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Abstract

This paper proposes a novel Immersed Boundary Method where the embed-
ded domain is exactly described by using its CAD boundary representation
with NURBS or T-Splines. The common feature with other immersed meth-
ods is that the current approach substantially reduces the burden of mesh
generation. In contrast, the exact boundary representation of the embedded
domain allows to overcome the major drawback of existing immersed meth-
ods that is the inaccurate representation of the physical domain. A novel
approach to perform the numerical integration in the region of the cut ele-
ments that is internal to the physical domain is presented and its accuracy
and performance evaluated using numerical tests. The applicability, perfor-
mance and optimal convergence of the proposed methodology is assessed by
using numerical examples in three dimensions. It is also shown that the ac-
curacy of the proposed methodology is independent on the CAD technology
used to describe the geometry of the embedded domain.
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1. Introduction

In the Finite Element Method (FEM) the domain, usually defined by a
Computer-Aided Design (CAD) model, where the problem is actually solved,
is partitioned in subdomains, or elements, of simple geometries (e.g., trian-
gles or quadrilaterals in 2D and tetrahedra, hexahedra, prisms or pyramids
in 3D). Despite mesh generation using simplexes (i.e., triangles and tetrahe-
dra) is considered a mature technology, the generation of a fitted mesh for
complex geometries with good-quality elements to avoid numerical errors due
to presence of highly distorted elements, still requires a substantial effort. In
addition, the computational mesh must be adapted to properly capture the
local features of the solution such as stress concentrations in solid mechanics
or boundary layers in fluid mechanics.

According to some studies, the process of creating an analysis-suitable
geometry and the meshing of that geometry appropriate for Finite Element
Analysis (FEA) takes 80% of the total time required to perform a finite
element simulation. The bibliography about this subject shows several ways
to decrease this 80%. Among them we can cite the Isogeometric Analysis
(IGA) [? ] and the techniques where the mesh is made independent of the
geometry of the domain to be analyzed.

NURBS (Non-Uniform Rational B-Splines) are ubiquitous in CAD and
have been successfully used as a basis for [GA where, instead of polynomials,
the FE interpolation functions are those used to define the geometry. This
new concept seeks to reduce errors by focusing on one, and only one, geo-
metric model, which can be utilized directly as the analysis model. A newer
CAD representation tool, the T-splines [? |, which allows for the use of the so
called T-junctions, ensures the possibility to create water-tight models (this
was not always possible with a NURBS representation of the surface) and
has helped to overcome the difficulties of the IGA to produce local refine-
ments. IGA does not only require the NURBS discretization of the surface
given by the CAD modeler but also a NURBS/T-spline analysis-suitable dis-
cretization of the volume. Progresses towards the automatic generation of
this discretization can be found in [17 7 7 7 7 ].
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The second option analyzed in this paper to decrease the above mentioned
analysis time, while maintaining the overall FEA environment, is to use a
computational mesh that is completely independent of the geometry of the
domain. This option is particularly attractive, for example, in an optimiza-
tion framework, when the analysis requires continuous mesh adaptations and
re-meshings.

The eXtended FEM (XFEM) [? | and the Generalized FEM (GFEM) [? |
are two variations of the traditional FEM that reduce the burden of mesh gen-
eration. The main motivation of the XFEM was to deal with cracks without
the need of re-meshing even if the cracks grow. Making use of the Partition
of Unity Method (PUM) [2], this approach enriches the numerical solution
to represent singular stress fields near the crack tip and discontinuities on
the crack faces. The GFEM follows a similar rationale also using the PUM
to include enrichment functions that describe the known behavior of the so-
lution at specific locations. In both methods the mesh can be independent
of the geometry, although, for integration purposes only, a boundary-fitted
mesh, obtained by additional subdivision of elements cut by the boundary,
has to be created so that the numerical integration considers the region of
the element that actually lies within the domain.

Other variations of the FEM that were developed to reduce the burden
of mesh generation are based on the idea of defining an auxiliary and easy to
mesh domain {2 which embeds the problem domain (pyys. All these method
were classified under the umbrella term of Finite Elements in Ambient Space
in [? ]. Examples of these analysis techniques are the Immersed Bound-
ary Method (IBM) and the Immersed Finite Element Method (IFEM). The
IBM was introduced by Peskin [? | to alleviate the cost associated with
remeshing in body-fitted techniques when simulating the flow around heart
valves. Later developments including the IFEM [? | were proposed in order
to avoid the limitations associated to the assumption of the fiber (i.e., one-
dimensional) nature of the immersed structure. Immersed boundary meth-
ods, often referred to as embedded methods, have been object of intensive
research within the fluid mechanics community and several alternatives and
modifications to the original method have been proposed, see [? | for a re-
view. These methods have become very popular in the last decade within the
computational bio-mechanics community, see for instance [? 37 |. As in the
case of XFEM and GFEM, to numerically compute the integrals appearing
in the weak formulation, these techniques rely on a submesh of the elements
cut by the boundary that is used to perform the integration in the interior
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to the physical domain, Qpnys. Therefore these elements require a specific
treatment.

As previously indicated, the geometry of the domain to be analyzed is
usually defined by a CAD model. The accuracy of the geometric represen-
tation in FE computation is another issue to take into account which in the
late 1990s motivated the incorporation of powerful CAD techniques into FE
computations [4]. There is a big concern in the scientific community about
the need to integrate CAD systems with the numerical analysis tools. Any
attempt towards this integration will require the numerical analysis tools
to be able to use the most modern techniques used in the CAD industry.
Because of this, methods able to incorporate the most extended CAD tech-
nology, namely NURBS and more recently T-Splines, into the FE analysis
stage such as IGA methods [57 | or the NURBS-enhanced Finite Element
Method (NEFEM) [67 ? | have become very popular.

When the IBM-type methods are applied to complex geometries, it is
common to substitute the exact geometry of the embedded domain by an
approximated description using a faceted representation in three dimensions.
The errors introduced by an approximated geometry representation can be
termed as geometrical modeling errors that will translate into numerical in-
tegration errors that will negatively influence the accuracy of the numerical
analysis because the submesh employed for integration purposes is directly
constructed using the approximated embedded geometry. The importance of
the geometrical model in body-fitted FE simulations has been pointed out
by several authors, see [6] and references therein, but it has been rarely ac-
counted for in immersed techniques until very recently [? ? |. In this work,
the CAD description of the boundary of the physical domain is considered.

In addition, new strategies for treating boundaries and interfaces have
been developed recently. Within the scope of the IGA, a two dimensional
NURBS-based IGA with trimming technique [7] in which the auxiliary do-
main € is defined as a NURBS parametric space has been proposed. Another
interesting approach is the Finite Cell Method (FCM) [8] which uses the p-
version of the FEM to perform adaptive analysis over a mesh of regular
quadrilaterals (2D) or cubes (3D). One of the main features of the FCM is
that, for integration purposes, it uses a highly refined integration mesh into
each of the elements cut by the boundary to appropriately capture the limits
of the domain, hence, the resolution of the boundary is related to the refined
integration mesh. In exchange, our approach will consist of using high-order
quadratures over the integration subdomains of the coarse mesh to capture

4
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the boundary of the problem.

