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Abstract

This paper proposes for the first time an intrinsic enrichment for extremely
curved cracks in a meshfree framework. The unique property of the proposed
method lies in the exact geometric representation of cracks using non-uniform
rational B-splines (NURBS). A distance function algorithm for NURBS is
presented, resulting in a spatial field which is simultaneously discontinuous
over the (finite) curved crack and continuous all around the crack tips. Nu-
merical examples show the potential of the proposed approach and illustrate
its advantages with respect to other techniques usually employed to model
fracture, including standard finite elements with remeshing and the extended
finite element method (XFEM). This work represents a further step in an on-
going effort in the community to integrate computer aided design (CAD) with
numerical simulations.
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1. Introduction

Various breath-taking natural landscapes that we observe today are the
results of millennial crack propagation at very large scales. Other eye-
catching patterns can be observed at much smaller length scales, like glazing
in pottery or mud cracks in dried out fields. Less pleasant cracks for cars
are those forming on asphalt pavements, known as crocodile cracking. In-
deed, the patterns observed on the skin of a crocodile’s head are due to the
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fragmentation of a thin layer of hard keratin that can be explained with the
tools of fracture mechanics [36].

Researchers over the years have tried to replicate experimentally these
patterns, or to create new ones artificially. A particularly effective technique
is to use solid thin films bonded to elastic substrates. An interesting crack
path is the spiral, which was probably first reported in [1]. The authors
observed experimentally helical paths in thin brittle adhesive layers bonding
together Pyrex plates under biaxial tension. The theoretical explanation for
this pattern was given many years later by [51], as a competition between
propagating along a straight inclined path and the tendency of parallel cracks
to reciprocally attract each other. The formation of spiral cracks in fragments
of desiccated thin layers of precipitates for different compounds was shown
in [26, 32]. The characteristic length of these spirals is 1mm, and they form
by folding of the layers over a substrate, caused by the shrinking of the layer
during the drying process. Whilst helical crack paths are usually observed
in skewed cracks under torsional loadings [10], as for example happens when
trying to break a piece of chalk, counter-intuitively spiral patterns can be
obtained in two dimensional samples without requiring a torsional loading.

Other interesting crack patterns are wavy cracks that develop in thin
silicate sol-gel films by varying the film thickness, the curing time and the
curing temperature, as shown in [40]. Highly ordered wavy cracks have been
observed by [50] in silica films on a silicon substrate, where a transition
from a sinusoidal pattern to a crescent sawtooth periodic structure similar
to the patterns presented in [40] has been reported, where the wavelength is
of order of 1µm. This behaviour has been explained by a combined effect
of in-plane loadings and interface debonding and different applications have
recently arisen, including the identification of crack patterns as signatures to
characterize paintings, see for instance [24]. Other examples of wavy cracks
can be found in drying of colloidal dispersions [18], where oscillating crack
paths originate in drying films, in tensile loading normal to the average direc-
tion of crack growth. Using a maximum strain energy release rate criterion
instead of a maximum hoop stress criterion, the authors showed that it is
possible to predict an oscillatory crack path with the corresponding wave-
length. A patterning technique in a Si3N4 thin film deposited on a silicon
substrate was developed in [30], showing that oscillating crack paths, wide a
few nanometres, can be drawn in a controllable manner. Very recently, in [29]
the crack resistance of biological systems like teeth and nacre was imitated.
Jigsaw-like cracks were engraved on glass with the aim of exploiting their
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interlocking behaviour. It was shown that the dissipated energy in unlocking
these patterns by frictional sliding can significantly enhance the toughness
of brittle materials.

A classical problem in the modelling of fracture is the computation of the
displacement and stress fields in solids containing cracks. Despite fracture
problems of scientific relevance often involve curved cracks, the immense
majority of numerical methods developed for modelling fracture discretise the
cracks using faceted surfaces or polygonal segments. Other approaches based
on high-order methods are able to consider curved finite elements but, even
with high-order curved isoparametric elements, the geometric errors have the
potential to introduce severe effects on the accuracy of finite element (FE)
simulations, see for instance [43].

The relevance of an accurate geometric representation in FE analysis mo-
tivated in the late 1990s the incorporation of powerful computer aided de-
sign (CAD) techniques into FE computations [12]. More recently, methods
able to incorporate the most extended CAD technology, namely non-uniform
rational B-splines (NURBS), into the FE analysis stage such as isogeomet-
ric methods [23, 13] or the NURBS-enhanced finite element method (NE-
FEM) [44, 42, 25] have become very popular.

This work proposes for the first time the incorporation of the NURBS
description of cracks into a meshfree method for modelling fracture in brittle
materials. Among the most prominent methods for fracture, meshfree meth-
ods are some of the most mature and established. In solid mechanics, the
papers by Belytschko and co-workers [8, 7, 9] on element-free Galerkin (EFG),
contemporary with the papers by W. K. Liu and co-workers [28, 27, 11] on re-
producing kernel particle method (RKPM), started a stream of a long series
of meshfree methods for linear and non-linear solid mechanics developed in
the following years. An incomplete list includes the hp-clouds [15], the finite
point method [34], the free-mesh method [54], the meshless local Petrov-
Galerkin (MLPG) [2], the local boundary integral equation (LBIE) [55], the
natural element method [47], the meshless finite element method (MFEM)
[22] and the cracking particles method [37]. For a complete review of these
methods and the history, the interested reader is referred to [17, 33, 3].

