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Abstract: Sensitivity analysis (SA) aims to identify the key parameters affecting modeling 23 

performance. It plays an important role in model parameterization, calibration, optimization and 24 

uncertainty quantification. However, the increasing complexity of hydrological models results in a 25 

large number of parameters to be estimated. To better understand how these complex models work, 26 

efficient SA methods are required to select and implement before the application of hydrological 27 

modeling. This paper focused on the comprehensive review of global SA methods in the field of 28 

hydrological modeling. The common definitions of SA and typical categories of SA methods are 29 

described. A wide variety of global SA methods have been introduced to provide a more efficient 30 

evaluation framework for hydrological modeling. We review, analyze, and categorizes research 31 

efforts on global SA methods and applications with an emphasis on the research accomplished in 32 

hydrological modeling field. Both advantages and disadvantages are also discussed and summarized. 33 

An application framework as well as typical practical steps of SA in hydrological modeling is 34 

outlined. Further discussion on the severe important and often overlooked topics is presented, 35 

including the relationship between parameter identification, uncertainty analysis and optimization in 36 

hydrological modeling, how to deal with correlated parameters, and time-varying sensitivity analysis. 37 

Finally, some conclusions and guidance recommendations on sensitivity analysis in hydrological 38 

modeling are proposed along with a list of important future research directions to provide more 39 

robust analysis in assessing hydrological modeling performance. 40 

Keywords: hydrological model, sensitivity analysis, global method, uncertainty analysis, parameter 41 

optimization 42 

1 Introduction 43 

Hydrological models have been benefited from significant developments over the past three 44 

decades (Beven, 2009), which have become more complexity (from rational method to distribution 45 

model) with more diversified purposes in many applications (Nossent et al., 2011), such as land use 46 
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(Park et al., 2013) and climate change scenario analysis (Ntegeka et al., 2014), flood prediction 47 

(Cloke and Pappenberger, 2009) and rainfall-runoff modeling (Modarres and Ouarda, 2013). For a 48 

better model prediction, we need to assess and improve the model with different approaches such as 49 

parameter optimization, operational management, design space exploration, sensitivity and 50 

uncertainty analysis (Jakeman et al., 2006; Razavi et al., 2012; Wu and Liu, 2012; Nan et al., 2011; 51 

Song et al., 2011). Hydrological models often suffer from substantial uncertainties in input data, 52 

forcing data, initial and boundary conditions, model structure, and parameters, due to lack of data 53 

and poorly knowledge of hydrological response mechanisms (Ye et al., 2008; Doherty and Welter, 54 

2010; Shi et al., 2010; Zhang et al., 2011; Gupta et al., 2012; Foglia et al., 2013). These uncertainties 55 

have negative effects on model accuracy and in turn, inducing uncertainties in the simulated results, 56 

in a sense that model uncertainty becomes an important source and foundation for constructing the 57 

modeling system (Beck, 1987). Good modeling practice requires an evaluation of the confidence in 58 

the model together with the model per se, which includes a quantification of the uncertainty in any 59 

model results (i.e. uncertainty analysis, UA) and an evaluation of how much each input/parameter is 60 

contributing to the output uncertainty (i.e. sensitivity analysis, SA) (Loosvelt et al., 2013). Generally, 61 

UA refers to the determination of the uncertainty in model outputs resulting from uncertainty in 62 

model inputs/parameters, and SA refers to the determination of the contributions of individual 63 

uncertain inputs/parameters to the uncertainty in model outputs. Ideally, SA and UA should be run in 64 

tandem, and both are essential parts of model development and quality assurance, as shown in Fig.1. 65 

------------------------------------------------------------------------------------------------------------------------- 66 

Figure 1 is here 67 

------------------------------------------------------------------------------------------------------------------------- 68 

For most hydrological models, in practice, the large number of parameters (from tens to 69 

hundreds) in these models leads to the curse of dimensionality with the parameter estimation 70 

becoming a high-dimensional and mostly non-linear problem. To resolve this problem, a wide range 71 



4 
 

of optimization algorithms have been developed (e.g. Beven and Binley, 1992; Duan et al., 1992; 72 

Vrugt et al., 2003, 2005; Hill and Tiedeman, 2007; Abebe et al., 2010; Aster et al. 2013; Moreau et 73 

al., 2013; Sen and Stoffa, 2013); however, it is often not feasible, nor is necessary to include all 74 

model parameters in the calibration process to obtain an efficient optimization. For example, 75 

over-parameterization is also another well-known problem in rainfall-runoff modeling (van 76 

Griensven et al., 2006). Therefore, when we estimate model parameters, unimportant or insensitive 77 

parameters should be locked in a fixed value to make calibration more efficient (SA). Currently, a 78 

variety of SA methods (e.g., local or global methods, qualitative or quantitative methods, screening 79 

or refined methods) have been widely used in different fields, such as complex engineering systems, 80 

economics, physics, social sciences, and others (Frey and Patil, 2002; Iman and Helton, 1988). 81 

However, there is a large difference among these methods in terms of their sampling scheme, 82 

applicability, algorithm structure and the importance measure of parameters. Considering the wide 83 

range of SA methods, it is therefore very important for a practitioner to have a clearly understanding 84 

as to which methods are appropriate for a specific application in terms of selecting particular SA 85 

method, fitting the method into existing models, and presenting and interpreting the results. 86 

This paper aims to review, analyze, and classify the research on SA with an emphasis on global 87 

SA efforts arising from the hydrological modeling field. Many reviews of SA methods have been 88 

conducted in different fields. For example, Hamby (1994) reviews the literature on parameter SA for 89 

environmental models; Frey and Patil (2002) and Mokhtari and Frey (2005) review the SA methods 90 

for food safety; Coyle et al. (2003) discuss the SA measures in the economics field; Saltelli et al. 91 

(2005, 2012) focus on sensitivity analysis in chemical models; Borgonov (2006) investigates the 92 

sensitivity and uncertainty measures; Mishra et al. (2009) review the global SA methods in 93 

groundwater models; Peter and Dwight (2010) discuss the numerical sensitivity analysis approaches 94 

for aerodynamic optimization; Perz et al. (2013) review the global SA and UA methods for 95 

ecological resilience; Tian (2013) summarizes the application of SA methods in building energy 96 
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analysis; Wu et al. (2013) review recent advances in SA of infectious disease models. Some of them 97 

explicitly highlight the advantage and disadvantage of various methods and provide very good 98 

summaries of this topic. To our knowledge, few comprehensive, up-to-date review tracks the 99 

advances in sensitivity analysis for hydrological modeling. This paper represents a unique 100 

contribution to the literature, as our objective is to summarize the advances in the application of 101 

various global SA methods in hydrological modeling. The depth of the review of the topics covered 102 

here generally varies with the popularity of the topic in hydrological modeling and as such, 103 

discussion largely revolves around uncertainty quantification and optimization applications. This 104 

paper is structured as follows: Section 2 briefly describes the typical definition and categories of SA; 105 

Section 3 details the objectives and roles of SA in hydrological modeling; Section 4 reviews key 106 

techniques and approaches for SA applied in hydrological models and presents their corresponding 107 

advantages and disadvantages; Section 5 proposes the steps and evaluation framework of SA in 108 

hydrological modeling; Section 6 focuses on several topics when implementing SA in hydrological 109 

modeling. These topics include how to deal with correlated parameters, the applications of SA in 110 

model evaluation; and time-varying sensitivity analysis in hydrological modeling; this paper ends 111 

with summary and concluding remarks in Section 7.  112 

2 Definition and categories of SA methods 113 

Generally, when referring to the degree to which a parameter affects model output, we can use 114 

the terms “sensitive”, “important”, “most influential”, “major contributor”, “effective”, or “correlated” 115 

interchangeably (Hamby, 1994). There are some different definitions or understanding for different 116 

fields, listed in Table 1. Regardless of how SA is defined within different scopes or points of view, 117 

the consensus is that models are sensitive to parameters in two distinct ways: (1) the variability, or 118 

uncertainty, associated with a sensitive parameter is propagated throughout the model, resulting in a 119 

large contribution to the overall output uncertainty, and (2) model outputs can be highly correlated 120 
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with a parameter so that small changes in the input value result in significant changes in the output. 121 

In view of hydrological modeling, we define SA as the investigation of the response function linking 122 

the variation of model outputs to the change of input variables or/and parameters, so as to determine 123 

the relative contributions of different uncertainty sources to the variation of output by means of 124 

qualitatively or quantitatively apportioning approaches under a given set of assumptions and 125 

objectives. 126 

SA methods can be classified in various ways based on their scope, applicability and 127 

characteristics. A simple and most common classification is: local SA and global SA (e.g., Satelli et 128 

al., 2004; van Griensven et al., 2006). Local SA focused on the effects of uncertain inputs around a 129 

point (or base case), whereas global SA focuses more on the influences of uncertain inputs over the 130 

whole input space (Tian, 2013). Campolongo et al. (2000) offers another common classification 131 

based largely on the extent of the input variable range that the technique assesses. Here, the 132 

techniques are divided into three levels: screening, local and global methods. Although this 133 

classification is also widely used in SA studies, this arrangement is ambiguous as the classification of 134 

a technique as local or global is subject to whether a range is large enough to be perceived as global, 135 

or whether the number of simulations used with a local or global method can be considered as a 136 

screening experiment (King, 2009). In addition, Satelli et al. (2004) propose four settings, such as 137 

factors prioritization (FP) setting, factors fixing (FF) setting, variance cutting (VC) setting and 138 

factors mapping (FM) setting. Such settings can also be linked to Type I and Type II errors. 139 