The Cartesian grid Finite Element Method (cgFEM) presented by Nadal
et al. [? 7 ] is a computationally efficient FE methodology for the reso-
lution of 2D linear elasticity problems that makes use of a Cartesian grid
in which the problem domain is embedded. A hierarchical data structure
relates the different refinement levels of the Cartesian grid allowing for the
definition of h-refined meshes for h-adaptive analysis and for the simple data
transfer and re-utilization between elements of different refinement levels.
The Superconvergent Patch Recovery technique for displacements (SPR-CD)
uses constrain equations to obtain accurate recovered displacement and stress
fields that locally satisfies the equilibrium equations and the Dirichlet bound-
ary conditions. These fields are used as the standard output of cgFEM in-
stead of the raw FE solution and as part of the information required by the
Zienkiewick-Zhu error estimator [? | that drives the h-adaptive refinement
process. Dirichlet boundary conditions are imposed using a stabilized La-
grange multipliers approach [9], where the stabilization term is provided by
the FE tractions along the Dirichlet boundaries evaluated in a previous mesh.
In cgFEM, a procedure, only valid for the 2D case, based on the use of tran-
sifinite mapping functions can be used in the elements cut by the boundary
in order to consider the exact geometry of the domain in the evaluation of the
required volume integrals. This avoids integration errors due to an inaccurate
representation of the domain that could even lead to an error convergence
rate of the FE solution smaller than the expected theoretical optimum.

An extension of cgFEM to 3D, called FEAVox, is under development.
One of the most challenging aspects of the development of FEAVox is to
consider the exact boundary of the domain in the evaluation of volume in-
tegrals. Therefore, this paper presents a methodology that incorporates the
exact boundary representation of the 3D computational domain Qppys em-
bedded in the domain €2 meshed with a Cartesian grid composed of regular
hexahedra. Instead of simplifying the embedded geometry to perform the nu-
merical integration, we propose efficient techniques to perform the numerical
integration over the true computational domain (pnys. The proposed tech-
nique follows the NEFEM rationale although new developments are needed in
order to find the intersections between the Cartesian grid and the boundary
of the physical domain. In addition, this paper considers not only NURBS
but also T-Splines.

The paper is organized as follows: A brief review of NURBS and T-spline
representations will be shown in Section 2, then Section 3 will be devoted to
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explain how to capture exact geometries within a Cartesian grid framework.
Section 4 will present the formulation of the problem the procedure used
to impose Dirichlet boundary conditions considering meshes not conforming
to the geometry. Numerical results showing the behavior of the proposed
technique will be presented in Section 5. This contribution ends with the
conclusions in Section 6.

2. Geometrical Representation: from NURBS to T-spline

Different options are available for representing surfaces in CAD such as
B-Splines [? ], NURBS [10, 11], subdivision surfaces [? | or T-Spline [? |. In
this paper, we consider NURBS and T-splines for the geometrical represen-
tation of three dimensional models. This section covers succinctly the main
features of these two technologies.

2.1. NURBS fundamentals

NURBS are a generalization of B-splines, which in turn are piecewise
polynomial curves composed of B-spline basis functions. The basis functions
are defined in parametric space on a so-called knot vector =Z. This is a
set of non-decreasing real numbers representing coordinates (knots) in the
parametric space:

E= {517"'7€n+p+1}7 (1)

where p is the order of the B-spline and n the number of basis functions. The
interval [&1,&,4p+1] 1s called a patch, whereas the interval [£;,&;11) is called
a knot span. A knot vector is said to be uniform if its knots are uniformly
spaced and non-uniform otherwise. Moreover, it is said to be open if its first
and last knots are repeated p + 1 times.

The B-spline basis functions Ni(p ) (€) of order p > 0 are defined recursively
on the corresponding knot vector as follows:

N© (€) = { I &G <E<&n )

0 otherwise

(E-&N"(©) , Ergn =9 NV ()

ivg — i Sivgr1 — Eir1

(3)
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forq =1,...,pand with ¢ = 1,...,n +p+ 1. They are C’~!-continuous
if internal knots are not repeated. If a knot has multiplicity k&, the basis is
CP~*_-continuous at that knot. Further properties of the basis functions are

e B-spline basis functions formed from open knot vectors constitute a
partltlon of unity, that is,

S N (€ =1V e
e The support of each Ni(p ) (&) is compact and contained in the interval
&1, Gipr1)-

e B-spline basis functions are non-negative: Ni(p ) (&) >0VE.

B-spline curves of order p are linear combinations of B-spline basis func-
tions of order p, Ni(p ), and of points P;. These points, P;, referred to as
control points, are given in d-dimensional space R?. E.g. in three dimensions
this means P; = (z;, y;, zi)T. Hence B-splines are given as:

=2 NP ©P; ()

The control points define the control polygon. B-spline curves interpolate
the control points just at their start and end points. In between, interpo-
lation can be achieved by a certain multiplicity of control points or knots,
respectively.

NURBS are rational B-spline curves which are the projection of a non-
rational B-spline curve C" (§), defined in (d + 1)-dimensional homogeneous
coordinate space, back onto the d-dimensional physical space RY. Homoge-
neous (weighted) (d + 1)-dimensional control points are

P = (w;, wiyi, wizi, w;) " (5)

The non-rational (d 4 1)-dimensional B-spline curve C" then reads

=2 NPy (6)

Projecting onto R¢ by dividing through the additional coordinate yields
the rational B-spline curve

i, N
C = —E 7
(6) = S (7)
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Here P; are the control points in R | Rz(p ) are rational B-spline basis
functions and w; is referred to as the i-th weight, typically w; > 0 Vi.
Through this projection all common shapes, especially conic sections such as
circles and ellipses, can be represented exactly.

Finally, NURBS surfaces are constructed from a tensor product through
two knot vectors = = {&,...,&uipr1t and I' = {m1, ... Mmigi1}. The
n X m control points P;; form a control net. For the geometric descrip-
tion of NURBS surfaces the typical arrangement is a (n X m)-dimensional
matrix with elements (7, 7). The NURBS surface S (£,7) is defined on the
one-dimensional basis functions Nl-(p ) and Mi(q) (with s = 1,...,n and j =

1,...,m) of order p and g, respectively, as
N (€) M () w,y

SEm=>> ’

i=1 j=1 Dict 2?;1 Ni(p) (&) M]@ (1) wij

In the case of surfaces, we refer to the [£1, &ntpt1] X M1, Dmtqt1] @s patch
and [&;, &i41) X [0j,mj+1) as knot span. NURBS surfaces examples are shown
in Figure la and Figure 1b, where in blue we can see the control points and
in red the projections of the knot vectors onto the surface. These models will
be analyzed in the section devoted to numerical comparisons.