An intrinsic enrichment for meshfree methods based on a NURBS dis-
tance function is presented. Recently, [6, 4, 5] proposed a distance function-
based intrinsic enrichment for two and three dimensional problems, able to
introduce multiple interacting fracture surfaces tessellated with piecewise seg-
ments or non-planar polygons. This paper presents a significant extension

3

Preprint of 
R. Sevilla and E. Barbieri 
NURBS distance fields for extremely curved cracks 
Computational Mechanics, 54 (6); 1431-1446, 2014



to these methods, allowing cracks to be introduced as NURBS curves. Val-
idation examples, where analytical or reference solutions are available, have
been used to demonstrate the applicability and show the accuracy of the
proposed methodology. More challenging examples show the potential of the
proposed method compared to other approaches such as finite elements with
remeshing or extended formulations. Compared to standard FE techniques,
the proposed technique does not require meshing geometries containing com-
plex cracks. This is of particular importance when high-order finite elements
are combined with remeshing strategies as the generation of curved mesh is
particularly complex [52]. Compared to the extended finite element method
(XFEM), the proposed approach is able to produce crack branching or crack
interaction by adding a single NURBS enrichment and without the need of
special enrichments for branching or special care for junctions. Compared to
standard meshfree methods, the proposed approach allows the incorporation
of the exact crack description, understood as the NURBS description, in-
stead of using an approximated geometry representation. It is worth noting
that the enrichment process described in this paper can be understood as
a modification of the visibility condition that has been extensively used in
a meshfree framework, see for instance [20, 37, 38, 45, 46]. For a detailed
discussion on the advantages of the proposed enrichment with respect to the
visibility condition, the reader is referred to [5, 6].

This paper is organized as follows. In Section 2 a model fracture problem
is formulated and its numerical solution using the RKPM is briefly sum-
marised. Section 3 presents the fundamentals of NURBS curves, used here
for the exact representation of curved cracks. In Section 4 the proposed
enrichment, based on the distance function for NURBS curves is presented.
Two validation examples are presented in Section 5 in order to demonstrate
the applicability of the proposed method for problems where an analytical
or reference solution is available. More challenging examples are presented
in Section 6, demonstrating the potential of the proposed methodology. The
main conclusions of the work are summarised in Section 7. Finally, details
of the RKPM approximation and the NURBS data corresponding to the val-
idation examples presented here are described in Appendices Appendix A
and Appendix B respectively.
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2. Problem formulation

Let us consider an open bounded domain Ω with closed boundary Γ = ∂Ω
and containing cracks of various shapes (e.g., v-shaped, branching cracks,
cross cracks), as illustrated in Figure 1. The boundary of the domain is
partitioned into the Neumann boundary ΓN , the Dirichlet boundary ΓD and
the internal cracks {ΓiC}

NC
i=1, where NC denotes the number of cracks.

Ω
ΓN

ΓD

n

tN

ΓC


ΓC


ΓC


Figure 1: A two dimensional body Ω with three cracks, Γ1
C , Γ2

C and Γ3
C .

The strong form of the equilibrium equations and the boundary conditions
are, in absence of body forces and in the current configuration,

∇ · σ = 0 in Ω (1a)

σ · n = tN on ΓN (1b)

σ · n = 0 on

NC⋃
i=1

ΓiC (1c)

u = uD on ΓD (1d)

where σ(u) is the Cauchy stress tensor, n is the outward unit normal vector
to ΓN , tN is the imposed traction on ΓN and uD is the imposed displacement
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on ΓD. It is worth noting that this work considers cracks in brittle fracture
which are tractionless as indicated by the homogeneous Neumann boundary
condition (1c). In other situations, such as in cohesive fracture, or for inter-
faces at dissimilar materials, other boundary conditions are required on the
cracks [53].

The weak variational formulation associated to the strong form (1) can
be expressed as: find u ∈ [H1(Ω)]d such that∫

Ω

∇sv : σdΩ+β

∫
ΓD

v ·(u−uD)dΓ =

∫
ΓN

v ·tNdΓ, ∀v ∈ [H1(Ω)]d (2)

where d is the number of spatial dimensions and β is the so-called penalty
parameter, a positive scalar constant that must be large enough to accurately
impose the Dirichlet boundary condition (1d), see [16] for more details.

Given a set of particles {xI}NI=1, the solution is approximated as

u(x) ' uh(x) =
N∑
I=1

φI(x)UI (3)

where UI is the displacement at particle xI and φI(x) is the shape func-
tion associated to particle xI , see an example in Figure 2. Among all the
possible alternatives for the approximation, see for instance [21], the repro-
ducing kernel particle method (RKPM) [28] is considered here. The details
about the construction of shape functions in the RKPM can be found in the
Appendix Appendix A.

Substituting the approximation (3) in the weak form (2) and selecting
the space of weighting functions to be equal to the space of approximation
functions, results in the non-linear system of equations

F(U) := Fi(U)− Fe + FD(U) = 0 (4)

where U is the vector of nodal values, Fi is the vector of internal forces,
given by

Fi(U) =

∫
Ω

BTσdΩ (5)
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Figure 2: Shape function φI(x) associated to particle xI = (0, 0).