Generally, Type I error is the incorrect rejection of a true null hypothesis, and Type II error is the 140 

failure to reject a false null hypothesis. In SA, Type I error occurs when erroneously defining as 141 

important a non-influential factor, while Type II error occurs when we classify an important factor as 142 

non-influential (Satelli et al., 2008; Zhan et al., 2013). If one is particularly interested in avoiding 143 

Type I errors, then main effects and factors prioritization setting will be the target analysis. 144 

Alternatively, if Type II errors are to be avoided, total effects and factor fixing need to be considered. 145 
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In this work, we emphasize three typical categories as follows: (1) local and global SA methods 146 

(Saltelli et al., 2004); (2) mathematical, statistical, and graphical methods (Frey and Patil, 2002); (3) 147 

screening and refined methods (Song et al., 2014), and (4) qualitative and quantitative SA methods 148 

(Li et al., 2013, Zhan et al., 2013), which are briefly summarized in Table 2. 149 

------------------------------------------------------------------------------------------------------------------------- 150 

Table 1 and Table 2 are here 151 

------------------------------------------------------------------------------------------------------------------------- 152 

3 Implication and roles of SA in hydrological modeling 153 

Generally, SA is one of the simplest aids in diagnosing and remedying poor identifiability of 154 

models, to allow parameters to be more reliably estimated (Shin et al., 2013). It aims at establishing 155 

the relative importance of the parameters involved in the model, answering questions such as 156 

(Cariboni et al., 2007; Neumann, 2012; Song et al., 2012a): 157 

 Which of the uncertain parameters are more influential in determining the variability affecting 158 

the inference? 159 

 If the uncertainty of some parameters could be eliminated, which one should be chosen in order 160 

to reduce to the minimum the variance of the output of interest? 161 

 Are there parameters whose effect on the output is so low that they can be confidently fixed 162 

anywhere in their ranges of variation without affecting the results? 163 

 If these parameters deviate from expectations, what will the effect be on model output and which 164 

are causing the largest deviations? 165 

 Which parameters are responsible for producing model outputs in a specific region? 166 

Essentially, the primary aim of a SA experiment is to identify the most important factors and 167 
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then to simplify the model. Many studies highlight that the SA can reduce the output variance to a 168 

lower threshold by simultaneously fixing the smallest number of input parameters (Satelli et al., 2000, 169 

2004, 2008). This is important for us to implement SA for complex hydrological models, especially 170 

for those with large number of uncertain parameters. But even more than that, we argue that SA is a 171 

useful perspective for conceptualizing and understanding hydrological models for several reasons. As 172 

indicated by Rakovec et al. (2014), SA can be used to (a) detect when increasing model complexity 173 

can no longer be supported by observations and whether it is likely to affect model predictions (e.g., 174 

Saltelli et al., 1999; van Werkhoven et al., 2008a; Doherty and Welter, 2010; Rosolem et al., 2012; 175 

Gupta et al., 2012; Foglia et al., 2013); (b) reduce the time for model calibration by focusing 176 

estimation efforts on parameters important to calibration metrics and predictions (e.g., Anderman et 177 

al., 1996; Hamm et al., 2006; Zambrano-Bigiarini and Rojas, 2013); (c) determine priorities for 178 

theoretical and site-specific model development (e.g., Hill and Tiedeman, 2007; Saltelli et al., 2008; 179 

Kavetski and Clark, 2010); and (d) identify advantageous placement and timing of new 180 

measurements (e.g., Tiedeman et al., 2003, 2004). 181 

4 Global SA methods in hydrological models 182 

In practice, global SA methods are usually recommended in hydrological modeling applications 183 

because they have certain advantages compared with local SA methods (Makler-Pick et al., 2011; 184 

Rosolem et al., 2012; Baroni and Tarantola, 2014; Song et al., 2012a). These include their ability to 185 

incorporate the influence of input parameters over their whole range of variation, and be well suited 186 

for non-linear and non-monotonic models, thus providing results that are independent of modeler 187 

prejudice and not site specific. Currently, various global SA techniques have been widely used in 188 

hydrological models, such as the screening method, regression analysis, variance-based method, 189 
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meta-modeling method, and others (Song et al., 2014). This list is not an exhaustive list of SA 190 

techniques. Instead, we mainly include commonly used and often referred global methods in 191 

hydrological models. A research database search of SA method and hydrological modeling in 192 

Thomson Reuters (ISI) Web of Knowledge is shown in Fig.2. Table 3 summarizes the main studies 193 

of global SA in hydrological models published since 2005. Table 4 gives an overview of these global 194 

SA techniques including sampling scheme, computational requirements and characteristics of the 195 

sensitivity measure.  196 

------------------------------------------------------------------------------------------------------------------------- 197 

Figure 2, Table 3 and Table 4 are here 198 

------------------------------------------------------------------------------------------------------------------------- 199 

4.1 Screening method 200 

The purpose of screening method is rather to identify which input variables are contributing 201 

significantly to the output uncertainty in high-dimensionality models, than to quantify sensitivity 202 

exactly (Saltelli et al., 2008). One of the most commonly used screening method is the Morris 203 

screening method or the elementary effect method proposed by Morris (1991) and improved by 204 

Campolongo et al. (2007). Parameters are taken as a discrete number of values, which are different 205 

from other global SA methods in which parameter values are directly from distributions. For a given 206 

X=(x1, x2, …, xk), the elementary effect of the i-th parameter is defined as: 207 

1 1 1( ,..., , , ,..., ) ( )( ) i i i k
i

y x x x x x y Xd X − ++ ∆ −
=

∆
            (1) 208 

where Δ is a value in {1/(p-1), …, 1-1/(p-1)}, p is the number of levels, and y(X) is target function 209 

value for the parameter values X. Two sensitivity measures, the mean (µ) and standard deviation (σ) 210 

of the elementary effects, can be calculated by Eqs. (2) and (3): 211 
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= =

= −
− ∑ ∑                        (3) 213 

where di(j) is the elementary effect for input i using the j-th base sample point, j=1, 2, …, r (r is the 214 

number of repeated sampling design or trajectories of sample points in the parameter space). When 215 

the model is non-monotonic, some elementary effects with opposite signs may cancel out. Hence, 216 

Campolongo et al. (2007) proposed an improved measure µ*: 217 

*

1

1 ( )
r

i i
j

d j
r

µ
=

= ∑                            (4) 218 

The µ estimates the overall effect of each parameter on the output, and the σ estimates the 219 

higher order effects, such as nonlinearity and interactions between inputs, respectively. If µi
* is 220 

substantially different from zero, it indicates that parameter i has an important “overall” influence on 221 

the output. A large σi implies that parameter i has a nonlinear effect on the output, or there are 222 

interactions between parameter i and other parameters.  223 

Advantages of the Morris screening method are that it has a lower computational cost compared 224 

to other global SA methods, and it is simple to implement and easy to interpret (Shin et al., 2013; 225 

Tian, 2013; Zhan et al., 2013). For example, the total number of runs is only 44 if there are 10 226 

parameters with 4 trajectories for each parameter. Hence, the Morris method is more suitable to 227 

computationally expensive models, which often have a large number of uncertain parameters. 228 

However, the drawback of this method is that it cannot quantify the effects of different factors on 229 

outputs (Brockmann and Morgenroth, 2007; Sun et al., 2012), and type II errors (failing to identify 230 

some unimportant inputs as important parameters) might occur with the Morris screening method 231 

(Zhan et al., 2013). Saltelli et al. (2004) also highlighted that it cannot estimate individual 232 
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interactions between parameters, thereby giving only the overall interaction of a parameter with the 233 

rest of the model. As a result, this method does not allow self-verification, which means the analyst 234 

does not know how much of the total variances of outputs have been taken into account in the 235 

analysis.  236 

Recently, the Morris screening method has been widely used in hydrological models. For 237 

example, Song et al. (2012b, 2013) and Zhan et al. (2013) analyzed the sensitivity of hydrological 238 

parameters for a distributed time-variant gain model and Xinanjiang model based on the Morris 239 

method and other quantitative methods. Liu and Sun (2010) implemented Morris method based on 240 

Pareto ranking strategy to identify the key parameters for MIKE/NAM rainfall-runoff model under 241 

the different objective functions. They suggest that no single objective function is adequate to 242 

measure the ways in which the model fails to match the important characteristics of the observed 243 

data. Moreau et al. (2013) used Morris method to screen for input factors with the greatest influence 244 

on hydrological and geochemical output variables for spatially-distributed agro-hydrological model 245 

TNT2. Yang et al. (2012) proposed a two-step, multi-objective SA approach, incorporating the 246 