NURBS have been used as a basis for IGA where the interpolation func-
tions are those used to define the geometry. This approach brought to light
some drawbacks of NURBS surfaces due to its tensor product nature. For
instance, to model complicated designs requires multiple NURBS patches,
which are often discontinuous across patch boundaries. Even achieving C°
continuity across patches requires special techniques. The joining of two
patches that were created separately may require the insertion of many knots
and nonlinear reparameterization of one or both patches. Furthermore, all
NURBS refinement operations are global. In other words, when we refine
by inserting knots into the knot vectors of a surface, the knot lines extend
throughout the entire domain. Global refinement introduces an unnecessary
cost when NURBS as used as basis for the analysis. Finally, to add fea-
tures, such as holes it is common to use trimming curves. The application
of trimming curves destroys the tensor product nature of the geometry thus
the geometric basis no longer describes the geometry and cannot be used
directly in FE analysis.

Pi; (8)
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2.2. T-spline fundamentals

To achieve a tight integration of design and analysis requires a technology
built on the smooth B-spline basis which can be locally refined and is capable
of representing domains of arbitrary topological complexity as a single wa-
tertight geometry. All of these capabilities are present in a generalization of
NURBS called T-splines. In this work we are not interested in the character-
istics of this technology from the IGA point of view but in its representation
power as a state-of-the-art technology.

T-spline basis functions are defined on local knot vectors, and its control
nets allow T-junctions which are introduced during local refinement. T-spline
does not have the superfluous control points in NURBS model to satisfy
topological constrains. A T-spline surface is defined as

_ >izo Bil& n)wiT;
Z?:O wlBZ(£7 77) ’

S(&,n) (&,m) €9, 9)

where
Bi(&,n) = N; (§)N]'(n) (10)

and T; are the T-spline control points, w; are the respective weights, Nf (£)
and N/'(n) are B-spline basis functions defined by two local knot vectors
& and n;. If the degree is 3, we have & = [, &y, &y Giss §i] and m; =
[Mios Mivs Mins Mis> Ml [T 7 ]. The algorithm used to infer knot vectors from a
T-mesh is introduced in [? ].

Neither NURBS nor T-spline can be directly used for analysis, since they
are defined to represent the whole domain. To obtain the discretized finite
element representation of a NURBS or T-spline, we can use Bézier extraction
operator to decompose the domain into Bézier elements. The Bézier extrac-
tion operator maps a piecewise Bernstein polynominal basis onto a B-spline
basis [12]. A Bézier extraction operator E is a linear operator such that

N(s) = EB(s) (11)

where N(s) is a B-spline basis function and B(s) is a set of Bézier basis
functions. The operator E is constructed from the repeated knot insertion of
knot vector which defines N(s) and it is independent from the control points
and the basis functions. A similar extraction operator M can be defined to
transform T-spline basis functions to Bézier basis functions [? |. In a T-
spline framework, for each parametric domain which can extract one Bézier
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element, we can first find all the control points with nonzero basis functions.
Then we have
By = M°®B; (12)

where B is the vector formed by all the T-spline basis functions with nonzero
function values, and By is the vector formed by the Bézier basis functions.
For each Bézier element, M® can be calculated using the Oslo knot insertion
algorithm [13]. This algorithm can obtain the extraction operator from all
the related T-spline basis functions to the Bézier basis functions in a single
step. In this work we will use this by-product to be able to represent T-spline
geometries, see Figure lc.

(a) NURBS sphere model. (b) NURBS torus model. (c) T-spline torus model.

Figure 1: Geometrical models used in this contribution.

3. Cartesian Grids with Exact Representation of the Immersed
Geometry

As previously mentioned, in the classical FEM, the most extended ap-
proach is to employ unstructured meshes that conform to the boundary of
the physical domain. Mesh generation and, especially, mesh adaptation tech-
niques such as mesh refinement, mesh movement or remeshing are time con-
suming and require a substantial amount of human hours [? 7 ]. Expertise
is required in order to refine the mesh appropriately to accurately represent
both the geometry of the physical domain and the local characteristics of the
solution of the problem under consideration.

Given an open bounded domain Qpyys C R?, see Figure 2a, with boundary
't = Obnys, the key principle of FEAVox, or any other IBM, consists in

10
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(a) Geometrical model of an  (b) Cartesian grid, 2.  (c) Approximation of Qppys,
sphere, Qppys. Qghys'

Figure 2: Typical Immersed Boundary Method environment.

defining an embedding domain 2 such that {dp,ys C €2 and with a much more
simpler geometry than the physical domain. Therefore, €2 is extremely easy to
mesh compared to the domain of interest Qpnys. In FEAVox, we consider 2 to
be a cuboid, and a Cartesian grid is used to mesh the domain €2 as represented
in Figure 2b. In order to represent the geometry of the physical domain in
IBM, it is common to use a linear triangular mesh to discretize the boundary
I';g. This option allows for the implementation of simple algorithms to find
the intersections between the discretized immersed boundary and the mesh
of the embedding domain, but this also means that the problem is solved
not in the physical domain €pnys but in an approximation of lpyys, namely
ijhys, Figure 2c. The effect of this approximation can be very important
if high order elements are used. This method can be used to obtain good
results from an engineering point of view in many problems. However, the
optimal convergence rate of the FEM can be compromised because of the
rate of convergence of the integration error when the mesh is refined. To
overcome this problem, in this work, the CAD description of the boundary
of the physical domain I'tp is considered using high-order quadratures over
the integration subdomains to capture the boundary of the problem.

The translation of complex CAD-based geometrical models into conform-
ing FE discretizations is computationally expensive, difficult to fully auto-
mate and often leads to error-prone meshes, which have to be improved
manually by the user. Immersed boundary methods do not require body-
fitted meshes, but embed the domain into a Cartesian grid (i.e., a regular
grid of axis-aligned elements), which is generated irrespective of the geomet-

11
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ric complexity of the physical domain. In this work, we present an strategy
that exploits the advantages of Cartesian grids and uses specific strategies
for the numerical integration over the exact physical domain, with a CAD
boundary representation.

3.1. Generation of the analysis mesh

FEAVox is based on the use of a sequence of uniformly refined Cartesian
meshes where hierarchical relations between the different mesh levels have
been defined.

The sequence of m meshes used to discretize the embedding 3D domain
Q) is called the Cartesian grid pile and is denoted by {QZ}izl,_ﬂm. For each
level of refinement, the embedding domain () is partitioned in n’; disjoint

cubes of uniform size, where nij' = 8n’ . A hierarchical data structure for
FE analysis based on element splitting was presented in [? |. This data

structure takes into account the hierarchical relations between the elements
of different levels, obtained during the element splitting process, to acceler-
ate FE computations. The data structure has been adapted to the particular
case of a sequence of meshes given by the Cartesian grid pile, where all ele-
ments are geometrically similar to the element used in the coarsest level of
the Cartesian grid pile, called the reference element. One important benefit
of the data structure adopted here is that the mapping between an element
in the Cartesian grid and the reference element is affine and, therefore, its
Jacobian is constant. This property can be exploited to dramatically speed
up the computation of the elemental matrices. For instance, the analysis
presented in [? | shows that the number of operations required to compute
the elemental matrices can be reduced by a factor of 10 when a mapping
with a constant Jacobian is considered with low-order hexahedral elements.
This and other hierarchical relations considered in the data structure allow
for a simplification of the mesh refinement process and the precomputation
of most of the information used by the FE implementation, remarkably in-
fluencing the efficiency of the code. The implementation uses functions that
directly provide the nodal coordinates, mesh topology, hierarchical relations,
neighborhood relations, and other geometric information, in an efficient man-
ner, when required. Therefore, there is no need to store this information in
memory, making the proposed algorithm more efficient, not only in terms of
computing time but also in terms of memory requirements.