Fe is the vector of external forces, given by

Fe =

∫
ΓN

φT tNdΓ (6)

and

FD(U) = β

(∫
ΓD

φT (u− uD)dΓ

)
(7)

In the above equations, φ = (φ1, φ2, . . . , φN) and B = ∇sφ.
In general, the vector of internal forces, Fi, is non-linear because of the

constitutive law (e.g., hyperelasticity or plasticity) and/or due to geometric
non-linearities (e.g., large deformations or large strains). In some cases, the
vector of external forces, Fe, is also non-linear, for instance when the loads
follow the deformed surface, but for the sake of simplicity, this case is not
considered in this work.

The system of equations (4) contains several non-linearities even in the
case of linear elastic materials, for instance the self-contact enforcement at
crack surfaces introduces a contact non-linearity. To solve this system of non-
linear equations, a standard Newton-Raphson iteration is employed, requiring
the computation of the Jacobian ∂F/∂U. At each Newton-Raphson iteration,
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the following linear system of equations is solved

∂F(Uk)

∂U
∆Uk = −F(Uk) (8)

where the k-th iterative approximation of the solution is denoted by Uk

and ∆Uk = Uk+1 −Uk. The Jacobian ∂F/∂U depends on the constitutive
model of the material and includes also geometric non-linearities, due to non-
linear measures of the strain. For instance, in linear elasticity, and using the
generalized Hooke’s law, it takes the form(

∂Fi(U)

∂U

)
I,J

=

∫
Ω

BT
I DBJdΩ (9)

where the stiffness tensor, D, and the infinitesimal strain tensor, ε, expressed
with Voigt notation, satisfy σ = Dε.

3. Geometric description of cracks using NURBS

This work proposes the use of NURBS to accurately describe the geometry
of the cracks {ΓiC}

NC
i=1 within the domain Ω. This section introduces the

fundamentals of NURBS curves. A complete presentation can be found in [35,
39].

A qth-degree NURBS curve is a piecewise rational function defined in
parametric form as

C(λ) =

(Ncp∑
i=0

νiP iC
q
i (λ)

) / (Ncp∑
i=0

νiC
q
i (λ)

)
λ0 ≤ λ ≤ λNk (10)

where {P i} are the coordinates of the Ncp + 1 control points (forming the
control polygon), {νi} are the control weights, and {Cq

i (λ)} are the normalized
B-spline basis functions of degree q, which are defined recursively by

C0
i (λ) =

{
1 if λ ∈ [λi, λi+1[,

0 elsewhere,

Ck
i (λ) =

λ− λi
λi+k − λi

Ck−1
i (λ) +

λi+k+1 − λ
λi+k+1 − λi+1

Ck−1
i+1 (λ)
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for k = 1 . . . q, where λi, for i = 0, . . . , Nk, are the knots or breakpoints, which
are assumed ordered 0 ≤ λi ≤ λi+1 ≤ 1. They form the so-called knot vector

Λ = {λ0, . . . , λq︸ ︷︷ ︸
q+1

, λq+1, . . . , λNk−q−1, λNk−q, . . . , λNk︸ ︷︷ ︸
q+1

} (11)

which uniquely describes the B-spline basis functions. The multiplicity of a
knot, when it is larger than one, determines the decrease in the number of
continuous derivatives. It is assumed that the multiplicity of first and last
knot is q + 1 (i.e., λ0 = λ1 = . . . = λq and λNk−q = λNk−q+1 = . . . = λNk).

The number of control points, Ncp + 1, and knots, Nk + 1, are related to
the degree of the parametrisation, q, by the relation Nk = Ncp + q + 1, see
[35] for more details. Figure 3 shows the B-spline basis functions for the knot
vector

Λ = {0, 0, 0, 0.2, 0.4, 0.6, 0.8, 0.8, 1, 1, 1} (12)

Note that NURBS are piecewise rational functions, whose definition changes

0 0.2 0.4 0.6 0.8 1
0

1 C 0

C 1

C 2 C 4

C 5

C 6

C 3

C 7
2

2
2 2

2

2

2

2

Figure 3: B-spline basis functions for the knot vector (12)

at knots. An example of a NURBS curve is represented in Figure 4 with the

Figure 4: NURBS curve (solid line), control points (denoted by ◦), control polygon (dashed

line) and breakpoints (denoted by � )
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corresponding control polygon. The image of the breakpoints or knots by
the NURBS are depicted in order to stress the discontinuous definition of the
parametrisation. In practice CAD manipulators work with trimmed NURBS,
which are defined as the initial parametrisation restricted to a subspace of
the parametric space. Figure 5 shows the NURBS curve of Figure 4 trimmed
to the subinterval [0.05, 0.75].

Figure 5: Trimmed NURBS curve with λ ∈ [0.05, 0.75] (solid line), control points (denoted

by ◦), control polygon (dashed line) and breakpoints (denoted by � )

NURBS curves can also be represented in the so-called homogeneous form.
For a given set of control points {P i} = (xi, yi, zi) and weights {νi}, the
NURBS curve of Equation (10) can also be represented in the (non-rational)
form

C(λ) =

Ncp∑
i=0

νiP
ν
i C

q
i (λ) (13)

where P ν
i = (νixi, νiyi, νizi, νi). This expression is of particular importance

for an efficient evaluation of the NURBS curve derivatives.

4. Enrichment based on the NURBS distance function

This section proposes an enrichment function for the particles near the
cracks. The enrichment is based on the computation of the distance from
any point in the domain to a NURBS curve representing a crack.