Morris method and the SDP (state dependent parameter) method, and estimated WetSpa model 247 

parameters with case studies in the Chaohe basin in China and the Margecany basin in Slovakia. 248 

Ruano et al. (2011) also used the Morris method to identify these important parameters in a water 249 

quality model. It was found to be important to select or optimize a proper repetition number of the 250 

elementary effects of the Morris method. Working with a non-proper repetition number could lead to 251 

Type I error as well as Type II error, hence emphasizing the importance of finding the optimal 252 

repetition number of each study in question. In addition, in view of the limitations of the Morris 253 

one-at-a-time (OAT) design, the LH-OAT method, which takes the Latin Hypercube samples as 254 
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initial points for an OAT design, was proposed to apply to the SWAT model (Holvoet et al., 2005; 255 

van Griensven et al., 2006). This method, as a screening tool for the SWAT modeling system, has 256 

been widely used in many catchments (e.g. Nossent and Bauwens, 2012; Singh et al., 2012).  257 

4.2 Regression method 258 

The principle of regression methods is to approximate the relationships between an output and 259 

the parameters by: 260 

0= + +i j ij i
j

y b b x ε∑                           (5) 261 

where xj (j = 1, 2, …, k) are the jth parameters; i = 1, 2, …, N represents the number of model runs; 262 

bj is the coefficient to be estimated via the least-squares methods for each xj; and εi is random error. 263 

Once bj is determined, the regression model can be rewritten as:  264 

-- =
j jj j

j j

b s x xy y
s s s∑



  

                        (6)
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=
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   (7) 267 

The coefficients /jjb s s 

 in Eq.6 are standardized regression coefficients (SRCs). When the 268 

parameters xj are independent of each other, the SRCs can provide a sensitivity index for the factor 269 

xj. Each SRC gives information about the effect of changing an input from its standard value by a 270 

fixed fraction of its standard deviation, while maintaining the other factors at their default values. 271 

Regression analysis allows also for the estimation of the model coefficient of determination, R2, 272 

which represents the fraction of the output variance explained by the regression model itself. In the 273 

case of linear models, the SRCs exactly quantify the amount of output variance explained by each 274 

parameter; when models are moderately non-linear (i.e. R2>0.7), the SRCs can be still used to 275 
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qualitatively assess the parameters’ importance; finally, when R2 becomes small, the SRCs cannot 276 

be considered as a reliable sensitivity measure (Cariboni et al., 2007). 277 

The advantages of this method are its simplicity and ability to estimate the sensitivity of each 278 

parameter, even though all parameters affect model output simultaneously. However, it is not 279 

applicable when the relationship between parameters and model output is non-linear or 280 

non-monotonic, or when there are interactions among parameters. Although the rank transformation 281 

method (standardized rank regression coefficient, SRRC) can be helpful for non-linear models, it 282 

fails with non-monotonic models, and the result cannot be transformed back to the original model 283 

(Saltelli and Sobol’, 1995). 284 

Regression method has also been used to estimate the sensitivity of parameters in hydrological 285 

models. For example, Tiscareno-Lopez et al. (1993) address uncertainty in hydrologic and soil 286 

erosion predictions from the WEPP watershed model due to errors in model parameter estimation 287 

identified using regression, and runoff volume and peak runoff predictions from hillslopes were 288 

very sensitive to rainfall characteristics. He et al. (2011) analyzed the parameter sensitivity of the 289 

SNOW17 model using the Spearman’s rank correlation coefficient method, and the rankings of 290 

parameters were determined using the results of significance testing. Zeng et al. (2012) used 291 

stepwise regression analysis and mutual entropy analysis method to assess the uncertainty 292 

parameters of probability density function of groundwater level series. Regression analysis also has 293 

been used in other hydrological models, such as SWAT (Muleta and Nicklow, 2005), SWMM 294 

(Wang et al. 2008), HYMOD (Yang, 2011), SAC-SMA (Gan et al., 2014). 295 

4.3 Variance-based method 296 

Variance-based methods use a variance ratio to estimate the importance of parameters with the 297 
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foundation of variance decomposition (Saltelli et al., 1999; Sobol’, 1993). In general, the attribution 298 

of total output variance to individual model parameters and their interactions can be written as follow 299 

(Saltelli et al., 2004, 2008): 300 

1,2,...,1 1
...k k k

i ij ki i j i
V V V V

= = >
= + + +∑ ∑ ∑                   (8) 301 

where V represents the total variance of the model output, Vi represents the first-order variance for 302 

each factor xi (Vi=V[E(Y | xi)]) and Vij (Vij = V[E(Y | xi, xj)]-Vi-Vj) to V1…k the interactions among k 303 

factors. The variance of the conditional expectation, V[E(Y | xi)], is sometimes called the main effect 304 

and is used to indicate the significance of xi on the variance of Y. Variance-based methods allow 305 

calculation of two indices; i.e., the first-order sensitivity index corresponding to the parameter xi: 306 

[ ( | )]=
( )

i
i

V E Y xS
V Y

                                  (9) 307 

and the total-order sensitivity index of a single parameter (index i) and the interaction of more 308 

parameters that involve index i and at least one index j ≠ i from 1 to k: 309 

1= + + +
iT i ij k

j i
S S S S

≠
∑ ∑



                           (10) 310 

The difference between the first-order and the total-order sensitivity indices can be regarded as 311 

a measure for the interactions of i with others (Massmann and Holzmann, 2012). Because the 312 

interactions increase with the number of considered parameters as well as with their variation range, 313 

variance decomposition methods are well suited for models with many parameters. There are many 314 

techniques to carrying out variance decomposition, such as Sobol’ method, the Fourier Amplitude 315 

Sensitivity Test (FAST), and the extended FAST methods, etc. Advantages of variance-based 316 

methods include: (i) model independence (i.e., it works for non-linear models, non-monotonic 317 

models, and models with interaction among parameters); (ii) the ability of capturing the influence of 318 

the full range of variation of each parameter; (iii) the method captures interaction effects; and (iv) the 319 
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method can treat sets of parameters as single parameter. However, it often requires a large number of 320 

model evaluations in applications, and it may be very difficult to apply in complex models with a 321 

large number of parameters.  322 

Variance-based methods are also widely used for parameter SA in hydrological models (Table 3) 323 

as they can provide most accurate and robust sensitivity indices for complex nonlinear models (Tang 324 

et al., 2007b; Yang, 2011; Herman et al., 2013b, 2013c; Zhan et al., 2013). For example, Zhang et al. 325 

(2013) investigated the parameter sensitivity of SWAT model based on Sobol’ method for the four 326 

different objective functions; van Werkhoven et al. (2008a) and Wagener et al. (2009) estimated the 327 

sensitivity of parameters for the SAC-SMA model, with single-objective and multi-objective 328 

functions; Francos et al. (2003) coupled the Morris and variance-based FAST methods to identify 329 

and analyze the important or sensitive parameters for the SWAT model. Results showed that the 330 

integration framework can be efficiently applied in complex hydrological models with tens or 331 

hundreds of parameters. 332 

4.4 Meta-modeling method 333 

The basic idea of meta-modeling method is to simulate the response function between input 334 

parameters and model output via various statistical or experimental design methods, to replace the 335 

original, complex physical or conceptual models, and then to analyze the parameter sensitivity 336 

indices or the influence of parameter variation on model output. The core of the meta-modeling 337 

based methods is to select appropriate sampling design and response fitting methods. When we select 338 

the response fitting method, the meta-modeling approach can accurately simulate the behavior of real 339 

phenomena in the domain of influential parameters; i.e., the meta-model can replace the original 340 

model by a mathematical approximation. Currently, there are many fitting methods used in 341 
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hydrological models, and non-parametric methods have found more application because they do not 342 

require much hypothesis generation or prior knowledge of the actual response relationship, such as 343 

MARS (multivariate adapative regression splines) (Li et al., 2013; Zhan et al., 2013; Gan et al., 344 

2014), SVM (support vector machine) (Song et al., 2012a), GP (Gaussian processes) (Gan et al., 345 

2014), TGP (treed Gaussian processes) (Gramacy and Taddy, 2010). Similarly, sampling design 346 

methods must be selected for response surface analysis, which requires that the sampling design can 347 

cover the range of parameters as much as possible. Some sampling design methods have been 348 

verified as effective (Razavi et al., 2012), such as central composite design (Montgomery, 2008), full 349 

factorial design (Gutmann, 2001), Latin Hypercube sampling (Gan et al., 2014), quasi-random 350 

sampling (Elsawwaf et al., 2010; Zhan et al., 2013). 351 

Meta-modeling based sensitivity analysis approach is a two-stage approach. First, a meta-model 352 

is created based on the original hydrological models and forcing data, and consequently it can be 353 

suitable for these hydrological models. Second, sensitivity measures are calculated based on classical 354 

SA methods, where the most common method is variance-based method (Song et al., 2013; Tian, 355 

2013; Zhan et al., 2013; Gan et al., 2014). The immediate advantage is that it can simplify 356 

computationally intensive models and thus enables much faster model runs (Storlie et al., 2009), 357 

especially for a complex hydrological model with high computational cost of hundreds or thousands 358 

of model runs. Therefore, meta-modeling approaches have been particularly used in model 359 

evaluation for hydrological models (Razavi et al., 2012; Li et al., 2013; Song et al., 2012c, 2013; 360 

