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Abstract

We consider differential operators over a noncommutative algebra A generated by
vector fields. These are shown to form a unital associative algebra of differential op-
erators, and act on A-modules E with covariant derivative. We use the repeated
differentials given in the paper to give a definition of noncommutative Sobolev space
for modules with connection and Hermitian inner product. The tensor algebra of vec-
tor fields, with a modified bimodule structure and a bimodule connection, is shown to
lie in the centre of the bimodule connection category AEA, and in fact to be an algebra
in the centre. The crossing natural transformation in the definition of the centre of
the category is related to the action of the differential operators on bimodules with
connection.

1 Introduction

The reader will be familiar with the local description of differential operators involving
partial derivatives along coordinate directions on a manifold. This can be modified to
be given in terms of derivatives along globally defined vector fields. In this paper we
will consider the noncommutative analogue of such differential operators. We will not
consider pseudo-differential or fractional differential operators.

Take a possibly noncommutative algebra A, with differential structure given by a
differential graded algebra ΩnA (with Ω0A = A), differential d : ΩnA → Ωn+1A (with
d2 = 0) and product ∧ (see [5] for a more detailed description). We shall assume
that Ω1A is finitely generated projective as a right A module, and set the vector fields
VecA = HomA(Ω

1A,A), the right module maps from Ω1A to A. These vector fields
will not act on the algebra A as derivations in general. However this dual idea is just
what corresponds to vector fields in commutative geometry.

We take the tensor algebra of vector fields,

T VecA = A
⊕

VecA
⊕

VecA⊗
A
VecA

⊕

VecA⊗
A
VecA⊗

A
VecA

⊕

. . .
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and give it a new associative product •, involving differentiating the vector fields.
This new algebra T VecA• then acts on modules with covariant derivative by repeated
differentiation. This is the content of one of the main results, Theorem 4.5.

One feature of this paper is the number of covariant derivatives used, but this
should not be too surprising. Given a left module E with a left covariant derivative
∇E : E → Ω1A⊗A E, if we apply the covariant derivative twice (without using the
wedge product, which would give curvature) we have to differentiate elements of Ω1A,
and the most convenient way to do that is by a right covariant derivative � : Ω1A →
Ω1A⊗A Ω1A. The vector fields VecA are dually paired with Ω1A, and we obtain an
induced left covariant derivative � : VecA → Ω1A⊗A VecA. (It will be convenient to
overload the symbol � and distinguish these just by their domain.) We also have to
assume that � is a bimodule covariant derivative. This idea had its origins in [8, 7] and
[22], and was later used in [17, 9]. In [4] it was shown that this idea allowed tensoring
of bimodules with connections.

We use the category AEA of A-bimodules with bimodule covariant derivative (see
Definition 2.5). The A-bimodule T VecA• with the bimodule covariant derivative given
in Proposition 7.1 is in the centre Z(AEA) of AEA, using the natural transformation
ϑ : T VecA• ⊗A − ⇒ −⊗A T VecA• defined in Proposition 6.1. In addition T VecA• is
a unital associative algebra in Z(AEA), using the previously mentioned product •. The
natural transformation ϑ is related to the action of differential fields on modules with
connection by Fig. 8. This is the content of the other of the main results, Theorem
8.2.

We can view classical vector fields as the Lie algebra of the diffeomorphism group,
or ‘infinitesimal’ diffeomorphisms. Then we can give a coproduct on the tensor algebra
over the Lie algebra, and make a bialgebra. It might be expected that a similar
construction in the noncommutative case would give rise to a Hopf algebroid [3], or
something similar. However those familiar with the theory of Hopf algebroids will be
expecting complications. We have given the crossing natural transformation ϑ and the
centre of the category construction as an alternative method to describe the action of
differential operators on tensor products of bimodules with bimodule connection. It is
not at all obvious whether a coproduct can be made to work, and we would be happy
to hear from other authors on the matter. One interesting coproduct, though not quite
what is needed in this case, is the braided shuffle coproduct [23].

In Section 5 we define noncommutative Sobolev spaces for modules with connection,
using Hermitian inner products. [Here make the assumption, not required elsewhere,
that the algebra A is a dense subalgebra of a C∗-algebra.] The reader who is familiar
with Sobolev spaces will probably (and correctly) think that this is the easy part.
However it is our hope that this definition will prompt people to look at the difficult
part, the Sobolev embedding results. The interesting part here is that the dimension of
the manifold explicitly appears in the classical Sobolev embedding results. Presumably
a noncommutative version would have to make reference to a dimension of the algebra
A, and there are quite a few different definitions of dimension to choose from.

It would be rather dishonest if we were to imply that many of the results were
originally proved in the line by line form used for proofs here, it was much more
usual to originally work with a diagrammatic form, and we give several figures to
illustrate this. This form is basically the usual diagrams for the monoidal category
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of A-bimodules with ⊗A as the tensor operation. The reader is reminded that the
tensor product E⊗A F is the tensor product over the field E⊗C F , quotiented by the
additional relations

e.a⊗ f − e⊗a.f = 0 ,

for all e ∈ E, f ∈ F and a ∈ A. It is the appropriate tensor product to use to replace
the pointwise tensor product of sections of vector bundles in the commutative case.
If A = C(X) (the continuous functions on X) and E and F are modules of sections
on vector bundles over X , then E⊗A F is the sections of the tensor product bundle.
Now, many of the diagrams or equations we will use involve operations which are not
bimodule maps, and therefore do not sit neatly within this bimodule tensor category
formulation. The best example of this is in Proposition 2.4, where we have an operation
∇E ⊗F on a tensor product E⊗A F , which is a sum of two operations, but neither of
these two operations is well defined on E⊗A F (i.e. they may differ when applied to
e.a⊗ f and e⊗ a.f). The reader should think of these operations as being applied to a
fixed element of the tensor product over the field E⊗C F , with operations being lifted
to operations on the tensor product over the field also. In this manner each diagram or
equation can be given a meaning, and the problem of well definition over ⊗A checked
later.

The reader should note that we continue with the bimodule covariant derivative
and finitely generated projective assumption for Ω1A stated in Section 2, and the
consequences for VecA, throughout the rest of the paper. For notation, the reader
should note that we use the ‘generalised braidings’ σ and σ−1 in a manner consistent
with the notation on braided categories, so we may define σ−1 as the basic object, and
denote its inverse (if it exists) by σ. Similarly we often use the symbols σ and σ−1 to
stand for different maps, which are distinguished by their domains. This overloading of
symbols is quite well defined, and was found to be preferable to adding many subscripts
to the formulae.

The authors would like to thank N.C. Phillips for useful advice on operator algebras,
and S. Majid and R. Street for very helpful comments regarding category theory.

2 Preliminaries

2.1 Finitely generated projective modules

Let A be a possibly noncommutative unital algebra. The (right) dual F ′ of a right
A-module F is defined to be HomA(F,A), the right module maps from F to A. Then
F ′ has a left module structure given by (a.α)(f) = a.α(f) for all α ∈ F ′, a ∈ A and
f ∈ F .

Definition 2.1 A right A-module F is said to be finitely generated projective if there
are f i ∈ F and fi ∈ F ′ (for integer 1 ≤ i ≤ n) (the ‘dual basis’) so that for all f ∈ F ,
f =

∑

f i.fi(f). From this it follows directly that α =
∑

α(f i).fi for all α ∈ F ′. The
A valued matrix Pqj = fq(f

j) is an idempotent associated to the module.
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If F is a bimodule, then F ′ is also a bimodule, with left module structure given
previously, and right module structure (α.a)(f) = α(a.f). If in addition F is finitely
generated projective as a right A-module, we have bimodule maps

ev : F ′ ⊗
A
F → A , coev : A → F ⊗

A
F ′ ,

given by ev(α⊗ f) = α(f) and coev(1A) =
∑

i f
i⊗ fi. These obey the identities

(ev⊗ id)(id⊗ coev(1A)) = id : F ′ → F ′ ,

(id⊗ ev)(coev(1A)⊗ id) = id : F → F . (1)

In this paper we shall use the usual diagrammatic notation for tensor or monoidal
categories. Here vertical lines represent the identity maps between objects (modules in
our case), and tensor product is given by writing the vertical lines next to each other.
The diagrams are meant to be read from top to bottom.

= =

coev coev

evev

F ′ F ′

F ′ F ′

F F

F

Fig. 1

F

We give the usual relation between the evaluation and coevaluation maps (already
given in (1)) in pictorial form in Fig. 1. Note that the algebra A is represented by an
‘invisible line’ in accordance with the usual diagrammatic notation of the unit element
in monoidal categories.