12
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3.2. Element classification and geometry-mesh intersection

The first step of the proposed strategy consists of creating the analysis
mesh used to obtain the FE solution of the boundary value problem. In order
to obtain the analysis mesh, the elements of the Cartesian grid are classified
as:

e Boundary elements: elements cut by the boundary of the physical do-
main, this is, elements Qg such that Qg N 'z # 0.

e Internal elements: elements inside the physical domain, thus, elements
(21 such that Q; C Qppys, and

e External elements: elements outside the physical domain, elements (g
such that Qg C Q\ Qpnys,

as illustrated in Figure 3 where a sphere is embedded in a Cartesian grid,
Figure 2b.

(a) Perspective view. (b) 2D section.

Figure 3: Section of a three dimensional Cartesian grid showing the three
different types of elements: (1) In red, external elements, Q2g, not considered
in the analysis, (2) in blue, elements, (g, intersected by the boundary of the
embedded domain and (3) in green interior elements, (1.

The analysis mesh is formed by the internal and the boundary elements
intersected by the geometry. The external elements are not considered in
the analysis stage. Internal elements are treated as standard FE elements
and the affinity with respect to the reference element is exploited in order to
speed-up the computational cost of the element matrices. For those elements

13
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cut by the boundary of the physical domain, and since we are working with
meshes completely independent of the embedded geometry, it is necessary to
determine the relative position of the elements with respect to the physical
boundary, so specific strategies are required to find the intersection with the
boundary and to perform the numerical integration. Efficient strategies to
perform these two operations are proposed in the remaining of this section.

The strategy considered in this work to classify the elements consists of
three steps:

1. Find the intersections of the physical boundary with the edges of the
Cartesian grid elements,

2. Classify the grid nodes as internal or external, relative to the physical
domain, and

3. Classify the elements as internal, boundary or external.

It is therefore only necessary to describe in detail the proposed strategy
to compute the intersections of the physical boundary with the edges of the
Cartesian grid elements There are several methods available in the literature
to evaluate the intersection between parametric surfaces and a Cartesian grid.
Most of them were developed for ray-tracing tasks related to the animation
industry, where rendering CAD models is mandatory, see [14] for a review of
the methods.

We employ a Newton-Raphson algorithm to find the intersections be-
tween the edges of the Cartesian grid elements of the analysis mesh and the
parametric surfaces describing the boundary of the physical domain. Effi-
ciency is guaranteed by using, as an initial approximation, the intersection
of the edges of the Cartesian grid elements with an auxiliary triangular sur-
face mesh of the boundary of the physical domain. We have to remark that
this triangular mesh is only an approximation of the exact CAD descrip-
tion of the physical boundary. However, this approximation is only used to
compute a good initial guess for the Newton-Raphson algorithm.

If the embedded domain is represented by trimmed surfaces, we need to
create the auxiliary triangulation, used during the Newton-Raphson proce-
dure, only over the trimmed surface of the NURBS. To illustrate this sit-
uation we consider the example depicted in Figure 4. Figure 4a shows the
parametric space of a NURBS surface I's. The immersed body I'y is assumed
to be the image of the trimmed space where NURBS will be used to define
the boundary curves (trimming curves). We will define a triangulation of I't
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as shown in Figure 4d. To generate this triangulation we will use a set of
arbitrary points distributed over the parametric space of the NURBS sur-
face (red squares in Figure 4b) but we will also add points located over the
boundary curves defining I'r, (blue squares in Figure 4b). We have to ensure
that the intersections between the Cartesian grid edges and the NURBS are
correctly identified as intersections on I't or outside I';. Obviously, for an
appropriate representation, the points located over the boundary curves of
['r must include the extremes of these curves, but additional points must
also be included to properly define the boundary. To do this, the additional
points will correspond to the intersections of the trimming curves with all
the Cartesian planes that define the faces of the elements of the Cartesian
grid. The evaluation of these intersections only introduces a marginal ex-
tra computational cost because, although NURBS are rational curves, their
homogeneous description, see Section 2.1, is employed in the intersection
process. A triangulation of the NURBS surface will be created using this
cloud of points and the efficient 2D Delaunay triangulation procedure, see
Figure 4c. The triangles lying outside I't will be discarded to obtain the
final auxiliary triangulation shown in Figure 4d. This figure also shows the
point of intersection between the NURBS and the edges of the elements of
the Cartesian grid, correctly classified as internal (red dots) or external (blue
dots) with respect to I'r.

The above procedure requires the definition of an auxiliary triangulation
in the parametric space of the NURBS surfaces defining the embedded do-
main. In order to guarantee convergence of the Newton-Raphson algorithm
to the desired intersection point, it is advantageous to define a triangulation
with a triangle size related to the size of the elements of the analysis mesh.
If the auxiliary triangulation is too coarse, the axis of the Cartesian grid
can intersect the same triangle several times. This situation will prevent the
convergence of the Newton-Raphson algorithm in some cases as the same
initial guess will be considered for the computation of two different roots.
This situation is illustrated in Figure 5. In Figure 5a a NURBS surface is
represented together with two planes corresponding to sections of the Carte-
sian grid. Figure 5b shows the parametric space of the NURBS surface with
a coarse auxiliary triangulation. The two curves correspond to the intersec-
tions of the planes in Figure 5a with the NURBS surface in the parametric
space. It can be observed that, for this coarse auxiliary triangulation, the
axis of the Cartesian grid can intersect several times the triangle highlighted
in light blue. Figure 5c shows a finer triangulation that fixes this issue. To
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(a) Parametric space of a  (b) Points used to define an arbi-
NURBS surface, I's, and  trary auxiliary triangulation on
subspace to define a trimmed the parametric space.

NURBS, I't.
(¢) Triangulation over the para-  (d) Final auxiliary triangulation
metric space. that ensures the correct classifi-

cation of all intersection points.

Figure 4: Identification of intersections between a trimmed NURBS surface
and the edges of the Cartesian grid.

avoid the problem the size of the triangles has to be selected depending on
the refinement of the Cartesian grid.

Assuming that the intersections of the physical boundary with the edges
of the Cartesian grid elements are computed, it is easy to classify the element
nodes as internal or external just marching along the edges of the Cartesian
grid. Once the grid nodes are classified, it is straight forward to classify the
elements as internal, boundary or external, just by counting the number of
internal and external nodes in each element.
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(a) NURBS surface in grey  (b) Parametric space of the

and two planes correspond- NURBS with a coarse aux-
ing to sections of the Carte- iliary triangulation and the
sian grid. projection of the two planes

in Figure 5a.