4.1. NURBS distance function

Let us consider a generic point x ∈ Ω and define the distance function to
a NURBS curve parametrised by C as

d(x) := min
λ∈[λ0,λNk ]

‖x−C(λ)‖ (14)
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The computation of the distance function d involves the solution of a classical
problem in the CAD community usually referred as NURBS point inversion
and projection, see for instance [35]. It consists on finding the NURBS pa-
rameter λx such that d(x) = ‖x−C(λx)‖. The point on the curve C(λx) is
called the projection of x on C and it is denoted by P(x).

A Newton-Raphson iteration strategy is employed in the present work
to find the NURBS parameter λx. If the parameter obtained at the k-th
iteration is denoted by λk, the next approximation is given by

λk+1 = λk −
C ′(λk) ·

(
C(λk)− x

)
C ′′(λk) ·

(
C(λk)− x

)
+ ‖C ′(λk)‖2

(15)

Remark 1. The iterative scheme of Equation (15) requires a good initial
approximation to converge to the solution in few iterations. To this end, the
curve is initially sampled and the distance from the point to be projected, x,
to the sampled points is used to select the initial approximation. The selected
number of sample points depends on the complexity and length of the curve
that can be initially computed using a composite numerical quadrature [41].
It is important to note that the sampling is done only once and used for
projecting all the particles employed by the mesh free approximation. In all
the examples presented in this paper, convergence is achieved in less than 6
iterations for the immense majority of the particles, namely for more than
99% of the particles.

It is worth noting that the distance function d(x) is clipped to the initial
and final parameters of the curve λ0 and λNk . This is of critical importance
when the parameters λ0 and/or λNk are used to trim a NURBS curve, see an
example in Figure 4.

For a point x ∈ Ω, the intrinsic orthogonal coordinate system given by
the tangent and the normal directions to the curve parametrised by C at
P(x) is considered, as illustrated in Figure 6. The position vector of x in
this intrinsic coordinate system can be written as

x− P(x) = tt + nn (16)

where t and n denote the tangent and normal directions respectively and

t = t ·
(
x− P(x)

)
, n = n ·

(
x− P(x)

)
(17)
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n

ΓC

n
n

t

t t

x

x

x

t

n

n

n
t

2

1

3

2
1

3P(x )
P(x )P(x )

Figure 6: Intrinsic orthogonal coordinate system defined by the tangent and the normal
directions to the curve parametrised by C at P(xi) for different points xi with i = 1, 2, 3.
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It is clear that the distance function d(x) can be expressed in terms of
the coordinates of x − P(x) in the associated intrinsic coordinate system,
namely

d(x) = ‖x− P(x)‖ =
√
t2 + n2 (18)

Figure 7 shows the distance function for a cubic NURBS curve in the domain
Ω = [−5, 5]2. The intrinsic coordinates t and n are represented in Figure 8.

Figure 7: Distance function d(x) in the domain Ω = [−5, 5]2 with respect to the NURBS
curve depicted in black.

Remark 2. By definition of the projection operator P, when the NURBS
parameter of the projected point is not clipped, this is when λx ∈ (λ0, λNk),
the vector x − P(x) lies in the normal direction to the curve and d(x) = n,
see an example in Figure 6.

Remark 3. The computation of the distance function requires the evalua-
tion of the tangent and normal vectors at a point of a NURBS curve. The
classical algorithm presented in [35] is considered here in order to evaluate
the tangent to a NURBS curve t = (t1, t2). This algorithm uses the homo-
geneous representation of the NURBS curve as detalied in Equation (13).
The normal is simply n = (−t2, t1), but special attention should be paid when
the NURBS curve contains kinks (i.e., points with only C0 continuity) as the
tangent and normal are undefined. The approach proposed here considers
in averaging the normal at both sides of the discontinuity. Assuming that a
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Figure 8: Intrinsic coordinates t (left) and n (right) in the domain Ω = [−5, 5]2 with
respect to the NURBS curve depicted in black.

NURBS curve parametrised by C contains a kink at the parametric coordi-
nate ug, the following definition of the normal at C(ug) is proposed

n(ug) =
1

2

(
lim
u→u−g

n(u) + lim
u→u+g

n(u)

)
(19)

4.2. The enrichment function

The enrichment function requires the computation of the directional deriva-
tives of the distance function d with respect to the intrinsic coordinates t and
n. Using Equation (18), these derivatives are simply given by

∂d

∂t
=
t

d
,

∂d

∂n
=
n

d
(20)

and they are illustrated in Figure 9.
In fact, only the derivative in the normal direction is of interest as it is

discontinuous across the NURBS curve describing the crack, see Figure 9.
The derivative in the normal direction can be seen as a generalisation of the
concept of phase function introduced in [6, 4, 5] for NURBS curves and it is
denoted by

ψ := ∂d/∂n (21)

It is worth emphasising that the phase function does not only produce the
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Figure 9: Derivative of the distance function d(x) with respect to the intrinsic coordinates
t (left) and n (right) in the domain Ω = [−5, 5]2 with respect to the NURBS curve depicted
in black.

discontinuity required across the crack but it also reflects the angular tran-
sition from the upper face and the lower face of the crack, see Figure 9.