2.2 Differential calculi and covariant derivatives

Let A be a unital algebra over C. Suppose that the algebra A has a differential
structure (ΩA, d) in the sense of a differential graded exterior algebra ΩA = ⊕nΩ

nA

with d increasing degree by 1 and obeying the graded Leibniz rule, and d2 = 0. We
suppose that Ω1A generates the exterior algebra over A, and that Ω1A = A.dA. The
notion of a covariant derivative in this context is standard [6]:

Definition 2.2 Given a left A-module E, a left A-covariant derivative is a map ∇ :
E → Ω1A⊗A E which obeys the condition ∇(a.e) = da⊗ e + a.∇e for all e ∈ E and
a ∈ A.

In classical differential geometry there is no difference in whether we multiply a
section of a vector bundle by a function on the left or right. In the noncommutative
case there is a difference, and for a bimodule we could require the Leibniz rule for both
left and right multiplication, but this would turn out to be too restrictive. Instead,
following [8, 7] and [22], we make the following definition:
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Definition 2.3 A bimodule covariant derivative on an A-bimodule E is a triple (E,∇, σ),
where ∇ : E → Ω1A⊗A E is a left A-covariant derivative, and σ : E⊗A Ω1A →
Ω1A⊗A E is a bimodule map obeying

∇(e.a) = ∇(e).a + σ(e⊗ da) , ∀ e ∈ E, a ∈ A

Now we consider one of the most immediate reasons to define the bimodule covariant
derivative, that is to have a covariant derivative on tensor products of bimodules. As
mentioned in the introduction, this occurred in [4].

Proposition 2.4 Given (E,∇E , σE) a bimodule covariant derivative on the bimodule
E and ∇F a left covariant derivative on the left module F , there is a left A-covariant
derivative on E⊗A F given by

∇E⊗F = ∇E ⊗ idF + (σE ⊗ idF )(idE ⊗∇F )

Further if F is also an A-bimodule with a bimodule covariant derivative (∇F , σF ), then
there is a bimodule covariant derivative (∇E ⊗A F , σE ⊗A F ) on E⊗A F with

σE⊗F = (σE ⊗ id)(id⊗ σF ) .

To illustrate Proposition 2.4 it will be useful to introduce a picture, Fig. 2. This
is a formula for ∇E⊗F which illustrates Proposition 2.4 in a pictorial fashion, and
should be read in the manner of a braid diagram, going down the page. Note that
σE : E⊗A Ω1A → Ω1A⊗A E has been written in Fig. 2 after the manner of a braid, so
that we may distinguish it from its inverse (if it exists) σ−1

E : Ω1A⊗A E → E⊗A Ω1A,
which would be written with the crossing the other way.

+

∇E ∇F

E F E F

Ω1A E F Ω1A E F

σE

Fig. 2

The reader should note that neither term in Fig. 2 in isolation is well defined onE⊗A F ,
only the sum is. It will be a general principle of our formulae or diagrams that care
must be taken with operators which are not module maps. It will be convenient to
think of the operators as defined on ⊗C rather than on ⊗A, with a separate check
that the required sum of operations is well defined on the given domain. Similarly, to
illustrate the formula for σE ⊗F in Proposition 2.4 we use Fig. 3:

E F Ω1A

Ω1A E F Fig. 3

σE
σF
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Note that we are not implying that we have any form of braid relation by using this
notation. However we must comment on notation in the paper. From hard experience
of the confusion caused by trying it the other way, we shall shall describe products of
various σ and σ−1 as braids (we continue to use this term even in the absence of any
braid relation, and may use the term ‘generalised braids’), and frequently not give any
explicit dependence on domain. The domains can easily be established by a study of
the formula or diagram.

Definition 2.5 The category AE consists of objects (E,∇E), where E is a left A-
module, and ∇E is a left covariant derivative on E. The morphisms T : (E,∇E) →
(F,∇F ) consist of left module maps T : E → F for which (id⊗T )∇E = ∇F T : E →
Ω1A⊗A F .

The category AEA consists of objects (E,∇E , σE), where E is an A-bimodule, and
(∇E , σE) is a bimodule covariant derivative on E, and where σE : E⊗A Ω1A →
Ω1A⊗A E is invertible. The morphisms T : (E,∇E , σE) → (F,∇F , σF ) consist of
bimodule maps T : E → F for which (id⊗T )∇E = ∇F T : E → Ω1A⊗A F . It is
then automatically true that σF (T ⊗ id) = (id⊗T )σE. Taking the identity object as
the algebra A itself, with ∇ = d : A → Ω1A⊗AA ∼= Ω1A and tensor product as in
Proposition 2.4, makes AEA into a monoidal category.

2.3 Vector fields and n-tuples of vector fields

We now come to a controversial question: what is a noncommutative vector field on an
algebra A? We may as well be honest and say that we shall not consider derivations
on an algebra, though it is possible to use a generalised idea of derivation, see [12, 2],
and in certain circumstances the idea of braided derivation would apply, see [20, 15].
We shall take the approach that the vector fields VecA are the dual of the 1-forms Ω1A

(see[1]).
With quite weak conditions on the topology, the space of sections of a locally trivial

finite dimensional vector bundle on a finite dimensional space X obeys the finitely
generated projective property as a module over C(X), the continuous functions on
X . This is part of the content of the Serre-Swan theorem, and is the foundation of
K-theory. From this, it is reasonable to suggest that the module of 1-forms on a ‘finite
dimensional noncommutative manifold’, whatever that is, should be finitely generated
projective. As we have seen in Subsection 2.1, there is then a nice idea of the dual,
and we define, as in the classical case, the vector fields VecA as the dual of the 1-forms
Ω1A. As we are in the noncommutative case, we need to choose a side, so we choose
Ω1A to be finitely generated projective as a right module, and then we take VecA to
be the right module maps from Ω1A to A. There is of course a certain symmetry here,
we could have defined Ω1A as the left dual of VecA. However as A is considered to be
an algebra, the idea of a differential calculus as a differential graded algebra extending
A has proven to be more popular, and thus we take Ω1A as the fundamental object.

We suppose that Ω1A is finitely generated projective as a right A module, and set
VecA = HomA(Ω

1A,A). We denote the evaluation and coevaluation maps by

ev : VecA⊗
A
Ω1A → A , coev : A → Ω1A⊗

A
VecA .
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Copying from Fig. 1, the relation between the evaluation and coevaluation maps is
given by Fig. 4.

= =

coev coev

evev

VecA VecA

VecA VecA

Ω1A Ω1A

Ω1A Ω1A

Fig. 4

We shall require multiple copies of 1-forms and vector fields, so we define

Vec⊗ 0A = A , Vec⊗nA = VecA⊗
A
VecA⊗

A
. . .⊗

A
VecA ,

Ω⊗ 0A = A , Ω⊗nA = Ω1A⊗
A
Ω1A⊗

A
. . .⊗

A
Ω1A ,

where we have n copies of VecA and Ω1A. It is important to note that the definition
of Vec⊗nA and Ω⊗nA uses ⊗A, the tensor product over the algebra. For clarity, we
will often use id⊗n as the identity on Vec⊗nA or Ω⊗nA.

Definition 2.6 Define the n-fold evaluation map ev〈n〉 : Vec⊗nA⊗A Ω⊗nA → A re-
cursively by

ev〈1〉 = ev , ev〈n+1〉 = ev (id⊗ ev〈n〉⊗ id) ,

and the coevaluation map coev〈n〉 : A → Ω⊗nA⊗A Vec⊗nA by

coev〈1〉 = coev , coev〈n+1〉 = (id⊗ coev〈n〉 ⊗ id) coev ,

To illustrate Definition 2.6 we use Fig. 5, the coevaluation diagram looks similar
but upside down!

=

Vec⊗n+1A Ω⊗n+1A VecA
Vec⊗nA Ω⊗nA

Ω1A

Fig. 5

ev〈n+1〉 ev

ev〈n〉

3 Covariant derivatives on fields and forms

Consider a right covariant derivative on Ω1A and the corresponding dual left covariant
derivative on VecA. We then extend these to n-tuples of forms and fields, and consider
the generalised braiding given by bimodule covariant derivatives.