Zhan et al., 2013; Gan et al., 2014). However, it requires output values and corresponding values 361 

from probability distributions of input parameters calculated in the original hydrological model, and 362 

it is calibrated to the data generated from the hydrological model. Thus, it is only valid within the 363 
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range of values used to generate the calibration dataset. Typically, the effect of all parameters with 364 

respect to sensitivity cannot be evaluated in meta-models; most meta-modeling based studies are 365 

based on fewer inputs, which are primarily screened out among the list of original parameters. In 366 

addition, the uncertainty of analysis results based on meta-model approaches should not be ignored. 367 

For example, there is no guarantee that a model parameter deemed insensitive on the basis of 368 

meta-model analysis is truly insensitive in the original hydrological model (Razavi et al., 2012). A 369 

question that meta-model users need to address in any meta-modeling practice is whether an exact fit 370 

to the set of design sites or an approximate fit, possibly with smoothing capabilities, is required. 371 

Therefore, it is essential to assess the accuracy of a meta-model for prediction before it can be used 372 

for SA studies (Stephens et al., 2011; Borgonovo et al., 2012). Despite advances in meta-modeling 373 

based SA in many fields, the uncertainty assessment of meta-modeling based SA should be further 374 

explored in the future. 375 

Recently, meta-modeling based SA method has been used in different fields. For example, three 376 

meta-modeling techniques (Kriging, Radial-basis function network (RBF), and support vector 377 

machines (SVM)) and two popular SA methods (FAST and Sobol') were used to estimate the 378 

sensitivity indices of a probabilistic engineering design (Sathyanarayanamurthy and Chinnam, 2009). 379 

Ratto et al. (2007) proposed a state-dependent parameter (SDP) method based on the Kalman filter, 380 

combined with fixed interval smoothing, and then used the Sobol' method to evaluate sensitivity 381 

indices. Song et al. (2012a, 2012b, 2013) combined the Sobol' method and response surface model 382 

(RSM) approach (RSMSobol'; e.g., the SVM, multivariate adaptive regression splines (MARS)) to 383 

estimate parameter sensitivity for hydrological models, involving the Xinanjiang and distributed 384 

time-variant gain models (DTVGM). Borgonovo et al. (2012) pointed out that the meta-model allows 385 
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an accurate estimation of density-based sensitivity measures when the main structural features of the 386 

original model are captured. 387 

4.5 Regionalized sensitivity analysis 388 

Regionalized sensitivity analysis (RSA), also called generalized sensitivity analysis, has been 389 

originally developed in the context of environmental models by Spear and Hornberger (1980) and 390 

further developed by Beven and Binley (1992) in hydrological models. Generally, it is a graphical 391 

approach based on Monte Carlo simulations with parameter combinations taken from their whole 392 

distribution range, which is why it is regarded as a global SA method (Massmann and Holzmann, 393 

2012). These parameter sets are classified as behavioral or non-behavioral based on the comparison 394 

of the model results with a predefined threshold (Saltelli et al., 2004; Song et al., 2014). Jakeman et 395 

al. (1990) summarize the typical steps to implement RSA:  396 

1) Define a prior parameter distribution from which the samples will be drawn as well as goodness 397 

criterion with a corresponding threshold for separating the results into a behavioral and a 398 

non-behavioral group; 399 

2) Run the hydrological model using the parameter sets based on Monte Carlo sampling design 400 

3) Classify the result as behavioral or not 401 

4) Plot the relative cumulative probability distribution against the parameter values 402 

5) Implement statistical analysis (e.g. Kolmogorov-Smirnoff test) to detect significant differences 403 

between both groups.  404 

The Kolmogorov-Smirnoff test describes the maximum vertical distance between two 405 

cumulative distributions. If the distributions of a parameter xi in the two groups are dissimilar then 406 

the parameter xi is considered influential, and vice versa. The larger the distance, the more sensitive 407 
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the parameter is (Yang, 2011). RSA has been widely used in hydrological models (e.g., Lence and 408 

Takyi, 1992; Freer et al., 1996; Pappenberger et al., 2006; Sieber and Uhlenbrook, 2005; Ratto et al., 409 

2006; Tang et al., 2007a; Pappenberger et al., 2008; Yang, 2011; Massmann and Holzmann, 2012). 410 

From these studies, we can see that its advantage is conceptually simple and easy to implement. 411 

Results are easy to understand and the method is model-independent (Yang, 2011). However, the 412 

disadvantage is that they need to define a threshold for separating the results into a behavioral and 413 

non-behavioral group, which is a highly subjective task that might have important effects on the 414 

results (Beven, 2009). To resolve this difficulty, Freer et al. (1996) presented an extension of this 415 

method, in which the behavioral parameter sets are sorted from best to worst with respect to their 416 

ability to reproduce the observed results. Then they are separated into 10 equally sized groups, with 417 

the first group comprising the best 10% parameter sets, the second group the best 10-20% parameter 418 

sets and so on. Conclusions about parameter sensitivities are made qualitatively by examining 419 

differences in the marginal cumulative distributions of a parameter within each of the ten groups. Ten 420 

lines in the RSA plot represent the cumulative distributions of a parameter with respect to ten 421 

sampled sub-ranges. If the lines are clustered, the parameter is not sensitive to a specific model 422 

performance measure (Demaria et al., 2007; Wagener and Kollat, 2007). In addition, although under 423 

certain circumstances the Kolmogorov-Smirnoff test can highlight some interaction effect (Saltelli et 424 

al., 2008), the RSA method cannot quantify higher order effects or search for interacting structures 425 

(Yang, 2011). This means that the insignificance of the distance does not imply irrelevance of the 426 

input factor, due to possible missed interaction effects. 427 

4.6 Entropy-based method 428 

Entropy can be regarded as an indicator of the information content or as a measure of the 429 
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uncertainty of a random variable (Mogheir et al., 2004; Liu et al., 2006; Auder and Iooss, 2009; 430 

Mishra et al., 2009). It also provides comparatively more information since two variables with no 431 

mutual information are statistically independent, while two uncorrelated variables are not necessarily 432 

independent (Frey and Patil, 2002). Different entropy indicators, which assess the relationship 433 

between a dependent and an independent variable, have been described in some studies, such as 434 

marginal, joint, conditional and mutual information. The mutual information is being used as an 435 

indicator of variable importance in many fields. Mishra and Knowlton (2003) describe a 436 

methodology for global SA that combines the mutual information concept with contingency table 437 

analysis. More details refer to Mishra and Knowlton (2003), Liu et al. (2006) and Mishra et al. 438 

(2009).  439 

The major advantage of the entropy-based method is that it can capture more complete 440 

probabilistic sensitivity information by studying the impact of an input variable on the probabilistic 441 

distributed rather than on low-order moments such as on performance variance with the 442 

variance-based methods. However, it should be noted that the entropy-based method can only give a 443 

relative importance ranking of random variables and the absolute values of the measures are hard to 444 

interpret, which is the major limitation for the entropy-based method. Some studies also use 445 

entropy-based method to analyze the sensitivity of parameters for hydrological models. For example, 446 

Pappenberger et al. (2008) applied five different methods (Sobol’, Kullback-Leibler entropy, Morris, 447 

RSA, and regression) to investigate the sensitivity of parameters of a one-dimensional flood 448 

inundation model (HEC-RAS) on the River Alzette. They found that the different methods leaded to 449 

completely different ranking of importance of the parameter factors and it was impossible to draw 450 

firm conclusions about the relative sensitivity of different factors. Massmann and Holzmann (2012) 451 



21 
 

also discussed the comparison of the three global SA methods (Sobol’ method, RSA, mutual entropy) 452 

for a rainfall-runoff model. The results revealed that entropy-based method was more robust than the 453 

RSA method at a daily scale and the Sobol’ method was the least robust method. These results 454 

differed from the results obtained by Pappenberger et al. (2008). Neumann (2012) also discussed five 455 

SA methods (derivatives, screening, regression, variance decomposition and entropy) for a model 456 

predicting micropollutant degradation in drinking water treatment.  457 

5. Evaluation framework of SA in hydrological modeling 458 

The typical evaluation framework of SA in hydrological models is shown in Fig.3. We also 459 

discuss some practical issues, such as determination of parameter ranges, the choice of sampling 460 

design method, objective functions and adequate SA methods. 461 

------------------------------------------------------------------------------------------------------------------------- 462 

Figure 3 is here 463 

------------------------------------------------------------------------------------------------------------------------- 464 

5.1 Selection of parameters ranges and sampling design 465 

The first crucial step is to determine the range of the inputs and select the appropriate sampling 466 

design methods when we implement SA in hydrological modeling (Zhan et al., 2013). The ranges 467 

and distributions of parameters are mainly dependent on the prior information. Some studies 468 

highlight the effect of ranges and distributions of inputs on the results of SA. For example, Tong and 469 