The proposed enrichment function is finally defined as

h(x,xJ) =

(
1 + ψ(x)

2

)
H
(
nxJ

)
+

(
1− ψ(x)

2

)
H
(
− nxJ

)
, ∀J ∈ Sρx (22)

where nxJ denotes the normal component of xJ − P(xJ) in the intrinsic
coordinate system as detailed in Equation (17) and Sρx is the index set of
particles whose support includes the point x, namely

Sρx =
{
J ∈ {1, 2, . . . , N} | ‖x− xJ‖ ≤ ρ

}
(23)

and H denotes the Heaviside step function. It is worth noting that

H
(
n
)

=

{
1 if x ∈ Ω+

0 if x ∈ Ω−
, H

(
− n

)
=

{
0 if x ∈ Ω+

1 if x ∈ Ω−
(24)

where the domain Ω has been partitioned in two disjoint subdomains Ω+ and
Ω− defined as

Ω+ = {x ∈ Ω | n ≥ 0}, Ω− = {x ∈ Ω | n < 0} (25)
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as illustrated in Figure 10.

ΓC
n

tn t

Ω

Ω+

−

Figure 10: Definition of Ω+ and Ω− based on a curved crack ΓC .

Remark 4. The definition of the enrichment function h(x,xJ) in Equa-
tion (22) remains unchanged if the subdomains Ω+ and Ω− in Equation (25)
are defined as

Ω+ = {x ∈ Ω | n > 0}, Ω− = {x ∈ Ω | n ≤ 0} (26)

In both cases, the enrichment function takes a value of 0.5 as ψ(x) = 0 for
particles x such that n = 0.

The enrichment function h(x,xJ) of Equation (22) is represented in Fig-
ure 11 for a particle in Ω+ and a particle in Ω−.

Remark 5. The phase function ψ can be used as an extrinsic enrichment
for the XFEM. Nonetheless, it requires the scaling and translation introduced
in Equation (22) in order to create a discontinuity with an intrinsic approach.

For methods based on a Galerkin weak form, it is necessary to compute
the derivatives of the shape functions. For those particles that are affected by
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Figure 11: Enrichment function h(x,xJ) of Equation (22) for a particle in Ω+ (left) and
a particle in Ω− (right).

the enrichment function of Equation (22), this involves the derivatives of the
enrichment function, which in turn requires the evaluation of the gradient of
the phase function in Equation (21), namely

∇ψ =
1

dC
n− ψ

d2
C

(
x− P(x)

)
(27)

The derivatives of the phase function with respect to x and y coordinates
are depicted in Figure 12, illustrating the singular behaviour near the crack
tips.

4.3. Selecting the particles to be enriched

Applying the enrichment to all the particles is computationally expensive
and unnecessary. The following index set of particles whose support intersects
the curve describing the crack is defined

SρC =
{
J ∈ {1, 2, . . . , N} | d(x) ≤ ρ

}
(28)

Figure 13 shows a domain Ω with some particles (dots) and their asso-
ciated support (circles). A continuous line indicates a support of a particle
intersecting the crack ΓC whereas a discontinuous line indicates a support
of a particle not intersecting the crack ΓC . For the particles whose sup-
port does not intersect the NURBS curve describing the crack, the standard
RKPM approximation is considered and only for the particles whose sup-
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Figure 12: Derivative of the phase function ψ with respect to x (left) and y (right) in the
domain Ω = [−5, 5]2 with respect to the NURBS curve depicted in black.

ΓC

Ω

Figure 13: Domain Ω showing particles xI such that I ∈ SρC (continuous line denoting
their support) and other particles xJ such that J ∈ SρC (discontinuous line denoting their
support)
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port intersect the crack the enrichment function proposed in Equation (22)
is considered to alter the RKPM shape functions. Therefore, the weighting
function appearing in the definition of the RKPM approximation is defined
as

ω(x,xI) :=

{
∆VIw

(
xI−x
ρ

)
if I /∈ SρC

∆VIw
(

xI−x
ρ

)
h(x,xI) if I ∈ SρC

(29)

see more details in the Appendix Appendix A.
It is worth mentioning that the objective of selecting a set of particles

to be enriched, SρC , is twofold. First, the local enrichment alleviates the
oscillations that typically appear in the stress fields due to the truncation
of the approximation kernels. Second, it allows to reduce the computational
cost as, usually, the particles to be enriched represent a small percentage of
the total number of particles. The additional cost of the enrichment is not
only due to the modified definition of the weighting function, but also due to
the extra correction required to restore the reproducibility condition of the
kernels, see Appendix Appendix A. This is of particular importance when
small cracks are considered in relatively large engineering structures.

Figure 14 illustrates the enrichment process for some particles in a domain
Ω with a single crack. The two plots show the weighting function defined in
Equation (29) for particles in Ω+ and Ω− respectively, see Figure 10. Each
plot shows the enriched weighting function for some particles whose support
intersects the crack and also the standard (non-enriched) weighting function
for particles whose support does not intersect the crack.

5. Validation

This section presents the application of the proposed methodology for
the computation of the mixed mode Stress Intensity Factors (SIFs). These
quantities of engineering interest are extracted from the computed stress
fields through the approach described in [19, 49], which accounts for the
curvature of the crack path. The procedure is based on computing transforms
path-integrals into domain integrals.