7



3.1 A right connection on tensor products of 1-forms

We begin with the right handed analogue of Definitions 2.2 and 2.3. Suppose that
� : Ω1A → Ω1A⊗A Ω1A is a right bimodule covariant derivative, so it satisfies, for
ξ ∈ Ω1A and a ∈ A,

�(ξ.a) = �(ξ).a+ ξ⊗da ,

�(a.ξ) = a.�(ξ) + σ−1(da⊗ ξ) . (2)

Here σ−1 : Ω1A⊗A Ω1A → Ω1A⊗A Ω1A is a bimodule map, and we shall assume
that it is invertible with inverse σ. [The reader should note that the inverse in σ−1

is a convention, set to be compatible with the use of σ for left bimodule covariant
derivatives, and to be compatible with the notation for braided categories as previously
described.] Now � extends to a right bimodule covariant derivative �

〈n〉 : Ω⊗nA →
Ω⊗n+1A, defined recursively by

�
〈0〉 = d , �

〈1〉 = � ,

�
〈n+1〉 = id⊗n ⊗�+ (id⊗n ⊗ σ−1)(�〈n〉 ⊗ id⊗ 1) .

3.2 A left connection on tensor products of vector fields

Suppose that � : Ω1A → Ω1A⊗AΩ1A is a right bimodule covariant derivative, with
generalised braiding σ−1 : Ω1A⊗A Ω1A → Ω1A⊗AΩ1A invertible (the inverse being
denoted σ). Then there is a left covariant derivative � : VecA → Ω1A⊗A VecA so that

d ◦ ev = (id⊗ ev)(�⊗ id) + (ev⊗ id)(id⊗�) : VecA⊗
A
Ω1A → Ω1A . (3)

[It will be convenient to use � for both this covariant derivative and the one on Ω1A,
and distinguish them by their domains.] We give a pictorial interpretation of (3) in
Fig. 6. Note that in the diagram to the left of the equality in Fig. 6 we assign a visible
line to A, so that we can see what the derivative d : A → Ω1A applies to.

d
= Fig. 6

+

VecA VecA VecAΩ1A Ω1A Ω1A

Ω1AΩ1AΩ1A

evev

ev

� �

The covariant derivative in (3) is defined, using coev(1) = α⊗w ∈ Ω1A⊗A VecA
(summation implicit), as

�(v) = d(v(α))⊗w − (ev⊗ id⊗ id)(v⊗�(α)⊗w) .

To show that this works, first we need to note that it only depends on α⊗w ∈
Ω1A⊗A VecA (emphasis on ⊗A), as v is a right A-module map. Then we need to

8



use a.coev(1) = coev(1).a ∈ Ω1A⊗A VecA for all a ∈ A, which follows from coev being
a bimodule map. Then � is a left bimodule covariant derivative, as, for v ∈ VecA,

�(v.a) = �(v).a+ σ(v⊗da) ,
�(a.v) = a.�(v) + da⊗ v ,

where σ : VecA⊗A Ω1A → Ω1A⊗A VecA is defined by

σ = (ev⊗ id⊗ id)(id⊗ σ−1 ⊗ id)(id⊗ id⊗ coev(1)) . (4)

In (4), note that in line with the comment on notation in the introduction, the σ

and σ−1 are not inverses of each other, as they have different domains. Then (4) is
equivalent to Fig. 7, by using the usual properties of evaluation and coevaluation:

=

VecA VecAΩ1A

Fig. 7

Ω1A Ω1A Ω1A

Ω1AΩ1A

ev ev

σ σ−1

Now� extends to a left bimodule covariant derivative�〈n〉 : Vec⊗nA → Ω1A⊗A Vec⊗nA,
defined recursively by

�
〈0〉 = d , �

〈1〉 = � ,

�
〈n+1〉 = �⊗ id⊗n + (σ⊗ id⊗n)(id⊗ 1 ⊗�

〈n〉) .

Proposition 3.1 For all n ≥ 1 we have

d ev〈n〉 = (id⊗ ev〈n〉)(�〈n〉 ⊗ id) + (ev〈n〉 ⊗ id)(id⊗�
〈n〉) : Vec⊗nA⊗

A
Ω⊗nA → Ω1A .

Proof: The n = 1 case is true by definition of � on VecA. Now suppose that the
statement is true for n, and take

v⊗w⊗β⊗α ∈ VecA⊗
A
Vec⊗nA⊗

A
Ω⊗nA⊗

A
Ω1A .

Now calculate

(id⊗ ev〈n+1〉)(�〈n+1〉 ⊗ id⊗n+1)(v⊗w⊗β⊗α)

= (id⊗ ev〈n+1〉)
(

�v⊗w⊗β⊗α+ (σ⊗ id⊗n)(v⊗�
〈n〉w)⊗β⊗α

)

= (id⊗ ev)
(

�v⊗ ev〈n〉(w⊗ β).α+ (σ⊗ id)(v⊗(id⊗ ev〈n〉)(�〈n〉w⊗β)⊗α
)

,

and since from (4),

(id⊗ ev)(σ⊗ id) = (ev⊗ id)(id⊗σ−1) : VecA⊗
A
Ω1A⊗

A
Ω1A → Ω1A ,

we have

(id⊗ ev〈n+1〉)(�〈n+1〉 ⊗ id⊗n+1)(v⊗w⊗ β⊗α)

9



= (id⊗ ev)
(

�v⊗ ev〈n〉(w⊗β).α
)

+ (ev⊗ id)(id⊗σ−1)(v⊗(id⊗ ev〈n〉)(�〈n〉w⊗β)⊗α
)

.

Also calculate

(ev〈n+1〉 ⊗ id)(id⊗n+1 ⊗�
〈n+1〉)(v⊗w⊗β⊗α)

= (ev〈n+1〉 ⊗ id)
(

v⊗w⊗β⊗�α+ v⊗w⊗(id⊗n ⊗ σ−1)(�〈n〉β⊗α)
)

= (ev⊗ id)
(

v⊗ ev〈n〉(w⊗β).�α+ (id⊗σ−1)(v⊗(ev〈n〉 ⊗ id)(w⊗�
〈n〉β)⊗α)

)

.

Now, using our assumption,

(

(id⊗ ev〈n+1〉)(�〈n+1〉⊗ id⊗n+1) + (ev〈n+1〉 ⊗ id)(id⊗n+1 ⊗�
〈n+1〉)

)

(v⊗w⊗β⊗α)

= (id⊗ ev)
(

�v⊗ ev〈n〉(w⊗ β).α
)

+ (ev⊗ id)
(

v⊗ ev〈n〉(w⊗ β).�α
)

+ (ev⊗ id)(id⊗ σ−1)(v⊗
(

(id⊗ ev〈n〉)(�〈n〉w⊗β) + (ev〈n〉⊗ id)(w⊗�
〈n〉β)

)

⊗α
)

= (id⊗ ev)
(

�v⊗ ev〈n〉(w⊗ β).α
)

+ (ev⊗ id)
(

v⊗ ev〈n〉(w⊗ β).�α
)

+ (ev⊗ id)(id⊗ σ−1)(v⊗d ev〈n〉(w⊗β)⊗α
)

= (id⊗ ev)
(

�v⊗ ev〈n〉(w⊗ β).α
)

+ (ev⊗ id)
(

v⊗�(ev〈n〉(w⊗ β).α)
)

= d ev(v⊗ ev〈n〉(w⊗β).α)

= d ev〈n+1〉(v⊗w⊗β⊗α) ,

which completes the proof by induction. �

4 An action of tensor products of vector fields

We briefly remind the reader of some notation. In Section 3.1 we introduced � :
Ω1A → Ω1A⊗A Ω1A as a right bimodule covariant derivative, with generalised braiding
σ−1 : Ω1A⊗A Ω1A → Ω1A⊗A Ω1A invertible (the inverse being denoted σ), and its
extension to tensor products �

〈n〉 : Ω⊗nA → Ω⊗n+1A. In Section 3.2 we introduced
a dual left covariant derivative � : VecA → Ω1A⊗A VecA and its extension �

〈n〉 :
Vec⊗nA → Ω1A⊗A Vec⊗nA.

Suppose that E is a left A module, with a left covariant derivative ∇ : E →
Ω1A⊗A E. We iterate this to define ∇(n) : E → Ω⊗nA⊗A E recursively by

∇(1) = ∇ , ∇(n+1) = (�〈n〉⊗ idE + id⊗n ⊗∇)∇(n) . (5)

To do this, we need to check that �〈n〉⊗ idE + id⊗n ⊗∇ is a well defined operation on
Ω⊗nA⊗A E, which we do as follows, for a ∈ A, ξ ∈ Ω⊗nA and e ∈ E:

(�〈n〉 ⊗ idE + id⊗n ⊗∇)(ξ.a⊗ e) = �
〈n〉(ξ).a⊗ e+ ξ⊗da⊗ e+ ξ.a⊗∇e ,

(�〈n〉 ⊗ idE + id⊗n ⊗∇)(ξ⊗ a.e) = �
〈n〉(ξ)⊗ a.e+ ξ⊗da⊗ e+ ξ⊗ a.∇e .