Graziani (2008) pointed out that the proper prescription of the ranges and shapes of the distributions 470 

can dramatically alter the outcome of the analysis. Shine et al. (2013) stated that reducing or 471 

expanding the ranges will affect the sensitivity indices, and cause insensitive parameters becoming 472 
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sensitive or vice versa. Wang et al. (2013a) also showed that different parameter ranges for the 473 

WOFOST crop growth model yields differences in sensitive parameter. As the sensitivity of 474 

parameters can be strongly influenced by the ranges of inputs, it is important that the ranges used 475 

yield parameter sets that are considered plausible (Shine et al., 2013). Besides, Ben Touhami et al. 476 

(2013) investigated the different distributions (e.g. Gaussian distribution, normal distribution and 477 

uniform distribution) of parameters on the results of SA. They found there were notable differences 478 

among the different distribution conditions for their sensitivity. Although normal distribution and 479 

uniform distribution are often used in practice (Esmaeili et al., 2014), there is a need to account for 480 

different types of distributions (Kucherenko et al., 2012). Generally, probability distributions can be 481 

constructed from expert elicitation if there is not enough information. But, even with expert 482 

elicitation, it is still challenging to build distributions with great confidence. Therefore, more work 483 

needs to be conducted to assist in determining the ranges of inputs and investigate their distributions 484 

and response surface shapes. After we define the probability distributions of model parameters, for 485 

most global SA, it is necessary to implement sampling strategies for generation of sample. For 486 

regression-based and meta-modeling methods, Latin hypercube sampling (LHS) and Sobol’ sequence 487 

random sampling methods are very popular due to their efficient stratification properties (Zhan et al., 488 

2013; Song et al., 2014). For screening and variance-based methods, they usually require special 489 

sampling methods (Saltelli et al., 2008; Tian, 2013), e.g., Morris one-at-a-time sampling design 490 

should be used in Morris screening and FAST sampling design should correspond with FAST 491 

method. 492 

5.2 Choice of objective functions for SA 493 

It is also utmost important to select the appropriate objective functions, which would 494 
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immediately affect the results of SA (Shine et al., 2013; Song et al., 2013). For example, Zhan et al. 495 

(2013) revealed that the most sensitive or important parameters for three different objective functions 496 

are different in distributed time variant gain model. Song et al. (2013) highlighted that there are the 497 

differences of sensitivity indices among four objectives for Xinanjiang model. The same conclusions 498 

for Sacramento model and MIKE/NAM model obtained by van Werkhoven et al. (2008a, 2009) and 499 

Liu and Sun (2010). However, Foglia et al. (2009) suggested that a well-designed single objective 500 

function including many data types can also be useful. Generally, contributions to the objective 501 

function are weighted, and the weighting accounts for the different units and precision of different 502 

contributions to the objective function (Hill and Tiedeman, 2007). The weights allow the statistics to 503 

quantify the information provided by different types of observations via combining the contributions 504 

of different functions into one objective function (Song et al., 2012c). Therefore, SA should be 505 

implemented based on multi-objective functions or combined single function of different objectives, 506 

and it can give valuable and comprehensive insight into these parameters for hydrological models 507 

(Hill and Tiedeman, 2007; Foglia et al., 2009; Shine et al., 2013). 508 

5.3 Choice of SA methods for hydrological models 509 

Considering the wide range of SA methods, practitioners need adequate resource to better 510 

understand which methods are appropriate for a specific application (Ratto et al., 2007; Tang et al., 511 

2007b; Pappenberger et al., 2008; Confalonieri et al., 2010; Yang, 2011; Reusser et al., 2011, Sun et 512 

al., 2012; Gan et al., 2014). Different types of SA methods can be selected based on: (a) the objective 513 

of the analysis, (b) the number of uncertain input factors, (c) the degree of regularity of the model, (d) 514 

the computing time for a single model simulation, and (e) analyst’s time for SA (Cacuci et al., 2003; 515 

Saltelli et al., 2005; Wallach et al., 2006; Zajac et al., 2010; Saltelli et al., 2012).  516 
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In practice, the objective of analysis is the first crucial step to select the appropriate SA methods. 517 

For example, if one focuses on ranking characteristics of parameter sensitivity measure, the 518 

qualitative analysis or screening-based methods could be selected. Nay rather, if one wants to gain 519 

further insight into the characteristics of sensitivity indices, the quantitative methods may be the best 520 

choice. As Shin et al. (2013) stated that if the aim of the SA is to select non-influential parameters 521 

with respect to the target function and perhaps to fix their values, then the total-order sensitivity 522 

index is suggested as a reasonable measure to use. Secondly, it is well known that the dimension of 523 

parameters has a significant influence on the selection and application of SA methods in hydrological 524 

models; i.e., the performance efficiency for SA largely depends on parameter dimensions. Generally, 525 

when the number of parameters is much greater than tens, the global screening method is preferred. 526 

Screening methods are designed to handle hundreds of model input factors in a sense that they can 527 

only provide qualitative sensitivity measure (Zoras et al., 2007). Using qualitative ranking results, we 528 

can fix the non-sensitive parameters and reduce the parameter dimensions or number of parameters 529 

to make the quantitative SA more tractable. Thirdly, the computational expense for a single model 530 

run is another constraint to dictate the choice of SA methods in hydrological modeling. For example, 531 

SA is almost always performed by running the model a number of times, i.e. a sampling-based 532 

approach. This can be a significant problem when a single run of the model takes a significant 533 

amount of time (minutes, hours or longer), which is not unusual with very complex models, or when 534 

the model has a large number of uncertain inputs. Consequently, computational expense is a problem 535 

in many practical SA. Some methods of reducing computational expense include the use of 536 

meta-modeling methods (for large models) and screening methods (for reducing the dimensionality 537 

of the problem). Therefore, synthetic SA approaches, which consider the advantages and 538 
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disadvantages of various analysis methods and combine these methods as a systematic analysis 539 

technique, have been used in complex models. The Morris screening method, coupled with 540 

variance-based methods, is a common approach for SA in many science fields, and the flowchart of 541 

this integration method is shown in Fig.4. For instance, Francos et al. (2003) integrate the Morris 542 

method with FAST for qualitative and quantitative analysis (the two-step analysis method) to 543 

estimate parameter sensitivity for the SWAT model. Sun et al. (2012) also highlight that when the 544 

number of input factors involved in the model is too high to afford a computationally expensive 545 

quantitative analysis, a more efficient two-step procedure based on a screening process (first stage) 546 

and a quantitative analysis method (second stage) can be adopted. In addition, Song et al. (2014) 547 

integrated the Morris method, RSM, and the Sobol' method to clearly and efficiently identify the 548 

influence of parameters on model output from the DTVGM and Xinanjiang models. From these 549 

results, the integration technique clearly achieves qualitative and quantitative SA and can largely 550 

reduce the computational cost with fewer model runs.  551 

------------------------------------------------------------------------------------------------------------------------ 552 

Figure 4 is here 553 

------------------------------------------------------------------------------------------------------------------------ 554 

6 Other topics related to SA in hydrological models 555 

6.1 Analysis of correlated parameters in hydrological models 556 

It is not uncommon that input parameters may be correlated in hydrological models. The 557 

correlations among hydrological or hydraulic parameters have important effects on the estimation 558 

of hydrological parameters and further significantly affect the predictions and associated 559 

uncertainties of hydrological modeling (Pohlmann et al., 2002; Lemke et al., 2004; Manache and 560 
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Melching, 2008; Pan et al., 2011). Understanding the contribution of each parameter and the joint 561 

contributions of correlated parameters in predictive uncertainties is also critical to uncertainty 562 

reduction (Rojas et al., 2009; Fox et al., 2010). Although the parameter correlations are observed 563 

and may be strong in some cases (Xu and Gertner 2007), the existing sensitivity analysis methods 564 

of hydrological models typically adopt the assumption of independent parameters (e.g., Li and Yeh, 565 

1998; Boateng, 2007; Zhu et al., 2010; Zhan et al., 2013). Some studies have been devoted to the 566 

sensitivity analysis with correlated parameters (e.g., Helton et al., 1995; Fang et al., 2004; Jacques 567 

et al., 2006; Pan et al., 2011). For example, Iman et al. (2002) proposed the partial correlation as a 568 

measure of parameter sensitivity for models with correlated input based on the Latin Hypercube 569 

sampling method. Xu and Gertner (2008a) proposed a regression-based method to derive the 570 

correlated contribution (by variations of parameter correlated with other parameters) and the 571 

uncorrelated contribution (by variations of parameter uncorrelated with other parameters). 572 

Unfortunately, their methods rely on the assumption that the parameter effects are approximately 573 

linear. In general, for complex hydrological models, it can be expected that parameter effects are 574 

too nonlinear for such methods to yield reliable results. Fang et al. (2004) proposed sequential 575 

sampling to approximate a differential sensitivity index. Satelli et al. (2004) proposed a correlation 576 

ratio method based on McKay’s one-way ANOVA method, which is based on the replicated Latin 577 

hypercube sampling and suitable for non-linear and non-monotonic models. But Bedford (1998) 578 

found the Sobol’ evaluations depend on the order of the parameters. As Xu and Gertner (2008b) 579 

said, both Fang et al.’s method and correlation ratio method require a large sample size which 580 

would be impractical for complex models. Although many techniques have been proposed to 581 

generalize the variance-based SA methods for the case of correlated or dependent variables 582 
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(Kucherenko et al., 2012; Xu, 2013), there is hardly any successful application into hydrological 583 

modelling up to now. Further work should be considered to use these methods to investigate their 584 

influence on model output for the correlated parameters in hydrological models.  585 