Two test cases compromising of an infinite plate with a circular and
a parabolic arc crack are considered. For the first example an analytical
solution is used to evaluate the accuracy of the proposed methodology. For
the second example there is no analytical solution available and a reference
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Figure 14: Standard and enriched weighting functions for some particles in Ω+ (left) and
Ω− (right) in the domain Ω = [−5, 5]2 with respect to the NURBS curve depicted in black.

solution is used to illustrate consistency with published results obtained with
other methods.

5.1. Circular arc crack in an infinite plate

The first example considers an infinite plate with an internal crack in
the form of a circular arc subject to a uniaxial tensile loading given by σ∞yy.
The geometry of the circular arc is characterised by the chord length 2a
and the internal angle α as illustrated in Figure 15. The circular arc is
exactly represented using the quadratic trimmed NURBS curve detailed in
Appendix Appendix B.1. It is important to remark that a circular arc cannot
be represented exactly with polynomials and this is, in fact, one of the main
advantages of considering NURBS compared to polynomial B-Splines.

For this example, there is an analytical expression for the SIFs [31, 48],
namely

KI =
σ∞yy
2

√
πa

[(
1− sin2 α

2
cos2 α

2

)
cos α

2

1 + sin2 α
2

+ cos
3α

2

]
(30)

KII =
σ∞yy
2

√
πa

[(
1− sin2 α

2
cos2 α

2

)
sin α

2

1 + sin2 α
2

+ sin
3α

2

]
(31)

First, a convergence study is carried out for an plate of length L=1 with
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ΓC

Ω

σ∞
yy

a

σ∞
yy

a

α

Figure 15: Infinite plate with a circular arc crack under remote uniaxial tensile loading
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a circular arc crack characterised by α=π/4 and a=0.1. The remote uniaxial
tensile load is given by σ∞yy=1 Pa. The results in Table 1 show the ratio
between the numerical SFIs, Kn

I and Kn
II , and the analytical values, Ke

I and
Ke
II , and the percentage error for different values of the particle spacing h.

The coarsest discretisation corresponds to a uniform distribution of 20 ×
20 particles and the finest to a uniform distribution of 150 × 150 particles,
corresponding to a/h=2 and a/h=15 respectively. An excellent accuracy is

Table 1: Convergence of the SIFs for the circular arc crack (Figure 15) with L = 1, a = 0.1,
α = π/4 and σ∞yy = 1 Pa

a/h Kn
I /K

e
I Error [%] Kn

II/K
e
II Error [%]

2 0.4913 50.86 0.4700 53.00
4 0.6481 35.18 0.8566 14.34
10 0.9651 3.48 0.9898 1.02
15 0.9813 1.86 1.0075 0.75

already obtained by using a uniform distribution of 100 × 100 particles, with
an error of approximately 3.5% in KI and 1% in KII .

Next, the accuracy of the proposed approach is tested for different angles
α ranging from 15◦ up to 60◦. In all cases a uniform distribution of 150 ×
150 particles is considered. The results in Table 2 show the ratio between the
numerical SFIs, Kn

I and Kn
II , and the analytical values, Ke

I and Ke
II and the

percentage error. The results show, again, an excellent agreement between

Table 2: SIFs for the circular arc crack (Figure 15) for different angles, α, and radius of
the arc, R, by using a uniform distribution of 150 × 150 particles

α R Kn
I /K

e
I Error [%] Kn

II/K
e
II Error [%]

15◦ 0.3 0.9813 1.87 0.9968 0.29
30◦ 0.2 1.0032 0.31 1.0199 2.00
60◦ 0.2 1.0236 2.33 1.0295 2.95

numerical and analytical results, with an error less than 3% in all cases for
both KI and KII .

5.2. Parabolic arc crack in an infinite plate
The second validation example considers an infinite plate with an internal

crack in the form of a parabolic arc subject to a remote uniaxial tensile
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loading given by σ∞yy. The geometry of the circular arc is characterised by
the width of the arc, 2a, and the focus of the parabola, located at (0, A), as
illustrated in Figure 16. The parabolic arc is exactly represented using the

ΓC

Ω

α
(0,A)

σ∞
yy

a

σ∞
yy

a

Figure 16: Infinite plate with a parabolic arc crack under remote biaxial load.

quadratic B-Spline curve detailed in Appendix Appendix B.1.
In this case, there is no analytical solution available for the SIFs, but

numerically computed curves obtained by a surface integral approach and a
discrete piecewise linear representation of the parabola are usually employed
to test the accuracy of numerical results. These curves can be found in [31, 48]
for a parabola represented with 30 segments. The SIFs can be expressed in
a normalized form as

KI = FI σ
∞
yy

√
πa, KII = FIIσ

∞
yy

√
πa (32)
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where FI and FII are corrective factors of an equivalent central straight crack
of length equal to the half-width of the parabolic arc, a. The numerical values
of the corrective factors computed with the proposed approach are detailed
in Table 3 for a parabolic arc with a=0.05 in a plate of length L=1 by using
a uniform distribution of 150× 150 particles.

Table 3: Corrective factors for the parabolic arc crack (Figure 16) for different angles α,
a=0.05 and L=1, by using a uniform distribution of 150× 150 particles.