Now we can define an ‘action’ of v ∈ Vec⊗nA on e ∈ E by

v ⊲ e = (ev〈n〉 ⊗ idE) (v⊗∇(n)e) . (6)
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The quotation marks in ‘action’ are due to the fact that we have not yet given the
product with respect to which it is an action. This will be given in the forthcoming
Theorem 4.5. It would, however, be slightly dishonest to pretend that Theorem 4.5
was obtained by a claim that the product was in any sense obvious, rather than by
saying that the action is the obvious quantity. The following Lemma 4.1 about the
action will be useful in several places.

Lemma 4.1 For the operation ⊲ in (6), with v ∈ Vec⊗nA, w ∈ VecA and e ∈ E,

w ⊲(v ⊲ e) = (w⊗ v)⊲ e+
(

(ev⊗ id⊗n)(w⊗�
〈n〉v)

)

⊲ e .

Proof: Begin by using Prop. 3.1 on the definition of v ⊲ e as follows;

∇(v ⊲ e) = ∇ (ev〈n〉 ⊗ idE) (v⊗∇(n)e)
= (d ev〈n〉⊗ idE + ev〈n〉 ⊗∇E) (v⊗∇(n)e)
= (id⊗ 1 ⊗ ev〈n〉⊗ idE)(�

〈n〉v⊗∇(n)e)
+ (ev〈n〉 ⊗ id⊗ 1 ⊗ idE)(v⊗(�〈n〉⊗ idE + id⊗n ⊗∇)∇(n)e)

= (id⊗ 1 ⊗ ev〈n〉⊗ idE)(�
〈n〉v⊗∇(n)e)

+ (ev〈n〉 ⊗ id⊗ 1 ⊗ idE)(v⊗∇(n+1)e) .

Now we have

w ⊲(v ⊲ e) = (ev⊗ idE)(w⊗∇(v⊲ e))
= (ev⊗ ev〈n〉⊗ idE)(w⊗�

〈n〉v⊗∇(n)e)
+ (ev〈n+1〉 ⊗ idE)(w⊗ v⊗∇(n+1)e) . �

Lemma 4.2 For all k ≥ 0, the following recursive procedure gives a well defined func-
tion •k : Vec⊗nA⊗Vec⊗mA → Vec⊗ kA satisfying (a.v) •k w = a.(v •k w), for all
a ∈ A. The definition is recursive in n ≥ 0: The starting cases are (for u ∈ VecA and
w ∈ Vec⊗mA)

n = 0 , a •k w =

{

a.w k = m

0 k 6= m

n = 1 , u •k w =







u⊗w k = m+ 1

(ev⊗ id⊗m)(u⊗�
〈m〉w) k = m

0 otherwise
.

The definition continues with, for v ∈ Vec⊗nA (setting •−1 to be zero),

(u⊗ v) •k w = u⊗(v •k−1 w) + u •k (v •k w)− (u •n v) •k w .

Proof: We prove that (a) •k : Vec⊗nA⊗Vec⊗mA → Vec⊗ kA is well defined, and
that (b) (a.v) •k w = a.(v •k w) for all a ∈ A, by induction on n ≥ 0. To begin, the
explicit formulae for n = 0 and n = 1 have these properties. Now assume that (a) and
(b) hold for n, and examine the n+ 1 case.

For (a) we note that, a priori, the recursive definition in the statement only defines

•k : (VecA⊗Vec⊗nA)⊗Vec⊗mA → Vec⊗ kA .

11



Instead of VecA⊗Vec⊗nA we want VecA⊗A Vec⊗nA, and that necessitates the fol-
lowing check: Continuing the notation of the statement, we require the equality of the
following two quantities in Vec⊗ kA,

(u.a⊗ v) •k w = u.a⊗(v •k−1 w) + (u.a) •k (v •k w)− ((u.a) •n v) •k w ,

(u⊗ a.v) •k w = u⊗((a.v) •k−1 w) + u •k ((a.v) •k w)− (u •n (a.v)) •k w . (7)

Using our assumption of (b) for n, we have

(u⊗ a.v) •k w = u⊗ a.(v •k−1 w) + u •k (a.(v •k w))− (u •n (a.v)) •k w . (8)

From the statement, for x ∈ Vec⊗ sA,

(u.a) •s x = u •s (a.x)− ev(u⊗da).x ,

and using this twice (for s = k and s = n) on (8) gives

(u⊗ a.v) •k w = u.a⊗(v •k−1 w) + (u.a) •k (v •k w)− ((u.a) •n v) •k w
+ ev(u⊗da).(v •k w)− (ev(u⊗da).v) •k w , (9)

and by the assumption (b) again we have the result that both quantities in (7) are
identical.

For (b) we have, using the inductive hypothesis,

(a.u⊗ v) •k w = a.u⊗(v •k−1 w) + (a.u) •k (v •k w)− ((a.u) •n v) •k w
= a.u⊗(v •k−1 w) + a.(u •k (v •k w))− (a.(u •n v)) •k w
= a.

(

(u⊗ v) •k w
)

. �

The motivation behind Lemma 4.2 is given by the following result.

Proposition 4.3 For all v ∈ Vec⊗nA and w ∈ Vec⊗mA,

v ⊲(w ⊲ e) =
∑

k≥0

(v •k w)⊲ e .

Note that the indices in the summation are finite, as v •k w = 0 for k > n+m.

Proof: This is proved by induction on n ≥ 0. The n = 0 case is automatic from the
definition, and the n = 1 case is a combination of Lemma 4.1 and Lemma 4.2. Now
suppose that the result is true for some n ≥ 1, and consider

(u⊗ v) ⊲(w ⊲ e) ,

where u ∈ VecA and v ∈ Vec⊗nA. By Lemma 4.1 we can write

(u⊗ v) ⊲(w ⊲ e) = u ⊲(v ⊲(w ⊲ e))−
(

(ev⊗ id⊗n)(u⊗�
〈n〉v)

)

⊲(w ⊲ e) .

Now we can use our inductive assumption to write this as

(u⊗ v) ⊲(w ⊲ e) = u ⊲
∑

k≥0

(v •k w) ⊲ e−
∑

k≥0

(

(

(ev⊗ id⊗n)(u⊗�
〈n〉v)

)

•k w
)

⊲ e ,
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and using Lemma 4.1 again gives the result (with a shift in summation index)

(u⊗ v) ⊲(w ⊲ e) =
∑

k≥0

(

u⊗(v •k w) + u •k (v •k w)− (u •n v) •k w
)

⊲ e . �

Proposition 4.3 suggests that the following Proposition 4.4 might be true, but an
explicit check is necessary.

Proposition 4.4 On the free tensor algebra

T VecA =
⊕

n≥0

Vec⊗nA ,

the operation • : T VecA⊗T VecA → T VecA defined by

v • w =
∑

k≥0

v •k w

makes T VecA into an associative algebra.

Proof: We prove that, for all w, x ∈ T VecA,

v • (w • x) = (v • w) • x ,

for v ∈ Vec⊗nA by induction on n. The n = 0 case is just the left A linearity property
which has already been noted in Lemma 4.2. Now suppose that the result is true for
some n ≥ 0. From Lemma 4.2, for v ∈ Vec⊗nA and u ∈ VecA,

(u⊗ v) •k (w •s x) = u⊗(v •k−1 (w •s x)) + u •k (v •k (w •s x))− (u •n v) •k (w •s x) ,

and on summing over k and s, we find

(u⊗ v) • (w • x) = u⊗(v • (w • x))− (u •n v) • (w • x) +
∑

k

u •k (v •k (w • x)) . (10)

Applying Lemma 4.2 twice,

((u⊗ v) •k w) •s x =
(

u⊗(v •k−1 w) + u •k (v •k w)− (u •n v) •k w
)

•s x

= u⊗((v •k−1 w) •s−1 x) + u •s ((v •k−1 w) •s x)
− (u •k−1 (v •k−1 w)) •s x

+
(

u •k (v •k w)− (u •n v) •k w
)

•s x ,

and on summing over k and s, we find

((u⊗ v) • w) • x = u⊗((v • w) • x) +
∑

s

u •s ((v • w) •s x)

−
∑

k

(u •k−1 (v •k−1 w)) • x
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+
∑

k

(

u •k (v •k w)
)

• x−
(

(u •n v) • w
)

• x

= u⊗((v • w) • x) +
∑

s

u •s ((v • w) •s x)−
(

(u •n v) • w
)

• x .