(c) Parametric space of the
NURBS with a refined aux-
iliary triangulation and the
projection of the two planes
in Figure 5a.

Figure 5: Automatic definition of the size of the auxiliary triangulation to
avoid multiple intersections of a single triangle with the planes of the Carte-
sian grid.

3.3. Integration over subdomains

The FEM requires the computation of integrals over the domain of in-
terest. When a body-fitted mesh is employed, the integrals on the domain
interior are computed by adding the contribution of the integrals over each
element and, analogously, the boundary integrals are computed by adding
the contribution of the integrals over each element face on the boundary of
the physical domain. The numerical integration in IBM require special atten-
tion as the mesh is completely independent of the geometry of the physical
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domain.

Internal elements are treated as standard finite elements and the integra-
tion is performed using a tensor product of one-dimensional Gauss quadra-
tures with the desired number of points in each direction. However, the
contribution from the boundary element (23 requires special attention as the
integral must be computed only over the portion of the boundary elements
that lies inside the physical domain, namely Q5"° = Q5 N Qpyye. In fact,
the independent generation of the Cartesian grid with respect to the embed-
ded geometry implies that the region of elements intersected by the mesh
lying inside the computation domain, Q5 can be extremely complex. The
strategy proposed to perform the integration over Qi™® consists in employ-
ing a tetrahedralization of this region that incorporates the exact boundary
representation of (ppys.

The proposed approach is inspired on the Marching Cubes (MC) algo-
rithm [15], which uses a set of templates for the intersection between surfaces
and the edges of cubes. The MC algorithm is widely used in computational
graphics to represent approximations of surfaces as it is very efficient sorting
out basic intersection patterns and creating linear surfaces between them.
We have taken the basic intersection patterns of the MC algorithm to iden-
tify the most common intersection patterns between the embedded geometry
and the Cartesian grid, then a parametrized tetrahedralization of each one of
these patterns is generated and stored. To facilitate the implementation, and
without loss of generality, we assume that the Cartesian elements are inter-
sected, at most, once by the boundary of the physical domain. This condition
can be easily relaxed and it is employed here only to simplify the presentation
and to facilitate the implementation. From this premise, we need only seven
out of fourteen templates of the original MC algorithm (1, 2, 5, 8, 9, 11 and
14, see [15]). It is in fact possible to use the remaining templates to identify
regions of particular geometric complexity where extra mesh refinement can
be introduced to properly capture them. The seven patterns considered are
depicted in Figure 6. In the figures we can see the nodal topologies and the
set of tetrahedra used for each pattern. Colors identify internal and external
subdomains (or different materials if the case of multimaterial problems).

Numerical integration over the region Q8™ is then accomplished by inte-
grating over each subdomain of the tetrahedralization. In order to perform
the integration over the subdomains, the strategy proposed within the NE-
FEM [? | is adopted. This methodology was designed to incorporate the
exact boundary of the computational domain into body-fitted FE simulations
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(a) Configuration 1. (b) Configuration 2.
(¢) Configuration 3. (d) Configuration 4.
(e) Configuration 5. (f) Configuration 6.

(g) Configuration 7.

Figure 6: Intersection patterns inspired on the MC algorithm. Nodal topol-
ogy (left) and tetrahedralization (right).

and the advantages with respect to the classical finite element method were
demonstrated for a variety of problems, see [16]. A tetrahedral subdomain
TF with a face on the physical boundary is parametrized using the mapping
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Figure 7: Integration over a curved tetrahedron with a face over the physical
domain.

U A x[0,1] — TF
(57777 C) — \11(577774) = (1 - C)S(éun) + CX47

where S(A.) denotes the curved face of T on the boundary of the physical
domain and x4 is the internal vertex of T¥. Analogously, a tetrahedral
subdomain T with an edge on the physical boundary is parametrized using
the mapping

& 6,8 x[0,1) — TF
(&n,0) — ®(§,n,¢) == (1 = )1 —=n)C(§) + (1 = O)nxz + (X4

where C([¢1,&,]) denotes the curved edge of TF on the boundary of the
physical domain and x3 and x4 are the two internal vertices of TF.

The most salient properties of the mappings used by NEFEM is the ability
to decouple the directions of the surface definition, A, and [{;,&] in the
mappings ¥ and ® respectively, with respect to the interior directions. In
addition, the mappings are linear in the interior directions, guaranteeing
that the required number of integration points is minimum, compared to
other options such as the transfinite mappings [17].

Given these parametrizations, it is possible to perform the numerical
integration over all the curved tetrahedral elements that form QE°. To
this end, we consider tensor products of triangle quadratures [18] and one-
dimensional Gaussian quadratures for the tetrahedrons with a face on the
boundary of the physical domain, see Figure 7.

For the tetrahedra with an edge on the boundary of the physical domain,
tensor products of one-dimensional Gaussian quadratures are employed. The
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number of integration points required in the parametric space of the para-
metric boundary representation depends on the CAD technology employed.
In [19], the number of integration points required to integrate polynomial
functions over domains with a NURBS or B-spline boundary description is
studied numerically. The conclusions show that, compared to traditional FE,
NEFEM requires the same, or just one integration point more, in order to
ensure that the numerical error due to the numerical integration is lower than
the interpolation error. In addition, the ideas supporting this approach are
valid not only when the boundary of the domain is parametrized by NURBS,
but for any piecewise boundary parametrization.

Remark 1. It is important to note that, when non trimmed surfaces are
considered, NEFEM defines the triangular face in the parametric space, A,
in Figure 7 as a stright-sided triangle [19]. This is always possible due to
the boundary fitted nature of the NEFEM approach. In contrast, the ap-
proach proposed in this paper requires the faces of the tetrahedral elements on
the boundary of the embedded domain are defined as the anti-image (by the
NURBS surface) of the intersections of Cartesian planes and the NURBS
surfaces. Therefore, in general these faces are curved triangles in the para-
metric space of the NURBS. It is worth noting that the mapping depicted
in Figure 7 is still valid to perform the numerical integration, even if the
boundary face is a curved triangle in the parametric space.

4. Problem Formulation and Numerical Solution

Let us consider an open bounded domain Qppys C R? with closed bound-
ary I'tg = Ofdpnys. The boundary of the domain is partitioned into the Neu-
mann boundary I'y and the Dirichlet boundary I'p, with I';g = I'y U T'p
and 'y NT'p = (. The strong form of the equilibrium equations and the
boundary conditions are

—-V.o (u) =b in QPhys
oc(u)-n=t on Iy (13)
u=u on [Ip
where u is the displacement field, o (u) is the Cauchy stress tensor, b is

the body force vector, n is the outward unit normal vector to I'y, t is the
imposed traction on I'y and u is the imposed displacement on I'p.
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The weak variational formulation associated to the strong form of the
equilibrium equations can be expressed as: find u € [H1<Qphys)]3 such that

3

a (11, V) = l (V) VV S [Hl(QPhysﬂ (14)
where
a(u,v):/ o(u):e(v)dQ
QPhys (15)
l(u):/ b-de+/ t-vdl
QPhys 'y
In the above expressions € is the strain tensor that satisfies
o = De, (16)

where D is the Hooke’s tensor.