6.2 Applications of SA in model evaluations 586 

As previously mentioned, distributed modeling of catchment hydrology is a valuable approach 587 

to understand, reproduce and predict the behavior of hydrological systems. However, distributed 588 

hydrological models still remain as a simplified and imperfect representation of physical processes, 589 

using uncertain observation data to estimate model inputs (e.g., parameters, initial conditions, etc.). 590 

Thus, parameter estimation is critical to develop useful models of complex hydrological systems, 591 

for which the important characteristics cannot be measured accurately or completely enough to 592 

define model input values (Matott et al., 2009; Song et al., 2012d). In practice, SA is generally a 593 

required step, and a necessary prerequisite to other steps as discussed below. 594 

6.2.1 SA and parameter identification 595 

Parameter identification of hydrological models has increasingly become a problem as model 596 

complexity increases with high-dimensions of model parameters. Model identification involves 597 

choosing suitable model structure and degree of complexity; i.e., it is important to keep the model 598 

description and parameterization as simple as possible to ensure sufficient calibration, but, at the 599 

same time, it must be sufficiently distributed to capture the spatial variability of key model 600 

parameters. Thus, the dimensionality of the parameter space must be limited so as to avoid model 601 

over-parameterization. With respect to efficient parameter identification, SA is useful to provide 602 

the qualitative and quantitative indices needed to identify important and non-important parameters 603 
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(Yang et al., 2011; Pappenberger et al., 2008; Confalonieri et al., 2010). It might be difficult to 604 

efficiently estimate these parameters when there are a large number of parameters with no clearly 605 

identifiable influence on output variables, or many parameters have similar effects (or interactions) 606 

on output variables. In these cases, SA will be crucial for parameter identification. Thus, SA and 607 

parameter identification usually are performed together in model calibration. For example, 608 

Castaings et al. (2009) and Cibin et al. (2010) emphasize that global SA of parameters can provide 609 

much more information for parameter identification and estimation. Vandenberghe et al. (2001) 610 

highlighted the complementarity of the SA for the parameter identification and calibration in 611 

practice. To some extent, SA can be regarded as a solution to parameter identification. 612 

6.2.2 SA and UA 613 

Generally, the contribution of parameter uncertainty depends on the model structure, which is 614 

also related to the parametric sensitivity in the modeling systems. Saltelli and Annoni (2010) 615 

emphasize that the objective of UA is to answer the question, “How uncertain is this inference?”, 616 

and that of SA is to answer, “Where is this uncertainty coming from?”. Generally, SA can be used 617 

to characterize a pure UA (Kennedy, 2007). Whatever the terminology used, SA is not to be 618 

intended as an alternative to UA but rather as a complement to UA. The two tasks, while having 619 

different objectives, are often coupled in most cases (Saltelli and Annoni, 2010). For instance, 620 

Mishra (2009) discussed various UA (e.g., Monte Carlo simulation, first-order second-moment 621 

analysis, the point estimate method, logic tree analysis, and the first-order reliability method) and 622 

SA techniques (e.g., stepwise regression, mutual information or entropy analysis, and classification 623 

tree analysis) in hydrological models. They found that UA results are consistent with those from 624 

SA based on two case studies. The same conclusion was reported by Wang et al. (2010) and 625 
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Elsawwaf et al. (2010). These studies demonstrate that the two approaches assist our understanding 626 

of the uncertainty effect of model parameters on output variables and the structural characteristics 627 

of hydrological modeling systems from different points of view. Currently, the two approaches 628 

have more interaction, and they usually do not separate completely from each other. Beven and 629 

Binley (1992) developed the generalized likelihood uncertainty estimation (GLUE) method, which 630 

is as an extension of the regionalized sensitivity analysis (RSA) method proposed by Spear and 631 

Hornberger (1980), to estimate parameter uncertainty and demonstrate the equifinality for different 632 

parameters. The GLUE method has often been used for UA and SA in hydrological models. Ratto 633 

et al. (2001) proposed a new approach for model calibration, coupling the GLUE and 634 

variance-based SA methods, and found that integrated application enhanced the performance 635 

efficiency of calibration procedures.  636 

6.2.3 SA and parameter optimization 637 

Model calibration or parameter optimization of complex models is challenging due to the 638 

uncertainty of a large number of parameters (Fienen et al., 2009; Foglia et al., 2009; Keating et al., 639 

2010). In practice, it is also difficult to ensure the accuracy of model application and reliability of 640 

prediction via empirical estimation or automatic optimization (Ciriello et al., 2013). Hence, while 641 

we seek more efficient and steady optimization algorithms, we also need sensitivity and 642 

uncertainty analyses to estimate the effect of parameters on model predictions. As mentioned by 643 

Rakovec et al. (2014), parameter SA can reduce the time of model calibration by focusing 644 

estimation efforts on important parameters to model predictions. Therefore, for complex 645 

hydrological models with a large number of parameters, SA may be a better choice to apply before 646 

the model calibration. For example, van Werkhoven et al. (2009) investigated the use of global SA 647 
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as a screening tool to reduce the parametric dimensionality of multi-objective hydrological model 648 

calibration problems, while maximizing the information extracted from hydrological response data. 649 

They use the SAC-SMA model as an example and suggest that it can reduce the complexity of 650 

calibration, while maintaining high quality model predictions. Liu et al. (2010) suggest that no 651 

single objective function is adequate to measure how a model fails to predict the important 652 

characteristics of the observed data, and multiple criteria should be considered. They couple the 653 

Morris screening method with multi-objective differential evolution (MODE) (non-dominated 654 

sorting differential evolution, NSDE) to quantify parameters in the MIKE11/NAM rainfall-runoff 655 

model. The results showed that the integrated method can identify the optimal Pareto front and 656 

maintains reasonable diversity in the obtained front for model calibration. 657 

6.3 Temporal and spatial variations of SA in hydrological models 658 

Distributed hydrological models allow model parameters and forcing data to vary on a spatial 659 

scale, aiming to better represent the spatial variability of watershed processes at the cost of 660 

increasing model complexity, which poses several challenges for model identification and 661 

diagnosing (Herman et al., 2013c). Considering the widespread applications of distributed models, 662 

there remains a need for diagnostic methods to study such models at their full spatial and temporal 663 

complexity. Often, some of the model parameters will represent processes that only matter during 664 

specific time periods, i.e. specific modes of the system, for example recession constants or 665 

parameters controlling the extent of saturated areas in a catchment during a flood event. Such 666 

parameters are only likely to be identifiable if these periods can be isolated, or if they sufficiently 667 

impact a global objective function. It is often observed that parameters which are important during 668 

low flow periods, when errors are generally small, or parameters which are only important for a 669 
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very short time, are not easily identifiable. Therefore, more recent studies have explored 670 

time-varying sensitivities at predefined intervals throughout the model simulation, revealing the 671 

dynamics of model controls under changing conditions (Wagener et al., 2003; van Werkhoven et al., 672 

2008a; Reusser and Zehe, 2011; Reusser et al., 2011; Garambois et al., 2013; Herman et al., 2013a; 673 

Guse et al., 2014). Generally, sensitivity analysis methods used for time-varying analysis include 674 

local and global approaches. Regardless of the method applied, they are generally used to estimate 675 

sensitivity at each time step or for a running window (Massmann et al., 2014). In addition, several 676 

studies that have focused on event-scale spatial sensitivities (Tang et al., 2007a; van Werkhoven et 677 

al., 2008b; Wagener et al., 2009) have proposed using observations to identify representative events 678 

for a watershed. However, if the dynamics of a watershed cannot be accurately restricted to one of 679 

several events classifications, this selection of representative events fail to account for the full 680 

range of process variability. Hence, Herman et al. (2013c) extended the event-scale approach to 681 

primarily investigate the full dynamics of spatially distributed model controls based on Morris 682 

screening method. To some extent, time-varying and spatial-scale sensitivity analysis present a 683 

valuable opportunity to overcome the complexity of distributed parameter identification by 684 

restricting search to only those parameters which are active at a specific time and location, to 685 

improve the modeled representation of hydrological processes and enhance the understanding of 686 

the hydrological cycle system. 687 

7 Summary and outlook 688 

Generally, the purpose of SA is to determine which model parameters exert the most influence 689 

on model results. This information, in turn, allows unimportant parameters to be fixed or not 690 
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incorporated into the model and provides direction for future research to reduce parameter 691 

uncertainties and increase model accuracy. It is widely accepted that identifying the most relevant 692 

parameters in a model is of key importance for the hydrological modeling because of its role in 693 

supporting not only effective parameterizations but also the development of the model itself. 694 