By using the inductive assumption, we can rewrite this as

((u⊗ v) • w) • x = u⊗(v • (w • x)) +
∑

s

u •s ((v • w) •s x)− (u •n v) • (w • x) ,

and combining this with (10) gives (relabeling one index from k to s)

((u⊗ v) •w) • x− (u⊗ v) • (w • x)

=
∑

s

u •s ((v • w) •s x)−
∑

s

u •s (v •s (w • x)) . (11)

The degree s part of v • (w • x) = (v •w) • x gives the following, completing the proof
of associativity:

v •s (w • x) = (v • w) •s x . �

We should stress that the associative multiplication • in Proposition 4.4 is not
defined on T VecA⊗A T VecA, but just on T VecA⊗C T VecA. This is not surprising,
as in repeated application of vector fields, the vector fields will themselves become
differentiated. However the reader should remember that this problem arises with
the usual bimodule structure on the tensor product, which is given, for example, by
(u⊗ v).a = u⊗(v.a) and a.(u⊗ v) = (a.u)⊗ v. The fact that • is associative gives
alternative A-bimodule actions. We define T VecA• to be the same as T VecA as a left
A-module, but with right module structure given by •. We have no need to modify the
left action, as the usual action is the same as • in this case. Now we state the main
result in this section.

Theorem 4.5 The A-bimodule T VecA• with product • : T VecA• ⊗A T VecA• →
T VecA• defined by

v • w =
∑

k≥0

v •k w

is an associative algebra, with unit 1 ∈ Vec⊗ 0A = A. Further, for a left A-module E

with left covariant derivative ∇, the map in (6) gives ⊲ : T VecA• ⊗A E → E which is
an action of this algebra.

Proof: Combining the results in this section. �

Remark 4.6 We need to say something about the category AE introduced in Definition
2.5. For a morphism T : (E,∇E) → (F,∇F ) it is easy to show by induction that

(id⊗T )∇
(n)
E = ∇

(n)
F T . From this we have v ⊲ T (e) = T (v ⊲ e) for all e ∈ E and all

v ∈ T VecA.
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5 Noncommutative Sobolev spaces

In the classical theory of elliptic differential operators, a vital part is played by Sobolev
spaces [26, 21, 10]. They are also used in the analytic theory of complex manifolds [11].
The space W k,p is used to denote the functions which have Lp norm of the derivatives
up to order k (defined as a completion of smooth functions of compact support). This
is normally defined locally, but in noncommutative geometry we are forced to use a
global definition. To do this we use a Hermitian inner product on Ω1A. Given the
machinery that we have in place already, it is convenient to define the Sobolev space
for left modules E with covariant derivative, and then specialise to the case E = A if
required. We shall only cover the p = 2 case, but this is the most useful case, as it
gives a Hilbert space.

We must first define inner products on A-bimodules, where we assume that A is
a star algebra. In fact, we shall assume that A is a subalgebra of a C∗ algebra, so
that we have the usual ideas of positivity. (The reader should think of the algebra of
smooth functions on a compact manifold being a subset of the continuous functions.)
We shall also assume some functional calculus for Mn(A), the n by n matrices over
A. We write a ≥ 0 to indicate that a ∈ A is positive. We use [14] as a reference for
Hilbert C∗-modules.

If E is an A-bimodule then E is identified with E as a set but has the conjugate
actions a.ē = e.a∗ and ē.a = a∗.e. Here ē denotes e ∈ E viewed in E.

Definition 5.1 An inner product on a bimodule E is a bimodule map 〈, 〉 : E⊗A E →
A which satisfies the symmetry condition for all x, y ∈ E:

〈x, y〉 = 〈y, x〉∗ .

The inner product is positive if 〈x, x〉 ≥ 0 for all x ∈ E.

We now have the following well known result:

Proposition 5.2 Suppose we have inner products 〈, 〉E, 〈, 〉F on A-bimodules E,F

respectively. Then there is an inner product 〈, 〉E ⊗F on E⊗A F , given by the formula

〈x⊗ y, x′ ⊗ y′〉E⊗F = 〈x.〈y, y′〉F , x′〉E ,

for all x, x′ ∈ E and y, y′ ∈ F . If 〈, 〉E and 〈, 〉F are both positive, and we can take the
square root of positive matrices with enteries in A, then 〈, 〉E ⊗F is also positive.

If we have positive Hermitian inner products on E and on Ω1A, using Proposition
5.2 we can form the tensor product inner product

〈, 〉n :
(

Ω⊗nA⊗
A
E
)

⊗
A

(

Ω⊗nA⊗
A
E
)

→ A .

From this we can form the A-valued inner products of the nth derivatives;

〈〈e, f〉〉n = 〈∇(n)e,∇(n)f〉n . (12)

Note that we have set∇(0) to be the identity. Now the only missing part of following the
classical definition is integration. Take a state φ : A → C, i.e. a linear map preserving
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positivity and having φ(1A) = 1. We can define a number valued semi-inner product
on E by

φ(〈〈e, f 〉〉0) + φ(〈〈e, f〉〉1) + . . .+ φ(〈〈e, f 〉〉n) . (13)

If the original inner product 〈, 〉E is strictly positive, and φ is a faithful state (i.e.
φ(x) = 0 for x ≥ 0 implies x = 0), then this is an inner product on E. The Sobolev
space Wn,2(E, φ,∇) is the completion of E under the inner product in (13).

6 Another crossing map

For E ∈ AEA and F ∈ AE , we shall define and study the map ϑE given by Fig. 8. The
significance of this will be explained in Section 8.

E FFE

E F E FT VecA T VecA

⊲

⊲

ϑE =

Fig. 8

As the reader should be used to by now, we shall construct the map ϑE by recursion
on n where ϑE : Vec⊗nA⊗E → E⊗A T VecA, where we will worry about just what
sort of tensor product on the domain or whether it is a module map later. To do this
we start with n = 0 and ϑE : A⊗A E → E⊗A A being the identity. For n = 1 using
the formula for the action of VecA on a tensor product (given by ∇E ⊗F ) in Fig. 8
gives

ϑE = ⊲+ σ−1
E : VecA⊗E → E⊗

A
T VecA . (14)

The first term on the right hand side in (14) is in E⊗A A and the second in E⊗A VecA.
Now we calculate, for v ∈ VecA, a ∈ A and e ∈ E

ϑE(v⊗ a.e) = v(da).e + ϑE(v.a⊗ e) , (15)

and conclude that we do not get a map from VecA⊗A E. However the reader should
recall that this is not the right A-module structure for T VecA used in Theorem 4.5.
The structure used there was T VecA•, where we have v • a = v.a+ v(da). This means
that ϑE does give a well defined map from (A ⊕ VecA)• ⊗AE to E⊗A T VecA. Next
note that (14) gives a left A-module map. Finally, for the right module structure:

ϑE(v⊗ e.a) = (ev⊗ idE)(v⊗∇E(e.a)) + σ−1
E (v⊗ e.a)

= ϑE(v⊗ e).a+ (ev⊗ idE)(id⊗σE)(v⊗ e⊗da)
= ϑE(v⊗ e).a+ (idE ⊗ ev)(σ−1

E (v⊗ e)⊗da)
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= ϑE(v⊗ e) • a . (16)

We conclude that ϑE : (A⊕VecA)• ⊗A E → E⊗A T VecA• is an A-bimodule map, and
this shall be the basis for our recursive construction. We have used (A ⊕ VecA)• as
VecA itself is not a right A module under the • product. For the same reason, we set
VecA⊗≤n = A⊕VecA⊕VecA⊗ 2 ⊕ . . .⊕VecA⊗n in the following Proposition.

Proposition 6.1 Suppose that ϑE is defined recursively by, for w ∈ VecA and v ∈
Vec⊗nA,

ϑE((w⊗ v)⊗ e) = (⊲⊗ id)(id⊗ϑE)(w⊗ v⊗ e)
+ (σ−1

E ⊗ id)(id⊗ϑE)(w⊗ v⊗ e)
+ (idE ⊗ •̂)(σ−1

E ⊗ id)(id⊗ϑE)(w⊗ v⊗ e)
− ϑE((w •n v)⊗ e) . (17)

Here •̂ = •m : VecA⊗Vec⊗mA → Vec⊗mA – we do not give it a specific index in (17)
as m may vary. Then, for all n ≥ 1,

1n) ϑE : Vec⊗≤nA⊗E → E⊗A T VecA is well defined;
2n) ϑE : Vec⊗≤nA• ⊗A E → E⊗A T VecA is well defined;
3n) ϑE : Vec⊗≤nA• ⊗A E → E⊗A T VecA is a left A module map;
4n) ϑE : Vec⊗≤nA• ⊗A E → E⊗A T VecA• is a right A module map;
5n) v ⊲ (e⊗ f) = (idE ⊗ ⊲)(ϑE ⊗ idF )(v⊗ e⊗ f), for all v ∈ Vec⊗nA.