4.1. Boundary conditions

One major difficulty associated to the use of immersed boundary meth-
ods with Cartesian grids is the fact that, in general, the mesh nodes are
not placed on the boundary of the domain, increasing the difficulty to im-
pose Dirichlet boundary conditions in strong form. In this paper, Dirichlet
boundary conditions are imposed by means of stabilized Lagrange multipli-
ers. More precisely, the procedure chosen to impose the constraints (i.e.,
Dirichlet boundary conditions) follows the technique proposed by [9, 20].
This method is suitable for h-refinement based on the use of hierarchical
Cartesian grids, where a functional is added to the initial formulation of the
problem that has the effect of stabilizing the problem. The stabilization term
uses the FE stress field from a previous mesh [9] or a recovered stress field
from a previous mesh or the current one [20]. In the second case, an itera-
tive method is defined to solve the problem. In both cases, the definition of
the Lagrange multipliers field will allow us to directly condense the degrees
of freedom of the Lagrange multipliers at an element level. For the model
problem of Equation (13), the weak formulation with Lagrange multipliers

reads: find (u,A) € [7’-[1(Qphys)]3 X [H’I/Q(FD)}?’ such that

a(u,v) +bA,v) =1(v) Vv e [H' (Dbnys)]’

, (17)
bp,u) = b(p, )  Vpe [HV2(I)p)]
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where

b(A, V) :/ A-vdl
I'p

The stabilized formulation can be derived from a constrained minimiza-
tion problem solved using the Lagrange multipliers method. Applying the
FE discretization and considering the discrete subspaces " C [H!(Qpnys)]”

and £" C [Hfl/Q(FD)}g, he problem consist of finding the saddle point of
the following functional:

£, (Vh,p,h) = %a (Vh,Vh) —c (Vh) +0 (uh,vh) — %s (uh — T, u" — T)

with s (¢",0") =k> h. | ¢"-0"dT
c rs,

(18)
where h, is the size of the Dirichlet boundary faces and & is a positive penalty
parameter that is selected to accurately impose the boundary conditions
without affecting the convergence rate of the method. The different stabi-
lization methods are obtained by selecting different terms T in the modified
Lagrangian. T* can be defined as the traction obtained from the FE stress
field o* of a previous mesh [9], i.e. T* = —o* (ul ;) - n, where n is the
vector normal to the Dirichlet boundary, and u! | are the displacements
evaluated in mesh ¢ — 1. The alternative implemented in this work is to use
the recovered solution of the current mesh, and define an iterative process to
update the solution [20]. In both cases, the stabilization term prevents ex-
cessive oscillations of the Lagrange multipliers solution and s can be chosen
to maintain the optimal convergence rate of the method.

5. Numerical Examples

This section presents a series of examples to demonstrate the applicability
and the performance of the proposed methodology for three dimensional
problems when the boundary of the domain is described by NURBS or T-
spline. The models where previously presented in the section devoted to
geometrical, see Figure 1. First, the error associated to the proposed strategy
to perform the numerical integration of polynomial functions over NURBS
surfaces is studied. Then, the proposed strategy is applied for the numerical
solution of linear elastic problems.
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5.1. Numerical integration

We first evaluate the accuracy of the proposed approach to perform the
integrals of the weak formulation. In fact, only the boundary integrals are of
interest because the strategy to perform the integrals on the element interiors
use a mapping that is linear in the interior direction and exact integration
in this direction is feasible, see Section 3.3.

Let us consider a sphere of unit radius embedded in a coarse mesh with
only eight Cartesian elements, as depicted in Figure 1. Let S be the surface
integral of a polynomial function f defined as

S:/Ff(:z;,y,z)dF (19)

where I' = {(z,y,2) | =,y,2 >0, 2* + y* + 2? = 1} represents the surface
of the sphere. The numerical result computed with the strategy proposed
in this paper, Si(f), is compared to the analytical result S.(f). The ac-
curacy is evaluated by defining the relative error in percentage as 100 X
(Se(f) = Su([f)) /Se(f). To test the performance of the proposed approach
we consider constant, linear and quadratic functions. It is worth noting
that when a linear approximation of the solution is considered, the elemental
stiffness matrix requires the integration of constant functions whereas with
quadratic approximations the stiffness matrix requires the integration of con-
stant, linear and quadratic functions. The analytical results are reported here
for completeness

S(f=1=5. S(f=a)=S(f=y)=S(=2=7
Se(f = xz) = S(f = y2) = S(f = 22) = %7 Se(f =2y) = Se(f =22) = Se(f = y2) = %

Table 2 shows the result of the numerical integration the constant function
f(z,y,2) = 1 and the linear functions f(z,y,z) = =z, f(x,y,z) = y and
f(z,y,z) = z. The percentage error is also reported. These results show
how increasing the number of integration points allows us to reduce the error
towards machine accuracy. For the constant function f(z,y,z) = 1, with
48 integration points in each of the 8 elements used in the analysis (192
integration points in total), the error due to numerical integration is less
than 1%. The distribution of integration point is shown in Figure 8a. If we
increase the number of integration points to 448 in each element (i.e., 1792
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integration points in total) the error due to numerical integration goes down
to 9 x 10719%. The distribution of integration points in this case is displayed
in Figure 8b. It is worth remarking that for the linear functions f(z,y,2) = x
and f(x,y,z) = z a comparable accuracy is obtained whereas slightly less
accurate results are attained from the linear function f(z,vy,z2) = y.

Gauss points f=1 Error (%) f=xz Error (%)
32 1,7847357662 | 13,6198 | 0,8923678831 13,6198
64 1,6538967700 5,2903 0, 8269483850 5,2903
192 1,5672909334 0,2231 0, 7836454667 0,2231
384 1,5708636716 0,0042 0, 7854318358 0,0042
640 1,5707956384 | 4,38-107° | 0,7853978192 | 4,38-107°
1344 1,5707963271 | 2,03 1078 | 0,7853981636 | 2,03-10~°
1792 1,5707963268 | 9,45 - 10710 | 0,7853981634 | 9,445 -10~10

Table 1: Sphere defined by NURBS: Integration error on the surface integral
for constant and linear function f = .

Gauss points f=yvy Error (%) f==z Error (%)
32 1,1085106556 | 41,1399 | 0,8923678831 | 13,6198
64 0,9164009972 | 16,6797 | 0,8269483850 5,2903
192 0, 7754902482 1,2615 | 0,7836454667 0,2231
384 0,7855902456 | 0,0244 | 0,7854318358 0,0042
640 0,7853963976 | 2,25-10~% | 0,7853978192 | 4,38 -10~°
1344 0, 7853981668 | 4,29-10~7 | 0,7853981636 | 2,03 108
1792 0,7853981632 | 2,04 -10~% | 0,7853981634 | 9,45 - 10~ 19

Table 2: Sphere defined by NURBS: Integration error on the surface integral
for linear functions f =y and f = z.