Although there are various SA methods in hydrological modeling, practical experience shows that 695 

no single analysis method is better than others. The regression-based method (e.g., SRC, SRRC) is 696 

simple to implement and easy to interpret, and it may be still the first choice because it only 697 

requires moderate computational cost in the field of hydrological models. However, for a complex 698 

hydrological model with large number of parameters and high computational cost, Morris 699 

screening methods should be a preferred choice for qualitative analysis, whereas a better choice 700 

may be the meta-model approaches, and the best choice is their integration methods (Francos et al., 701 

2003; Song et al., 2012a, 2013; Zhan et al. 2013). This is because qualitative screening methods can 702 

reduce the number of variables for quantitative analysis, and quantitative method (e.g., 703 

variance-based method) can quantify their influence of each input for output variance. The RSA 704 

method, as a graphical SA, can provide information about the relationship between the output 705 

response and the input parameters, which can improve our understanding of the model results. 706 

However, the result of RSA primarily depends on the choice of the filtering criterion, that is to say, 707 

it should be used with care. Entropy-based method is more competitive for delineating the 708 

nonlinear and non-monotonic multivariate relationship than regression-based method.  709 

Most previous work has been embedded into only one methodology to compute sensitivities, 710 

despite the fact that different sensitivity analysis methods can lead to a difference in the ranking of 711 

the importance of the different model factors. Instead, we suggest that several different sensitivity 712 
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measures have to be used in tandem. In addition, we need to build more realistic and more 713 

integrated hydrological models to represent real-world thresholds, nonlinearities and feedbacks, 714 

and which are capable of representing the implications of environmental change. Building these 715 

necessarily more complex models must also be accompanied by a development in significantly 716 

more powerful identification and evaluation algorithms. Such algorithms, combining optimization 717 

and sensitivity analysis methods while considering uncertainty, have to be able to examine how 718 

models represent hydrological cycle systems and whether this presentation is consistent with the 719 

perception of the actual system and when models are incapable of doing so. Finally, we present our 720 

viewpoints on development trends, research issues or hotspots of SA for complex hydrological 721 

models. 722 

(1) For complex hydrological models, the computational efficiency of model evaluation and 723 

SA may be an unavoidable problem, even with the most effective algorithms or high performance 724 

computers. Hundreds and thousands of model evaluations for global SA (e.g., variance-based 725 

methods) make it more inconvenient, with expensive computational costs (e.g., greater than days 726 

or months), especially when the number of parameters is greater than hundreds. Although 727 

meta-modeling approaches have often been used in the hydrological models for SA, there are still 728 

some technique issues to be resolved involving the reliability and goodness-of-fit of meta-models. 729 

For physical-based, distributed hydrological models, practitioners using meta-models to represent 730 

the response relationship between parameters and model outputs should consider the following 731 

questions: (1) Do the meta-models reflect the typicality or characteristics between parameters and 732 

outputs of original models?; (2) How should the goodness-of-fit of the two models be evaluated 733 

based on different criteria?; and (3) How should the adaptive meta-modeling approach be selected 734 
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and developed to construct the surrogate models? 735 

(2) Convergence and reliability of SA is another problem for scientists. With the availability 736 

of different SA techniques, selecting an appropriate technique, monitoring the convergence and 737 

estimating the uncertainty of the SA results are crucial for hydrological models, especially 738 

distributed models, due to their non-linearity, non-monotonicity, highly correlated parameters, and 739 

intensive computational requirements (Yang, 2011). Currently, there are many studies that have 740 

examined the reliability of SA results in complex models, such as Yang (2011), Pappenberger et al. 741 

(2008), and Confalonieri et al. (2010). These investigations also show that no SA method is perfect 742 

and declare explicitly which conditions are important to avoid erroneous interpretation of model 743 

output sensitivity to parameters. Therefore, appropriate and correctly integrated methods must be 744 

selected based on their advantages and disadvantages to meet the actual requirement. In addition, 745 

multi-objective SA and parameter optimization will become more important for complex 746 

hydrological models to evaluate simulation results from different criteria.  747 

(3) Although many SA methods are developed and have been used in these fields, there are 748 

too many hypotheses or other limitations in these methods, involving the independence of input 749 

variables, monotonicity of response functions, etc. In practice, parameters for hydrological models 750 

usually have interactions or correlations, and these parameters may have significant joint effects on 751 

output variables of interest. If these parameters are separated to analyze the effect for each 752 

parameter, there may be some errors (e.g., Type I or Type II errors) in judgment or decision. As a 753 

result, developing an efficient and effective global SA method will be an objective for many 754 

scientists in the future.  755 
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Tables and Figures 1240 

Table 1 Summary of the definition of SA in the different fields 1241 

Literature Definition 
Nesterov (1994) the systematic investigation of the model responses to either perturbations of the model quantitative factors or variations in the model qualitative 

factors 
Viel et al., 1995 a series of analyses of a data set to assess whether altering any of the assumptions made leads to different final interpretations or conclusions 
Pannell, 1997 To determine how different values of an independent variable will impact a particular dependent variable under a given set of assumptions 
US. EPA, 2001 sensitivity refers to the variation in output of a model with respect to changes in the values of the model’s inputs, and SA attempts to provide a 

ranking of the model inputs based on their relative contributions to model output variability and uncertainty 
Frey and Patil, 2002 The assessment of the impact of changes in input values on model outputs. 
Saltelli et al., 2004 The study of how the variation (uncertainty) in the output of a statistical model can be apportioned, qualitatively or quantitatively, to different 

variations in the inputs of the model 
Schneeweiss, 2006 To determine the robustness of an assessment by examining the extent to which results are affected by changes in methods, models, values of 

unmeasured variables, or assumptions with the aim of identifying “results that are most dependent on questionable or unsupported assumptions” 
European Commission 
(EC), 2009 

To explore how the impacts of the options you are analyzing would change in response to variations in key parameters and how they interact 

Matott et al., 2009 To study the degree to which model output is influenced by changes in model inputs or the model itself 
Thabane et al., 2013 To address the question on “what will the effect be on results, if the key inputs or assumptions changed” 

 1242 

  1243 
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Table 2 Summary of three typical categories for SA methods 1244 

Type Methods Description of the methods Characteristics 

1 

Local 

Compute local response of model output based on the gradients 

(derivatives) of the model output with respect to parameter 

values evaluated at a single location in the parameter space 

Easy of operation and interpret, relatively low computational cost, no 

self-verification, local effect of individual parameters 

Global Evaluate the effect in the entire ranges of uncertain parameters 
Estimating the effect of all the inputs or their combined effect on the variation of 

output based on many model runs 

2 

Mathematical  
Estimate the local or linear sensitivity of output to individual 

parameter 

Providing the uncertainty effect of parameters on the output, not address the 

variance of output 

Statistical 
Analyze the influence of various inputs on model output with 

running simulations based on sampling design methods 

Qualitatively or quantitatively estimate sensitivity indices with huge 

computational demand based on many model runs 

Graphical 
Complement the mathematical or statistical methods for better 

representation with graphical plot 
Graphical representation with more direct-viewing and clear 

3 

Screening Be used to make a preliminary identification of sensitive inputs 
Relatively simple, easy of operation, not be robust for some key model 

characteristics, such as nonlinearity, interactions, and different types of inputs 

Refined 
Adequately consider complex model characteristics and need 

greater expertise and resources to implement 

Providing quantitative results with more accuracy, relatively difficult to 

implement 

4 

Qualitative 
Providing a heuristic score to intuitively represent the relative 

sensitivity of parameters 

Be aimed at screening a few active parameters within a system with many 

non-influential ones, relatively fewer model runs 

Quantitative 
Estimating how sensitive the parameter is by computing the 

impact of the parameter on the variance of model output 

To give information on the amount of variance explained by each parameter, a 

large number of model runs 

 1245 
  1246 
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Table 3 Recent global SA studies in hydrological modeling 1247 
Models Number of parameters SA Methods Objective or output functions The number of runs for hydrological models Source 

BSM1 32 Regression EQI, OCI 5×1000 Flores-Alsina et al. (2009) 

DHSVM 4 GLUE NSE 10000 Surfleet et al. (2010) 

DTVGM 14 Morris, Meta-modeling WB, NSE, RC 600, 4000 Zhan et al. (2013) 

ESTEL-2D 9 MMGSA(Sobol’, K-L entropy, Morris) NSE 1280 Cloke et al. (2007) 

HBV 11 RSA BIAS, RSME, NSE 60000 Abebe et al. (2010) 

HBV 12 Sobol’ RMSE, ROCE 10000 Herman et al. (2013) 

HBV 15 Sobol’, RSA WB, NSE 8192, 10000 
Zelelew and Alfredsen 

(2013) 

HEC-RAS 6 Sobol, K-L entropy, Morris, RSA, regression NSE, MAE Not reported Pappenberger et al. (2008) 

HEC-RAS 7 SARS-RT, Correlation, RSA Normalized performance measure 4000 Pappenberger et al. (2006) 

HL-RDHM 31×13 Sobol’ RMSE 40000 Tang et al. (2007a) 

HL-RDHM 18 RSA, ANOVA, Sobol’ RMSE, RMSEBox-cox 8192 Tang et al. (2007b) 

HL-RDHM 78×14 = 1092 Morris, Sobol’ RMSE Over 6 million (Sobol’), approximate 20000 (Morris) Herman et al. (2013b) 