Proof: Proof by induction. Assume that ϑE : Vec⊗≤nA• ⊗A E → E⊗A T VecA• is
defined and satisfies (1n,. . . ,5n) – noting that the n = 1 case is done already – see (14)
and the discussion following it. Now we use (17) to give the n+ 1 case, and verify the
corresponding statements.

The first thing is to check that the right hand side of (17) is actually well defined,
given that ϑE maps into E⊗A T VecA• (emphasising the ⊗A). For this, we need to
check that, for all a ∈ A, u ∈ Vec⊗mA, w ∈ VecA and e ∈ E,

(

⊲⊗ id + (idE ⊗•m)(σ−1
E ⊗ id)

)

(w⊗ e.a⊗u− w⊗ e⊗ a.u) = 0 . (18)

Look at

(

⊲⊗ id
)

(w⊗ e.a⊗u− w⊗ e⊗ a.u) = (ev⊗ idE ⊗ id)(w⊗σE(e⊗da)⊗u)

= (idE ⊗ ev⊗ id)(σ−1
E (w⊗ e)⊗da⊗u) .(19)

Verifying (18) reduces to showing, for w′ ∈ VecA,

w′(da).u+ •m(w′.a⊗u− w⊗ a.u) = 0 , (20)

which comes from the definition of •m in Lemma 4.2 and the left Leibniz rule for �.
To prove (1n+1), we use (3n) to show that the middle two terms of (17) evaluated

on w⊗ a.v⊗ e are the same as on w.a⊗ v⊗ e. For the first and fourth terms, we have

(⊲⊗ id)(id⊗ϑE)(w⊗ a.v⊗ e− w.a⊗ v⊗ e) = (⊲⊗ id)(w⊗ a.ϑE(v⊗ e)− w.a⊗ϑE(v⊗ e))
= w(da).ϑE(v⊗ e) ,

ϑE((w •n (a.v))⊗ e)− ϑE(((w.a) •n v)⊗ e) = ϑE(w(da).v⊗ e) = w(da).ϑE(v⊗ e) .
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These cancel in (17), verifying (1n+1).
To prove (2n+1), it is convenient to rewrite (17) as

ϑE((w • v)⊗ e) = (⊲⊗ id)(id⊗ϑE)(w⊗ v⊗ e)
+ (σ−1

E ⊗ id)(id⊗ϑE)(w⊗ v⊗ e)
+ (idE ⊗ •̂)(σ−1

E ⊗ id)(id⊗ϑE)(w⊗ v⊗ e) . (21)

We need to show from (21) that ϑE((w•v)•a⊗ e) = ϑE((w•v)⊗ a.e). By associativity
of •, it is sufficient to verify that ϑE(w • (v • a)⊗ e) = ϑE((w • v)⊗ a.e). To do this,
it is enough to show that the right hand side of (21) is the same when applied to
w⊗ v • a⊗ e and to w⊗ v⊗ a.e, but this is true from (2n).

Proving (3n+1) is quite simple, as every term on the right hand side of (17) is left
A-linear in w.

To prove (4n+1) we use (21) again. Set ϑE(v⊗ e) = f ⊗u. Then (4n) implies that
ϑE(v⊗ e.a) = f ⊗u • a. The right hand side of (21) applied to w⊗ v⊗ e.a instead of
w⊗ v⊗ e is

w ⊲ f ⊗u • a+ (idE ⊗•)(σ−1
E (w⊗ f)⊗u • a) , (22)

where we have combined the last two terms of (21) to give the last term of (22). Now
associativity of • gives the answer.

Finally we consider (5n+1). From Lemma 4.1 we can write

(w⊗ v) ⊲ (e⊗ f) = w ⊲ (v ⊲ (e⊗ f))− (w •n v) ⊲ (e⊗ f) , (23)

and using the inductive hypothesis (5n) gives

(w⊗ v) ⊲ (e⊗ f) = w ⊲ ((idE ⊗ ⊲)(ϑE ⊗ idF )(v⊗ e⊗ f))
− (idE ⊗ ⊲)(ϑE ⊗ idF )((w •n v)⊗ e⊗ f)

= (⊲⊗ ⊲)(id⊗ϑE ⊗ idF )(w⊗ v⊗ e⊗ f)
+ (idE ⊗ ⊲)(σ−1

E ⊗ idF )(id⊗ idE ⊗ ⊲)(id⊗ϑE ⊗ idF )(w⊗ v⊗ e⊗ f)
− (idE ⊗ ⊲)(ϑE ⊗ idF )((w •n v)⊗ e⊗ f)

= (⊲⊗ ⊲)(id⊗ϑE ⊗ idF )(w⊗ v⊗ e⊗ f)
+ (idE ⊗ ⊲)(idE ⊗ id⊗ ⊲)(σ−1

E ⊗ id⊗ idF )(id⊗ϑE ⊗ idF )(w⊗ v⊗ e⊗ f)
− (idE ⊗ ⊲)(ϑE ⊗ idF )((w •n v)⊗ e⊗ f) . (24)

By using Lemma 4.1 again, we can rewrite the middle term of the result of (24) as
follows,

(w⊗ v) ⊲ (e⊗ f)
= (⊲⊗ ⊲)(id⊗ϑE ⊗ idF )(w⊗ v⊗ e⊗ f)

+ (idE ⊗ ⊲)(σ−1
E ⊗ id⊗ idF )(id⊗ϑE ⊗ idF )(w⊗ v⊗ e⊗ f)

+ (idE ⊗ ⊲)(idE ⊗ •̂⊗ idF )(σ
−1
E ⊗ id⊗ idF )(id⊗ϑE ⊗ idF )(w⊗ v⊗ e⊗ f)

− (idE ⊗ ⊲)(ϑE ⊗ idF )((w •n v)⊗ e⊗ f) . (25)

Now (25) implies (5n+1) by the recursive definition (17). �

Note that we can rewrite the recursive definition (17) in a shorter form as

ϑE(w • v⊗ e) = (⊲⊗ id)(id⊗ϑE)(w⊗ v⊗ e)
+ (σ−1

E • id)(id⊗ϑE)(w⊗ v⊗ e) . (26)
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Proposition 6.2

ϑE ⊗F = (idE ⊗ϑF )(ϑE ⊗ idF ) : T VecA• ⊗
A
E⊗

A
F → E⊗

A
F ⊗

A
T VecA• .

Proof: This is proved by induction on n, where ϑE ⊗F : Vec⊗≤nA• ⊗A E⊗A F →
E⊗A F ⊗A T VecA•.

The n = 1 case is given by (14) as

ϑE⊗F = ⊲E ⊗F + σ−1
E ⊗F : VecA• ⊗

A
E⊗

A
F → E⊗

A
F ⊗

A
T VecA• . (27)

Next write

(idE ⊗ϑF )(ϑE ⊗ idF ) = (idE ⊗ϑF )(⊲E ⊗ idF + σ−1
E ⊗ idF ) . (28)

Remember that ϑF is essentially the identity on Vec⊗ 0A• ⊗A F , so we obtain

(idE ⊗ϑF )(ϑE ⊗ idF ) = ⊲E ⊗ idF + (idE ⊗ϑF )(σ
−1
E ⊗ idF ) , (29)

and, using the formula for the action of vector fields on a tensor product, this is the
same as (27).