Tables 3 and 4 show the result of the numerical integration of quadratic
functions and the associated percentage error. Again, it can be observed that
with 48 integration points per element (i.e., 192 integration points in total),
all the integrals are computed with an error of less than 2% and, in some
cases, the error is lower than 1%. Increasing the number of integration points
per element the error converges rapidly to machine accuracy. For instance,
with 448 in each element (i.e., 1792 integration points in total) the error due
to numerical integration is of the order of 2 x 107%% or lower.
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(a) 8 elements and 192 Gauss points.(b) 8 elements and 1792 Gauss
points.

Figure 8: Sphere defined by NURBS: Examples of the mesh used to evalu-
ate the integration error with different number of quadrature points on the

surface.
Gauss points f=a° Error (%) f=v° Error (%) f=22 Error (%)
32 0, 5135503309 1,9191 0, 7576351044 44,6976 0, 5135503309 1,9191
64 0,5137816653 1,8749 0,6263334393 19,6208 0,5137816653 1,8749
192 0, 5275430006 0,7532 0, 5122049323 2,1760 0, 5275430006 0,7532
384 0, 5235375836 0,0116 0, 5237885044 0,0362 0, 5235375836 0,0116
640 0,5235986049 | 3,25- 10" | 0,5235984286 | 6,62 10> | 0,5235986049 | 3,25-10~°
1344 0,5235987699 | 1,08 -10° | 0,5235087873 | 2,23-10°° | 0,5235987699 | 1,08-10 ©
1792 0,5235987759 | 5,56 - 10~% | 0,5235987750 | 1,142-10~7 | 0,5235987759 | 5,56 - 10~3

Table 3: Sphere defined by NURBS: Integration error on the surface integral
for quadratic functions.

It is worth emphasizing that the overhead caused by the numerical inte-
gration with the exact geometry is restricted to the elements of the Cartesian
grid that are cut by the boundary of the embedded geometry. For interior el-
ements the number of integration points is chosen a priori to be the minimum
number required to exactly compute the integrals of the weak formulation.
For instance, if linear elements are considered, a quadrature with only one
integration point guarantees exact integration of the elemental stiffness ma-
trix terms. Analogously, with a quadratic approximation of the solution a
tensor product of one-dimensional Gauss quadratures with two points in each
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Gauss points f=umy Error (%) f=uz Error (%) f=yz Error (%)
32 0, 5086633254 52,5989 0,4401458247 32,0437 0, 5086633254 52,5989
64 0,3946299371 18, 3889 0,3901829374 17,0548 0,3946299371 18, 3889
192 0, 3269680495 1,9095 0, 3293966424 1,1810 0, 3269680495 1,9095
384 0, 3335154896 0, 0546 0,3333287772 0,0013 0, 3335154896 0, 0546
640 0,3333318950 | 4,31-10~% | 0,3333329888 | 1,03-10~* | 0,3333318950 | 4,31-10~*
1344 0,3333333403 | 2,00-10°° | 0,3333333304 | 8,88 -10 7 | 0,3333333403 | 2,00-10°°
1792 0,3333333330 | 1,01-10~7 | 0,3333333334 | 2,02-10~% | 0,3333333330 | 1,01-10~"

Table 4: Sphere defined by NURBS: Integration error on the surface integral
for quadratic functions.

direction (i.e., eight integration points per hexahedral element) guarantees
exact integration of the elemental stiffness matrix terms.

5.2. Discretization error

In this section, a linear elastic analysis is performed on two domains
given by a CAD boundary representation with NURBS and T-Splines. The
computation is performed with the proposed approach by embedding the
CAD geometry in a Cartesian grid and a refinement study is performed in
order to evaluate the accuracy of the proposed approach.

In all the examples the Young’s modulus and the Poisson ratio are £ =
1000 and v = 0.3 respectively. The analytical solution of the problem is the
cubic displacement field u = (u,, u,, u,) with

Uy = 2412 —22y+1° =319’ +12Y, Uy = —y—2xy+y° =3z y+yP —a1?, u, =0
(20)
Dirichlet boundary conditions, corresponding to the analytical displacement
field are considered in the whole boundary.
The exact expression of the stress tensor, obtained by using the constitu-
tive relation is

E _
T 1y (22 =2y +32" = 3y° +22y), oy = 1+—y(25‘7—2y+3l‘2—3y2+2xy)7
E 2 2
O-Z:V(Ux—i_ay)’ Twy:l—i——y(_x_y—i_%_%_ﬁsxy)v sz:Tyz:O
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and the volumetric forces required to satisfy the internal equilibrium equation
are given by b = (b,, b, b,) with

K K

by = —— (1+4y), b =
1+I/( +y) ) 1+y

(1—2), b,=0 (21)

The quality of the results will be assessed by evaluating the relative error
in the displacement field in energy norm, defined as

1/2

/ (o, — o)D" (o) — o.)dQ
Q

/ o.D lo.d
Q

where o, and o, are the FE (approximated) stress tensor and the analytical
stress tensor respectively. In all the numerical examples we select the number
of integration points to be enough in order to guarantee that the error due
to numerical integration is lower than the spatial discretization error.

Ne = (22>

5.2.1. Sphere defined by NURBS

The first example considers a sphere of unit radius. A set of four meshes
is employed, where uniform refinement is considered. Table 5 summarizes
the main properties of the computational meshes used. In particular, this
Table shows the number of active elements in each mesh. The number of
elements that are interior to the embedded domain and the number of ele-
ments intersecting the boundary of the embedded domain is also detailed,
together with the number of tetrahedra used to perform the numerical inte-
gration. Finally, this table shows the number of degrees of freedom used in
the numerical simulation when 8-noded (L8) or 20-noded (Q20) isoparamet-
ric hexahedral elements are considered, corresponding to a linear or quadratic
approximation of the solution respectively.

Table 6 shows the relative error in the displacement field in energy norm
when linear and quadratic elements are used in the four meshes detailed in
Table 5. The theoretical optimal convergence rate of the error in energy
norm of the FE solution is 1 for the case of linear elements and 2 if quadratic
elements are used. The values of the convergence rate of the error in energy
norm also displayed in the table show the optimal rate for both linear and
quadratic approximations.

The rate of convergence is also displayed, showing the optimal rate for
both linear and quadratic approximations.
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Mesh | Elements | Internal elems. | Boundary elems. | Tetrahedra | DOFs L8 | DOFs Q20
1 8 0(0%) 8(100%) 8 81 243
2 64 8(12-5%) 56(87.5%) 224 375 1275
3 408 136(33.3%) 272(66.7%) 1392 1839 6663
4 2632 1472(55.9%) 1160(44.1%) 6432 10059 37923
Table 5: Sphere defined by NURBS: Information about the calculation
meshes.
Mesh | 7. (%) L8 | Rate L8 | n. (%) Q20 | Rate Q20
1 52,2879 — 9,1053 —
2 28,7238 0.9 2,9562 1.6
3 15,1344 0.9 0, 8055 1.9
4 7,7817 1.0 0, 2046 2.0

Table 6: Sphere defined by NURBS: discretization errors and convergence
rates using linear (L8) and quadratic (Q20) elements.

