creep. However, the 
complex behaviour of Grade 22 steel provides problems which the technique is unable to accommodate, 
seen by poor prediction of long rupture times between 773 and 873 K. Despite the fact that the 
Hyperbolic Tangent approach produces the lowest MSE in comparison to the Wilshire approach, it is 
clear that the changing trends in the creep-rupture data are not always accommodated. The issue here is 
that the Hyperbolic Tangent approach offers a point of inflection at σ = 0.5σTS, which presumably is not 
offering enough flexibility in the curve shape to accommodate the behavior of the material in question. 

The Wilshire equations share a number of common features with the Hyperbolic Tangent approach 
including providing good fits to experimental creep data. One of the common features between approaches 
is stress normalisation and the creep curve trending towards infinite life as σ→0. Key publications 
have sought to rationalise the assumptions made when using the equations, and in particular the 
behaviour of materials considered [8,16,31,32]. Whilst normalisation by σTS is particularly useful in 
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reducing batch to batch scatter, perhaps the most important element in applying the equations is the 
ability of this approach to “react” to creep mechanism regimes as shown in Figure 11. It is apparent 
that the first “transition” (change in k1 and u), occurs at the yield stress of the material. This change in 
behaviour is perhaps unsurprising due to changes in dislocation behaviour which occur above and 
below the yield stress. Below the yield stress creep occurs through the movement of pre-existing 
dislocations and mainly by grain boundary zone deformation. Above the yield stress, new dislocations 
are continuously generated which is often noticeable by a more extended primary phase that is limited 
only by exhaustion when strain hardening offsets dislocation generation. As this decaying process is 
offset by an accelerating tertiary phase, which is brought about by damage such as cavitation and triple 
point cracking, a minimum rather than secondary creep rate occurs. Previous studies have inferred 
these mechanisms from changes in elongation and reduction in area measurements of creep tests above 
and below yield [52]. The second transition occurs at high temperature, i.e., 798–923 K, and relatively 
long rupture times is due to degradation of the material through overaging. The bainitic structure 
evident prior to testing begins to break down and the microstructure evolves to ferrite with coarse 
molybdenum carbide particles. Interestingly, activation energies calculated using the Wilshire approach 
well represents these changes in behaviour. Above the yield stress, creep occurs within the grains and 
the activation energy calculated for creep is 280 kJ∙mol−1, approximately the value for self diffusion in 
the ferrite lattice. Below the yield stress, the value drops to 230 kJ∙mol−1 as deformation is confined to 
the grain boundary zones. However, the activation energy for low stresses/high temperatures returns  
to 280 kJ∙mol−1, as following the degradation of bainite to ferrite, creep returns to grain interiors in this 
effectively weaker material [8]. 

When considering the MSE error analysis for predicted creep life alongside the criteria provided by 
the ECCC, it is clear from both Figure 12 and Table 1, that the Wilshire and hyperbolic Tangent 
approaches provide the most accurate fits overall with the Wilshire Equations being most accurate for 
a number of temperatures. Interestingly, unlike the power law methods, the curve shape produced by 
the Wilshire is not its most significant advantage. Rather, the ability of the approach to react to creep 
mechanism changes which have been observed, offers a greater advantage as the underlying physical 
phenomena are represented within the approach. The effectiveness of this technique in predicting 
100,000 h creep life based on only 5000 h has been demonstrated for a number of alloys [8,53]. It 
should also be noted here that the “region splitting” technique (transition) utilised in the Wilshire 
approach is not a wholly original approach with previous examples, particularly by Kimura et al. [54], 
worth consideration.  

In summarizing the full creep curve approaches, we can see a greater emphasis on representing the 
underlying physical processes of creep. The most established of these methods is θ-Projection which 
relies on extrapolating from known curves to unknown curves with dependence on the same physical 
phenomena being present in both cases. The additional term in the 6-θ approach provided a better 
description of the primary creep than compared to the 4-θ. Taking a more fundamental route, the 
Uniaxial Creep Lifing approach is mechanistically-based and represents a group of models that try to 
encompass the underlying physical process of creep. In literature, replication of creep curves via this 
approach has been reasonable even though in this review the method poorly predicted the primary 
phase of the creep curve [39]. Wilshire offers an additional approach that lies between the θ-Projection 
and the Uniaxial Creep Lifing methods. The Wilshire approach, as previously discussed, is a model 
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that is sympathetic to the underlying creep mechanism without explicitly defining it. As such, it is a 
combination of a physically independent and a mechanistically-defined model which produces good, if 
not better, fits than the other approaches reviewed here. 

In considering the requirements of the aerospace and power generation industries, the approaches 
reviewed here provide a summary of the past and an insight into the future. Implementing power  
law-based creep methods in the modern world is becoming harder to justify with greater computing 
power available to deal with more complex accurate models such as the Hyperbolic-Tangent, Soviet, 
Minimum Commitment and the Wilshire approaches. For the whole creep curve prediction, it can be 
seen that incorporating the underlying physical phenomena is producing more accurate models that 
encapsulate and enhance our understanding of the processes materials experience. Clearly, collaboration 
within the community would offer opportunities for further development of these approaches and as 
such bring closer to realisation the goal of a comprehensive creep behavior model. 
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