Now suppose that the hypothesis works for n. For all v ∈ Vec⊗nA, w ∈ VecA,
e ∈ E and f ∈ F , the recursive definition (26) gives

ϑE ⊗F (w • v⊗ e⊗ f) = (⊲E⊗F ⊗ id)(id⊗ϑE ⊗F )(w⊗ v⊗ e⊗ f)
+ (σ−1

E ⊗F • id)(id⊗ϑE⊗F )(w⊗ v⊗ e⊗ f) . (30)

By using the inductive hypothesis, we write

(σ−1
E ⊗F ⊗ id)(id⊗ϑE ⊗F )

= (idE ⊗σ−1
F ⊗ id)(σ−1

E ⊗ idF ⊗ id)(id⊗ idE ⊗ϑF )(id⊗ϑE ⊗ idF )
= (idE ⊗σ−1

F ⊗ id)(idE ⊗ id⊗ϑF )(σ
−1
E ⊗ id⊗ idF )(id⊗ϑE ⊗ idF ) , (31)

and from this we get the second term of (30),

(σ−1
E ⊗F • id)(id⊗ϑE⊗F )

= (idE ⊗ σ−1
F ⊗ id)(σ−1

E ⊗ idF ⊗ id)(id⊗ idE ⊗ϑF )(id⊗ϑE ⊗ idF )
=

(

idE ⊗(σ−1
F • id)(id⊗ϑF )

) (

(σ−1
E ⊗ id)(id⊗ϑE)⊗ idF

)

. (32)

Using (26) twice gives

(σ−1
E ⊗F • id)(id⊗ϑE⊗F )

=
(

idE ⊗ϑF (•⊗ idF )
) (

(σ−1
E ⊗ id)(id⊗ϑE)⊗ idF

)

−
(

idE ⊗(⊲F ⊗ id)(id⊗ϑF )
) (

(σ−1
E ⊗ id)(id⊗ϑE)⊗ idF

)

=
(

idE ⊗ϑF

) (

(σ−1
E • id)(id⊗ϑE)⊗ idF

)

−
(

idE ⊗(⊲F ⊗ id)(id⊗ϑF )
) (

(σ−1
E ⊗ id)(id⊗ϑE)⊗ idF

)

=
(

idE ⊗ϑF

) (

ϑE(•⊗ idE)⊗ idF
)

−
(

idE ⊗ϑF

) (

(⊲E ⊗ id)(id⊗ϑE)⊗ idF
)

−
(

idE ⊗(⊲F ⊗ id)(id⊗ϑF )
) (

(σ−1
E ⊗ id)(id⊗ϑE)⊗ idF

)

. (33)
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At this point we consider the last two terms of (33) separately: The second is

(idE ⊗ϑF )(⊲E ⊗ id⊗ idF )(id⊗ϑE ⊗ idF )
= (⊲E ⊗ idF ⊗ id)(id⊗ idE ⊗ϑF )(id⊗ϑE ⊗ idF )
= (⊲E ⊗ idF ⊗ id)(id⊗ϑE ⊗F ) , (34)

and the third is

(idE ⊗ ⊲F ⊗ id)(idE ⊗ id⊗ϑF )(σ
−1
E ⊗ id⊗ idF )(id⊗ϑE ⊗ idF )

= (idE ⊗ ⊲F ⊗ id)(σ−1
E ⊗ idF ⊗ id)(id⊗ idE ⊗ϑF )(id⊗ϑE ⊗ idF )

= (idE ⊗ ⊲F ⊗ id)(σ−1
E ⊗ idF ⊗ id)(id⊗ϑE ⊗F ) . (35)

Now we put these results back into (30) to get

ϑE ⊗F (w • v⊗ e⊗ f)
=

(

idE ⊗ϑF

) (

ϑE ⊗ idF

)

(w • v⊗ e⊗ f)
− (⊲E ⊗ idF ⊗ id)(id⊗ϑE⊗F )(w⊗ v⊗ e⊗ f)
− (idE ⊗ ⊲F ⊗ id)(σ−1

E ⊗ idF ⊗ id)(id⊗ϑE⊗F )(w⊗ v⊗ e⊗ f)
+ (⊲E ⊗F ⊗ id)(id⊗ϑE⊗F )(w⊗ v⊗ e⊗ f) . (36)

The last three terms of (36) cancel (remember that w ∈ VecA), proving the hypothesis
for the case n+ 1. �

Proposition 6.3 For all u, v ∈ T VecA,

ϑE(u • v⊗ e) = (idE ⊗•)(ϑE ⊗ id)(id⊗ϑE)(u⊗ v⊗ e) .

Proof: This is proved by induction on m, where u ∈ Vec⊗mA. First the m = 1 case
is given by combining (14) and (26). Now suppose that it is true for some m ≥ 1, and
consider, for all w ∈ VecA,

ϑE((w • u) • v⊗ e) = ϑE(w • (u • v)⊗ e)
= (idE ⊗•)(ϑE ⊗ id)(id⊗ϑE)(w⊗ u • v⊗ e)
= (idE ⊗•)(ϑE ⊗ id)

(

w⊗(idE ⊗•)(ϑE ⊗ id)(id⊗ϑE)(u⊗ v⊗ e)
)

where we have used, in order, associativity of •, the m = 1 case, and the inductive
hypothesis. This can be rearranged to give

ϑE((w • u) • v⊗ e)
= (idE ⊗•(id⊗•)(ϑE ⊗ id⊗ id)(id⊗ϑE ⊗ id)(id⊗ id⊗ϑE)(w⊗ u⊗ v⊗ e)
= (idE ⊗•(•⊗ id)(ϑE ⊗ id⊗ id)(id⊗ϑE ⊗ id)(id⊗ id⊗ϑE)(w⊗ u⊗ v⊗ e)
= (idE ⊗•(ϑE ⊗ id)(id⊗ϑE)(w • u⊗ v⊗ e) ,

where we have used the associativity of •, and the m = 1 case. This concludes the
inductive proof. �

Proposition 6.4 The following map is simply the • product:

ϑA : T VecA• ⊗
A
A → A⊗

A
T VecA•

∼= T VecA• .
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Proof: First note that ϑA(v⊗ a) = ϑA(v • a⊗ 1A). Now check the formulae for
ϑA(u⊗ 1A), given that any differential applied to 1A gives zero as d(1A) = 0. �

The map ϑE maps Vec⊗nA• ⊗A E to the sum of E⊗A VecA⊗m
• for m ≤ n. On

the level of E⊗A VecA⊗n
• (i.e. ignoring the m < n terms) it is simply σ−1

E , which
is assumed to be invertible. By standard graded arguments, it is likely that ϑE is
invertible. Here we shall give a recursive definition of its inverse.

Proposition 6.5 The inverse ϑ−1
E : E⊗AVec⊗nA• → T VecA• ⊗A E is given recur-

sively by the identity for n = 0, ϑ−1
E (e⊗w) = (id⊗ idE − ⊲)σE for n = 1, and then by,

for f ∈ E, v ∈ Vec⊗nA and u ∈ VecA,

ϑ−1
E (f ⊗ u⊗ v) = (id • ϑ−1

E )(σE ⊗ id)(f ⊗u⊗ v)− ϑ−1
E (f ⊗ u ⊲v)

− ϑ−1
E ((⊲ σE ⊗ id)(f ⊗u⊗ v)) .

This can be rewritten as

ϑ−1
E (f ⊗u • v) = (id • ϑ−1

E − ϑ−1
E (⊲⊗ id))(σE(f ⊗ u)⊗ v) .

Proof: The n = 1 case is by explicit calculation.
Now assume that the formula for ϑ−1

E on E⊗A Vec⊗nA• works. Then we can use
(26) to write, for v ∈ Vec⊗nA and w ∈ VecA,

ϑE(w • ϑ−1
E (e⊗ v)) = w ⊲ e⊗ v + σ−1

E (w⊗ e) • v . (37)

If we write σ−1
E (w⊗ e) = f ⊗u for u ∈ VecA (summation implicit), then

ϑE(id • ϑ−1
E )(σE ⊗ id)(f ⊗u⊗ v) = (⊲ σE ⊗ id)(f ⊗u⊗ v) + f ⊗ u • v

= (⊲ σE ⊗ id)(f ⊗u⊗ v) + f ⊗ u⊗ v

+ f ⊗u ⊲ v . (38)

As two of the terms of the right side of (38) are in the domain of previously defined
ϑ−1
E , we can rewrite (38) as

f ⊗u⊗ v = ϑE

(

(id • ϑ−1
E )(σE ⊗ id)(f ⊗u⊗ v)− ϑ−1

E (f ⊗ u ⊲v)

− ϑ−1
E ((⊲ σE ⊗ id)(f ⊗u⊗ v))

)

, (39)

and this gives the recursive formula in the statement. We leave checking other prop-
erties of ϑ−1

E to the reader. �

7 A rather unusual covariant derivative

We give a left bimodule covariant derivative on T VecA•. Given the dual basis coev(1) =
ξ⊗ u ∈ Ω1A⊗AVecA (summation implicit), define ∇ : T VecA → Ω1A⊗T VecA by

∇(v) = ξ⊗(u • v) . (40)
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As a.u = a • u for a ∈ A, we see that ∇ only depends on ξ⊗u ∈ Ω1A⊗A VecA (with
the emphasis on ⊗A). We need to look at the defining characteristic of a left covariant
derivative,

∇(a • v) = ξ⊗(u • (a • v))
= ξ⊗((u • a) • v)
= ξ⊗(u(da) • v) + ξ⊗((u.a) • v) . (41)

Next we use coev(a) = a.ξ⊗u = ξ⊗ u.a ∈ Ω1A⊗A VecA to compute

∇(a • v) = ξ⊗ u(da).v + u.ξ⊗(u • v)
= ξ.u(da)⊗ v + u.ξ⊗(u • v)
= da⊗ v + u.∇(v) . (42)

Here we have also used the defining property of a dual basis, ξ.u(da) = da. Now we
look at ∇ as a bimodule covariant derivative on T VecA•. Calculate

∇(v • a)−∇(v) • a = ξ⊗(u • (v • a))− ξ⊗((u • v) • a) = 0 . (43)

We come to the rather surprising conclusion that (T VecA•,∇, 0) is a bimodule covari-
ant derivative.