The results shown in Table 6 can be seen in Figure 9 as a function of the
total number of degrees of freedom. The superiority of quadratic elements is
clearly observed, as expected for problems with smooth analytical solution,
see for instance [? ]. In particular, the comparison in Figure 9 shows that the
error attained with linear elements in the finest mesh (with 2632 elements)
is almost the same as the error attained by using quadratic elements in the
coarsest mesh (with only 8 elements).

The displacement field represented over the surface of the sphere is dis-
played in Figure 10. The result corresponds to a computation using the mesh
number 4 with linear elements. The displacement in the z direction is repre-
sented to illustrate the error due to the imposition of the Dirichlet boundary
condition in weak form by using the technique described in Section 4 because
the analytical displacement in this direction is exactly zero, as detailed in 20.

It is worth remarking that the geometry of the sphere has been exactly
represented using one quadratic NURBS surface with 27 control points, as
represented in Figure la. As mentioned earlier in the introduction one of the
main advantages of NURBS is the ability to exactly represent conics, which
is not possible if a polynomial representation of the geometry is considered.
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Figure 9: Sphere defined by NURBS: discretization error vs. degrees of
freedom for linear and quadratic elements.

(a) (b) ()

Figure 10: Sphere defined by NURBS: Computed displacement field. (a) x
direction, (b) y direction and (c) z direction

5.2.2. Torus defined by NURBS

The second example considers a torus exactly defined by a NURBS sur-
face, see Figure 1b. A set of four meshes is employed, where uniform re-
finement is considered. Table 7 summarizes the main features of these four
computational meshes.

Table 8 shows the relative error in the displacement field in energy norm
when linear and quadratic elements are used in the four meshes detailed in
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Mesh | Elements | Internal elems. | Boundary elems. | Tetrahedra | DOFs L8 | DOFs Q20
1 32 0(0%) 32(100%) 110 225 735
2 216 16(7.4%) 200(92.6%) 992 1101 3891
3 1128 384(34%) 744(66%) 4016 4860 17844
4 7136 3968(55.6%) 3168(44.4%) 18072 26892 101832

Table 7: Torus defined by NURBS: Information about the calculation meshes.

Table 7. The convergence rate of the error in energy norm is also displayed,
showing the optimal rate for both linear and quadratic approximations.

Mesh | 7. (%) L8 | Rate L8 | n. (%) Q20 | Rate Q20
1 37,3394 - 4,1987 -
2 21,9811 0.8 1,4862 1.5
3 11,3050 1.0 0, 3904 1.9
4 5, 7553 1.0 0, 0986 2.0

Table 8: Torus defined by NURBS: discretization errors and convergence
rates using linear (L8) and quadratic (Q20) elements.

Figure 11 represents the relative error in the displacement field in en-
ergy norm as a function of the total number of degrees of freedom, both for
linear and quadratic elements. The conclusions are similar to the ones ob-
tained in the previous example, showing that the performance of the proposed
methodology does not depend on the geometry considered. The superiority
of quadratic elements is again clearly observed. both in terms of accuracy
and error convergence rate.

The displacement field represented over the surface of the torus is dis-
played in Figure 12. The result corresponds to a computation using the
mesh number 4 with linear elements. Again, the displacement in the z di-
rection is represented to illustrate the error due to the imposition of the
Dirichlet boundary condition in weak form by using the technique described
in Section 4.

5.2.3. Torus defined by T-spline

The last example considers a torus defined by T-spline, see Figure 1c. The
same meshes used in the previous computations are employed, see Table 7.
Table 9 shows the relative error in the displacement field in energy norm when
linear and quadratic elements are used in the four meshes detailed in Table 7.
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Figure 11: Torus defined by NURBS: discretization error vs degrees of free-
dom.

(a) (b) ()

Figure 12: Torus defined by NURBS: computed displacement field. (a) x
direction, (b) y direction and (c) z direction

The convergence rate of the error in energy norm is also displayed, showing,
once more, the optimal rate for both linear and quadratic approximations.
Figure 13 represents the relative error in the displacement field in energy
norm as a function of the total number of degrees of freedom, both for linear
and quadratic elements. The conclusions are identical to the ones discussed
before, when the torus was represented with NURBS. This illustrates, once
more, that the performance of the proposed methodology is independent on
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Mesh | 7. (%) L8 | Rate L8 | 7. (%) Q20 | Rate Q20
1 39,2256 - 9, 1908 -
2 22,7172 0.8 1, 5881 1.7
3 11,7909 0.9 0,4172 1.9
4 5,9671 1.0 0, 1056 2.0

Table 9: Torus defined by T-spline: discretization errors and convergence
rate using linear (L8) and quadratic (Q20) elements.

the CAD technology employed to represent the geometry of the embedded
domain.

Figure 13: Torus defined by T-spline: discretization error vs degrees of free-
dom.

6. Conclusions

This papers proposes a novel immersed boundary method where an exact
boundary representation of the embedded domain is considered. The method
is capable of employing any boundary representation of the embedded do-
main but the presentation is focused in the most extended CAD technology,
namely NURBS, and a novel approach with T-Splines. The proposed tech-
nique removes the geometric errors that are associated to standard immersed
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boundary methods due to the approximation of the embedded geometry by
a faceted representation.

The strategy to compute the intersections between the Cartesian grid
employed to mesh the embedding domain and the exact geometry of the
boundary of the embedded domain is detailed. Then, a novel approach to
perform the numerical integration in the region of the cut elements that is
internal to the physical domain is developed. The strategy consists on defin-
ing a tetrahedral submesh of the region of interest where the tetrahedral
subelements have one face or one edge in contact with the boundary of the
embedded domain. Then, specifically designed numerical quadratures are de-
fined in the subelements by following the rationale of the NURBS-enhanced
finite element method. The performance and accuracy of the proposed tech-
nique to compute the integrals appearing in the weak formulation is analyzed
using numerical examples.

One crucial aspect in immersed boundary methods is the imposition of
essential boundary conditions. As mesh nodes do not lie on the boundary
of the physical domain it is not possible to strongly impose such conditions.
The technique adopted here consists on using stabilized Lagrange multipliers
to impose essential boundary conditions.

Three numerical examples have been considered in order to show the po-
tential and applicability of the proposed methodology. The optimality of the
approximation for both linear and quadratic elements has been corroborated.
The method shows the same performance on problems where the embedded
geometry is represented using NURBS or T-Splines, showing independence
on the CAD technology utilized. Finally, all the numerical examples have
shown the potential of the proposed approach when quadratic elements are
considered.

The present method looks very promising for problems involving large de-
formations, where traditional mesh-based methods will need mesh adaptation
and re-meshing. As future work, the authors consider the implementation of
recovery based error estimators, very efficient when Cartesian grids are used.
This approach will enable the development of a robust h-refinement strategy
and he use improved solutions from finite element analyses.
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