HL-RDHM 78×14 = 1092 Morris RMSE, ROCE 21860  Herman et al. (2013c) 

HYDRUS-2D 11 Sobol’, mutual entropy, RSA Output discharge 260000×11 (Sobol’), 260000 (mutual entropy, RSA) 
Massmann and Holzmann 

(2012) 

HYMOD 5 Sobol’, Morris, SRC, RSA, SDP NSE 18000, 3000, 3000, 3000, 500 Yang (2011) 

HYMOD 5 Sobol’ RMSE, ROCE 10000 Herman et al. (2013a) 

LU4-R-N 41 RSA, GLUE Relative RMSE， NSE 100000 Medici et al. (2012) 

MARTHE 20 Sobol’ with Gaussian process NSE 300 Marrel et al. (2009) 

MARTHE 5 SDP NSE 1024 Garambois et al. (2013) 

MIKE 11 5 ANOVA Water temperature error Not reported Wang et al. (2013b) 

MIKE/NAM 9 Morris with Pareto ranking RMSEpeak, RMSElow Not reported Liu and Sun (2010) 

MUSIC 13 Bayesian NSE 10000 Dotto et al. (2009) 

REALM 14 Morris Yield 3×6000 Kim and Perera (2013) 

SAC-SMA 17 Sobol’ method RMSE, ROCE 10000 Herman et al. (2013a) 
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Table 3 continued 1248 
Models Number of parameters SA Methods Objective or output functions The number of runs for hydrological models Source 

SAC-SMA 14 Sobol’ method RMSE, RMSEBox-cox, SFDCE, ROCE 7.5×106 Van Werkhoven et al. (2009) 

SAC-SMA 14 Sobol’ method RMSE, RMSEBox-cox, SFDCE, ROCE 130000 Van Werkhoven et al. (2008a) 

SAC-SMA 14 Sobol’ method RMSE, RMSEBox-cox, SFDCE, ROCE Not reported Wagener et al. (2009) 

SAC-SMA 14 

Regression-based method, screening-based 

method, variance-based method, 

meta-modeling method  

MAE 

280 (Morris), 400-600 (other screening methods), 

2777 (FAST), 360 and more than 1000 (McKay 

method), 1050 (Sobol) 

Gan et al. (2014) 

SLUPR 10×6 Meta-modeling and ANOVA NSE Not reported Wu et al. (2012) 

SNOW17 10 RSA NSE 10000 He et al. (2011) 

SVAT 30 Meta-modeling Rn, LE, HF, Tair, Mo 400 Petropoulos et al. (2009) 

SWAP 7 Sobol’ method RMSE 7168 Baroni and Tarantola (2014) 

SWAT 28 Sobol’ method RMSE, NSE, ROCE, SFDCE 60000 Zhang et al. (2013) 

SWAT 26 Sobol’ method NSE 336000, 72000 Nossent et al. (2011) 

SWAT 13 Sobol’ method RMSE 28000 Cibin et al. (2010) 

SWAT 8 FAST NSE, MRE, RMSE, SMSE, PDIFF, LCS 243 Guse et al. (2014) 

TNT2 16, 19, 6 Morris, ANOVA 20 output objective 1700 (16 inputs), 2000 (19 inputs), 9375 (6 inputs) Moreau et al. (2013) 

TOPMODEL 9 FAST, EFAST, Sobol’ MAD 
1289(SimLab, FAST), 487 (R package, FAST), 

5632 (Sobol, SimLab), 5000 (EFAST) 
Reusser et al. (2011) 

VIC 10 MCAT-RSA RMSE, ARE, RMSEBox-cox 59049 Demaria et al. (2007) 

WASH 13 Entropy analysis, stepwise regression TP loading 250 Mishra (2009) 

WaSiM-ETH 11 FAST RMSE 487 Reusser et al. (2011) 

WDS 21 Sobol’  Resilience index, combined measure 2000 Fu et al. (2012) 

XAJ 15 Morris, meta-modeling NSE, WB, GE, DE 640, 4000 Song et al. (2013) 

XAJ 6 GLUE NSE 60000 Zhang et al. (2012) 

 1249 
--Models: BSM1: benchmark simulation model No1; DHSVM: distributed hydrology soil vegetation model; DTVGM: distributed time variant gain model; ESTEL-2D: a 1250 
finite element subsurface flow model; HBV: Hydrologiska Byråns Vattenbalansavdelning; HEC-RAS: Hydrologic Engineering Centers River Analysis System; HL-RDHM: 1251 
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Hydrology Laboratory- Research Distributed Hydrologic Model; HYDRUS-2D: a two-dimension finite element model; HYMOD: hydrologic model based on the probability 1252 
distributed model; LU4-R-N: four-response lumped model coupling riparian tank and nitrogen; MARINE: Modélisation et Anticipation du Ruissellement et des Inondations 1253 
pour des évèNements Extrêmes; MIKE11: hydrological and hydraulic model; MIKE/NAM: a rainfall-runoff model developed by DHI; MUSIC: the model for urban 1254 
stormwater improvement conceptualization; RELAM: Resource Allocation Model; SAC-SMA: Sacramento soil moisture accounting; SLURP: semi-distributed land 1255 
use-based runoff process; SNOW17: a lumped process-based model that simulates snow accumulation and ablation; SVAT: soil-vegetation-atmosphere modeling; SWAP: 1256 
soil-water-atmosphere-plant model; SWAT: the soil and water assessment tool; TNT2: Topography-based Nitrogen Transfer and Transformations model; TOPMODEL: 1257 
topography based hydrological model; VIC: variable infiltration capacity macroscale hydrologic model; WASH: Watershed water quality model; WaSiM-ETH: water flow 1258 
and balance simulation model; WDS: Water distribution systems; XAJ: Xinanjiang model 1259 
 1260 
--Objectives: ARE: Absolute relative bias; DE: relative error for low-flow; EQI: effluent quality index; GE: relative error for high-flow; HF: daily average sensible heat flux; 1261 
LCS: longest common sequence; LE: daily average latent heat flux; MAD: mean absolute difference; MAE: Mean Absolute Errors; Mo: daily average surface moisture; NSE: 1262 
Nash-Sutcliffe efficiency coefficient; OCI: operating cost index; PDIFF: Peak difference; RC: correlation coefficient; RMSE: root-mean-square error; RMSEBox-cox: 1263 
root-mean-square error of Box-Cox transformation; Rn: daily average net radiation; ROCE: Runoff coefficient error; SFDCE: Slope of the flow duration curve error; SMSE: 1264 
Scaled mean square error; Tair: daily average air temperature; TP: total phosphorus; WB: water balance error 1265 
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Table 4 General overview and comparison of various global SA techniques in hydrological modeling (adapted from Yang (2011)) 1266 

 
Morris screening 

method 
Regression-based 

method 
Variance-based method 

Meta-modeling based 
method 

RSA Entropy method 

Sampling strategy 
Morris one-at-a-time 

sampling design 
Monte Carlo 

quasi-random sampling, 
LHS, FAST sampling 

Monte Carlo, LHS, 
Sobol’ quasi-random 

sampling 
Monte Carlo Monte Carlo 

Computational 
requirementsa 

r(n+1) 
Cheap 

m 
Cheap 

m(n+2)~m(2n+2) 
High 

m 
Cheap 

Depends on the 
filtering criterion 

m 
Cheap 

Characteristics of 
sensitivity 
measure 

Qualitative/screening Quantitative Quantitative Quantitative Qualitative Quantitative 

Applicability Model-independence 
Linear model or 

monotonic model 
Model-independence Model-independence Model-independence Model-independence 

Reliability High Depends on R2 High 
High (with dependence 

on R2) 
Weak High 

Parameter 
interaction 

Yes/qualitative 
Depends on the 
regression form 

Yes/quantitative Yes/ quantitative No Yes 

Coping with 
nonlinearity 

Yes 
Depends on the 
regression form 

Yes Yes Yes Yes 

a: r represents the number of the trajectories, m is the sample size, and n is the number of factors 1267 
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 1268 

Figure 1 Sketch for the relationship between uncertainty and sensitivity analysis in hydrological modeling. Global 1269 

uncertainty analysis propagates all the uncertainties, using a model, to the model’s outputs while sensitivity 1270 

analysis determines the contribution of each input factor to the uncertainty of the outputs. 1271 
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1272 

 1273 

Figure 2 Yearly publications on sensitivity analysis in the field of water sciences and the contribution rate of these 1274 

common methods in hydrological modeling from the Web of Science Core Collection. “All” is based on the search 1275 

terms “sensitivity analysis” + “hydrological model”+ “parameter sensitivity analysis” in the Web of Science 1276 

(Deadline to May 15, 2014). “W+E” represent the selected publications based on the categories “water resources” 1277 

and “environmental sciences” in the Web of Science. For more details refer to the supplement table. 1278 
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 1279 

Figure 3 Flow chart for SA in hydrological models 1280 
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 1282 

Figure 4 Framework of two-step integration sensitivity analysis in hydrological models based on qualitative 1283 
screening and quantitative analysis methods 1284 