Suppose that (E,∇E , σE) is a bimodule covariant derivative. Then consider the
tensor product covariant derivatives,

∇E⊗T VecA•
(e⊗ v) = ∇E(e)⊗ v + σE(e⊗ ξ)⊗(u • v) ,

∇T VecA• ⊗E(v⊗ e) = ξ⊗(u • v)⊗ e . (44)

The last derivative looks unusual, until you remember the zero arrived at in (43),
meaning that differentiating e gives no contribution to the derivative in the second line
of (44). Note that from (26) we have

ϑE(w • v⊗ e) = (⊲⊗ id)(id⊗ϑE)(w⊗ v⊗ e)
+ (σ−1

E • id)(id⊗ϑE)(w⊗ v⊗ e) . (45)

From this and (44),

(id⊗ϑE)∇T VecA• ⊗E(v⊗ e) = ξ⊗ϑE(u • v⊗ e)
= ξ⊗(⊲ ⊗ id)(u⊗ϑE(v⊗ e))

+ ξ⊗(σ−1
E • id)(u⊗ϑE(v⊗ e)) . (46)

Remembering that coev(1) = ξ⊗u ∈ Ω1A⊗A VecA, we obtain

(id⊗σ−1
E )(ξ⊗ u⊗ f) = (σE ⊗ id)(f ⊗ ξ⊗u) , (47)

and from (44) we have

∇E⊗TVecA•
(e⊗ v) = ∇E(e)⊗ v + ξ⊗(σ−1

E • id)(u⊗ e⊗ v) . (48)

By definition of ξ⊗ u, ξ⊗u ⊲ e = ∇E(e), and we have proved the following result:
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Proposition 7.1 For the coevaluation coev : A → Ω1A⊗A VecA, the map ∇(v) =
coev(1) • v gives a left covariant derivative on T VecA•. It is also a right module
map, so (∇, 0) is a left bimodule covariant derivative on T VecA•. Given another
object (E,∇E , σE) in AEA, the map ϑE : T VecA• ⊗A E → E⊗A T VecA• defined in
Proposition 6.1 is a morphism in AEA, i.e.

(id⊗ϑE)∇T VecA• ⊗E = ∇E ⊗T VecA•
ϑE .

8 The centre of a category

Recall that a monoidal category (C,⊗,Φ, 1C, l, r) means a category, with a functor
⊗ : C × C → C, a natural equivalence Φ : (( ⊗ )⊗ ) → ( ⊗( ⊗ )) subject to Mac
Lane’s pentagon coherence identity and an identity object 1C and associated natural
isomorpisms l : id → id⊗ 1C and r : id → 1C ⊗ id compatible with Φ. We refer to [16]
for details. In the trivially associated case (i.e. where (X ⊗Y )⊗Z = X ⊗(Y ⊗Z)) we
can set Φ to be the identity.

For simplicity, rather than necessity, the following definition ([18, Example 3.4] and
[13, Definition 3]) is given in the trivially associated case. The centreZ(C) of a monoidal
category C (with product ⊗ and identity object 1C) is a category which consists of
objects which are pairs (X,ϕ), where X is an object in C and ϕ : X ⊗− ⇒ −⊗X is a
natural transformation from the functor A 7→ X ⊗A to the functor A 7→ A⊗X . Given
an object A of C, we write this as ϕA : X ⊗A → A⊗X . The natural transformation
is related to the tensor product by

ϕA⊗B = (id⊗ϕB)(ϕA ⊗ id) and ϕ1C = idX . (49)

The centre Z(C) has morphisms α : (X,ϕ) → (Y, ϑ) so that α : X → Y is a morphism
in C with

ϑA (α⊗ idA) = (idA ⊗α)ϕA : X ⊗A → A⊗Y . (50)

From this definition we can derive certain facts about Z(C).
The centre Z(C) is a monoidal category, with

(X,ϕ)⊗(Y, ϑ) = (X ⊗Y, (ϕ⊗ idY )(idX ⊗ϑ)) , (51)

and identity (1C , lr
−1). It is also a braided category, with

ϕY = Ψ(X,ϕ),(Y,ϑ) : (X,ϕ)⊗(Y, ϑ) → (Y, ϑ)⊗(X,ϕ) . (52)

We now give Example 8.1 for two reasons. Firstly, it may reassure those who are
not familiar with the centre construction that it is not too complicated. Secondly, as we
shall see it shares relevant features with our main example of the differential operators.

Example 8.1 Let H be a Hopf algebra. Consider a category of left modules HM of a
Hopf algebra H, with morphisms compatible with the H action. The category HM has
a tensor product, given by h ⊲(v⊗w) = h(1) ⊲ v⊗h(2) ⊲w, where h(1) ⊗h(2) = ∆(h) is
the Sweedler notation for the coproduct ∆ of H.
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We can consider (H, ⊲) to be an object in HM, where ⊲ is the left adjoint action
g ⊲ h = g(1)hS(g(2)), where S is the anipode of H. For all V ∈ HM, define ϕV :
H ⊗V → V ⊗H by

ϕV (h⊗ v) = h(1) ⊲ v⊗ h(2) . (53)

Then ϕV is a morphism as

ϕV (g ⊲ (h⊗ v)) = ϕV

(

g(1)hS(g(2))⊗ g(3) ⊲ v
)

= g(1)h(1) S(g(4)) g(5) ⊲ v⊗ g(2)h(2) S(g(3))
= g(1)h(1) ⊲ v⊗ g(2)h(2) S(g(3))
= g ⊲ϕV (h⊗ v) . (54)

The condition that ϕ is compatible with the tensor product,

ϕV ⊗W = (idV ⊗ϕW )(ϕV ⊗ idW ) : H ⊗V ⊗W → V ⊗W ⊗H ,

is given by the coassociativity of the coproduct. This means that (H, ⊲) is in the centre
Z(HM). If the antipode S of H is bijective, then ϕ is invertible, as ϕ−1

V (v⊗h) =
h(2) ⊗S−1(h(1)) ⊲ v.

A little more calculation shows that the product µ : H ⊗H → H is a morphism in
the category, and that this makes (H, ⊲) into an algebra in the centre Z(HM), as the
required extra condition for the product to be a morphism in Z(HM) is

ϕV (µ⊗ idV ) = (idV ⊗µ)(ϕV ⊗ idH)(idH ⊗ϕV ) : H ⊗H ⊗V → V ⊗H ,

and is given by the compatibility between the product and coproduct of H.

Theorem 8.2 The A-bimodule T VecA• with the bimodule covariant derivative given
in Proposition 7.1 is in the centre Z(AEA) of AEA (see Definition 2.5), using the
natural transformation ϑ : T VecA• ⊗A− ⇒ −⊗A T VecA• defined in Proposition 6.1.
In addition T VecA• is a unital associative algebra in Z(AEA), using the product •
defined in Proposition 4.4. The natural transformation ϑ is related to the action of
differential fields on modules with connection by Fig. 8.

Proof: To see that ϑ is a natural transformation, see Proposition 7.1. The equations
for the tensor products (49) are given by Proposition 6.2 and a brief calculation. The
compatibility between the product • and ϑ is given by Proposition 6.3, and compati-
bility with the unit is given by Proposition 6.4. �

One would really like to see the structure of a bialgebroid or a ×A-bialgebra [25]
or, even better, a ×A-Hopf algebra [24] on noncommutative vector fields; see [3]. It
is instructive to consider Example 8.1 again. Here we have an algebra (H, ⊲, ϕ, µ) in
the centre of the category HM. But, given this, can we get back to the Hopf algebra
structure ofH? The answer is yes, but as far as we can see only indirectly. By indirectly,
we mean that H can be Tannaka-Krein reconstructed from the representation category
[19], and we start with HM. There is a ‘direct’ construction of the action of H by
h ⊲ v = (id⊗ ǫ)ϕV (h⊗ v) (this is assuming that we know the counit ǫ), but it is not
obvious to see how to construct ∆ by a similar formula. Likewise, it is not clear how
to construct the coproduct on T VecA•.
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