α F n
I F n

II

0◦ 1.0028 0.0016
10◦ 0.9952 0.0954
20◦ 0.9762 0.1753
30◦ 0.9406 0.2623
40◦ 0.8933 0.3414
50◦ 0.8369 0.4060
60◦ 0.7697 0.4639
70◦ 0.6962 0.5125
80◦ 0.6092 0.5602
90◦ 0.5325 0.5818

It is worth noting that the computed values for α=0◦ correspond to the
central straight crack test and, in this case, the exact value of the corrective
factors is known to be F e

I =1 and F e
II=0. Again this results in an error of

2.15% for F n
I and 0.89% for F n

II , this is a similar accuracy compared to the
results of the previous validation example.

The numerical results are also represented in Figure 17 and compared
with the results published in [31] as a reference. The results are in excellent
agreement and only small discrepancies are observed for the first corrective
factor FI when the angle is α ≥ 70◦. It is worth emphasising that this
discrepancy is expected as we provide the solution using the exact description
of the parabolic arc whereas the methodology in [31] employs a polygonal
approximation of the crack.

6. Numerical examples

This section presents two more challenging examples to illustrate the
potential of the proposed technique by using NURBS for describing the ge-
ometry of complicated cracks.
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Figure 17: Corrective factors for the parabolic arc obtained with the proposed methodology
(continuous line) and reference results extracted from [31] (discontinuous line)

6.1. Spiral cracks

In [51], the authors predicted, theoretically, the emergence of spiral cracks
for films bonded to an elastic substrate under a biaxial tensile state. For such
systems, biaxial in-plane tensile stresses develop, for example, when there is a
mismatch between the two thermal expansion coefficients. Spiral cracks were
produced experimentally by [26, 32]. Despite being an intrinsically three-
dimensional phenomenon, cracks develop by channelling with an advancing
front that becomes straight and orthogonal to the substrate at a steady state,
rendering the problem essentially two-dimensional. In [51] it was stated that
when the crack length is only slightly greater than the thickness of several
films, it can be considered close to steady state.

The approach proposed in this paper allows to reproduce these complex
patterns without the need to discretise the cracks in line segments and with-
out the time consuming need to generate a complicated mesh. In addition,
and contrary to other approaches, a single enrichment is enough to reproduce
the complex physics of these problems. The spiral crack considered here is
exactly represented using a cubic NURBS with 300 control points.

Figure 18 shows the intrinsic coordinate n and the phase function ψ in-
troduced in Equations (17) and (21) respectively, for a spiral crack obtained
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by the experimental work of [40]. This crack corresponds to a single arm spi-
ral of 1mm created in a controlled and reproducible manner in thin silicate
sol-gel films by varying the film deposition parameters.

Figure 18: Intrinsic coordinate n (left) and phase function (right) for a domain with a
spiral crack

To show the potential and the effectiveness of the proposed enrichment,
two different loading conditions are studied.

The first case considers a simple horizontal translation to the specimen as
represented in Figure 19. Due to the existing spiral crack, the displacement
field, also represented in Figure 19, clearly shows the spiral discontinuity
created by the enrichment. The red colour depicts the imposed translation

Ω

σ∞
xx

Figure 19: Domain Ω with a spiral crack. Loading condition (left) and magnified displace-
ment (right)

and the blue colour means a decreased displacement. The magnified stress
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plot represented in Figure 20 shows the unfolding of the parts of the specimen
cut by the spiral: the outer edges of the square are the most displaced, while
the most internal spire is the least displaced. All the intermediate values
of the displacements (from the innermost spire to the edges of the square
sample) cause the characteristic swirling of the sample in Figure 20.

Figure 20: Magnified displacement and σ∞xx stress for the domain with a spiral crack and
the loading condition of Figure 19.

The second case considers a biaxial loading applied to the specimen. The
displacement field and the magnified stresses are represented in Figure 21,
showing that the outermost spire effectively creates a hole-like discontinuity
in the domain, thus disconnecting the internal spires. This means that the

Figure 21: Magnified displacement (left) and magnified deformation with Von misses stress
(right) for the domain with a spiral crack and a biaxial loading.

internal spires are unloaded, and that the stresses concentrate only at the
boundary of the outermost spire.
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6.2. Curved wavy cracks

The last example considered here is based on a curved wavy crack pre-
sented in [40]. This example not only shows the potential and effectiveness of
the proposed enrichment, but also demonstrates the capability to deal with
cracks containing kinks (i.e., points with only C0 continuity), in this case the
kinks developed in sawtooth cracks, and the possibility to consider intersect-
ing cracks without any special treatment. Each curved crack is represented
using a cubic NURBS curve with 31 control points and containing two kinks.
The domain Ω containing three curved wavy cracks joining at one point is
represented in Figure 22, illustrating the applied loads.

Ω

σ∞
xxσ∞

xx

σ∞
yy

σ∞
yy

Figure 22: Domain Ω with three wavy cracks joining at a point.

Figure 23 shows the horizontal and vertical displacement obtained with
the proposed strategy. It can be observed that the enrichment enforces dis-
continuities in the displacements over the sawtooth patterns, with no special
treatment of the junction between the cracks as it is required with XFEM,
see for instance [14]. It is also worth mentioning the ability to handle kinks in
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the cracks by computing the normal at the kink using the strategy proposed
in Section 4.1. The only contact point between the cracks is the central point

Figure 23: Horizontal (left) and vertical (right) displacement field for the domain with
three wavy cracks.

where the three cracks meet. This means that, despite the distance between
the two cracks is very small in some regions, there is no separation of the
central component of the specimen. This can be better observed in the right
plot of Figure 23, where the vertical displacement is displayed.

7. Conclusions

This paper presents, for the first time, an intrinsic enrichment for mesh-
free methods based on a NURBS distance function. This represents a sig-
nificant improvement with respect to previous works in fracture modelling
because the uncertainty due to a poor geometric representation of the crack
is completely removed. First, the NURBS representation of cracks allows
to exactly represent conics and second, it avoids the necessity to discretise
complex cracks using polygonal lines or high-order polynomials, reducing
the burden of the pre-processing stage and introducing the crack description
faithfully.

Due to the properties of NURBS curves, it is possible to obtain a low-
cost book-keeping of complicated fracture patterns, including complex curved
cracks that intersect and/or contain kinks. Compared to other enrichment
approaches such as XFEM, the proposed approach is able to produce crack
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branching or crack interaction by adding a single NURBS enrichment and
without the need of special enrichments for branching or special care for
junctions.

Two validation examples, where analytical or reference solutions are avail-
able, have been used to demonstrate the applicability and show the accuracy
of the proposed methodology. More challenging examples show the superi-
ority of the proposed method compared to other approaches such as finite
elements with remeshing or extended formulations. We showed, for example,
that the proposed enrichment can simulate highly curved cracks, like spirals
or sawtooth, commonly observed in nature on in controlled experiments on
thin solid films.

The incorporation of the exact boundary representation obviously intro-
duces an extra cost in terms of the computation of the intrinsic coordinate
system. Simple strategies for the computation of the normal and tangent at
projected points have been employed in order to show the applicability of the
proposed techniques to challenging problems. Further research will include
the study of more advanced algorithms proposed by the CAD community in
order to reduce the computational cost.

Appendix A. The RKPM approximation

This work considers the reproducing kernel particle method (RKPM) for
the functional approximation, see [28]. This method can also be viewed as
the result of applying a numerical quadrature to the continuous moving least
squares approximation that is usually employed in other meshfree methods
such as the element-free Galerkin method, see [21, 8] for more details.

The RKPM shape function associated to a particle xI ∈ Ω is given by

φI(x) = ω(xI ,x)PT (x)M−1(x)P(xI) (A.1)

where the weighting function is defined as

ω(xI ,x) = ∆VIw
(xI − x

ρ

)
(A.2)

with (∆VI ,xI) denoting the quadrature weights and points (particles), P(x)
denotes a complete basis of the subspace of polynomials of degree k, P(x) =
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{p0(x), p1(x), . . . , pk(x)}, and M is the so-called moment matrix

M(x) =
∑
I∈Sρx

ω(xI ,x)P(xI)P
T (xI) (A.3)

where the index set Sρx is defined in Equation (23).
The moment matrix M can also be viewed as a Gram matrix defined with

a discrete scalar product

〈u, v〉x =
∑
I∈Sρx

ω(xI ,x)u(xI)v(xI) (A.4)

and, from a numerical point of view, it is convenient to work with a centred
and scaled version to enhance the condition number of the system of nor-
mal equations. This correction implies that the following definition of M is
adopted here

M(x) =
∑
I∈Sρx

ω(xI ,x)P
(xI − x

ρ

)
PT
(xI − x

ρ

)
(A.5)

where ρ denotes the average of all the compact support radii.
The continuity properties of the RKPM shape functions are clearly linked

to the continuity properties of the function w in Equation (A.2), see [17],
which is usually referred as the kernel of the approximation. This work
considers the so-called 2k-th order spline, which is the Ck−1 function given
by

w(ξ) =

{
(1− ξ2)k 0 ≤ ξ ≤ 1

0 ξ > 1
(A.6)

Appendix B. Control data for NURBS objects

This section contains the NURBS description of the two cracks used in
Section 5.

Appendix B.1. Circular arc

There are many options to define a NURBS describing a circle. A com-
monly used options is to define a quadratic NURBS with four rational seg-
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ments. The knot vector is

Λ = {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1} (B.1)

and the control points and weights are detailed in Table B.4 for a circle
centred at the origin and with radius R.

i Pi νi

1 (−R, 0) 1

2 (−R, −R)
√

2/2
3 (0, −R) 1

4 (R, −R)
√

2/2
5 (R, 0) 1

6 (R, R)
√

2/2
7 (0, R) 1

8 (−R, R)
√

2/2
9 (−R, 0) 1

Table B.4: Control points and weights for a circle of radius R.

In order to define the circular arc depicted in Figure 15, the radius of the
circle is taken as R = a/ sin(α) and the NURBS curve describing a circle is
trimmed to the subinterval [(1− α)/360, 0.5− (1− α)/360] where the angle
α is given in degrees.

Appendix B.2. Parabolic arc

A parabolic arc can be described using a quadratic B-Spline with just
three control points. The knot vector is simply

Λ = {0, 0, 0, 1, 1, 1} (B.2)

and the control points for the parabolic arc depicted in Figure 16 are detailed
in Table B.5, where ya = a2/(4A). The coordinates of the focus of the
parabola are (0, A), where A = a/(2 tanα).

32

Preprint of 
R. Sevilla and E. Barbieri 
NURBS distance fields for extremely curved cracks 
Computational Mechanics, 54 (6); 1431-1446, 2014



i Pi

1 (-a, ya)
2 (0, −ya)
3 ( a, ya)

Table B.5: Control points for a parabolic arc.
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