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1 Abstract6

Understanding the response of plants to soil moisture stress is important given a future climate subject7

to greater extremes, including drought. Nevertheless, major discrepancies still exist between observed and8

simulated seasonal carbon, water and energy fluxes at the vegetated land-surface. For tropical forest,9

these discrepancies have been reduced, especially during the dry season, by taking account of tap roots10

and hydraulic redistribution. The expanding FLUXNET open-access archive allows the current study to11

extend the investigation of seasonal drought-stress to ten different vegetation types. A state-of-the-art land-12

surface model is enhanced to take account of tap roots and hydraulic redistribution in order to compare13

with traditional simulations. Carbon fluxes and fractional soil water content are simulated and compared14

against observations. We find that a traditional approach, by neglecting tap roots, simulates a seasonal15

drought for trees and shrubs which is generally too severe compared to observed net carbon flux. The16

introduction of a tap root benefits tropical broadleaf forest and other ecosystems with high annual potential17

evapotranspiration in reducing observation-model discrepancies. Our simulations suggest a minor role for18

hydraulic redistribution, modifying weekly soil moisture rather than substantially changing seasonal water19

flux totals.20
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2 Introduction24

Assessing the resilience of plants to soil moisture stress and seasonal drought is not only important for25

understanding ecosystem functioning and its role within the carbon cycle. The feedback of water and heat26

fluxes from vegetation to the atmosphere can change regional climate, surface temperature and land-surface27

cover (Denman et al. 2007; Richardson et al. 2013) and is key to predicting the response of a future biosphere28

subject to greater climatic extremes (Fischer & Schär 2010).29

30

Nevertheless, major discrepancies still exist between observed and simulated seasonal carbon, water and31

energy fluxes at the vegetated land-surface. For example, standard land-surface models (LSMs) predict a32

drought-induced reduction in both ecosystem carbon assimilation and evapotranspiration during the tropical33

dry season (Baker et al. (2008). In contrast, FLUXNET observations at one tropical forest reveal a 25%34

increase in evapotranspiration and sustained ecosystem carbon assimilation during this period (Goulden et35

al. 1996; Da Rocha et al. 2004). Examining a number of factors, Baker et al. (2008) conclude that access36

to deep (>3.5 m) soil water via tap roots is important to sustain gross productivity during the tropical37

dry season, although a simultaneous moisture-limited reduction in heterotrophic respiration is also impli-38

cated. Likewise, growing season evapotranspiration at four Californian FLUXNET sites simulated by Ichii39

et al. (2009) is reconciled with observations by the introduction of roots that are much deeper (e.g. 4 m40

for needleleaf forest) than values measured in the literature. This latter study, whilst thought-provoking, is41

based on a bucket model (single soil layer, no baseflow and linear root distribution) which is much simpler42

than the soil and plant hydrology adopted in most LSMs. Nevertheless, the aforementioned studies suggest43

our understanding of plant hydrology is incomplete, or at the very least poorly formulated in LSMs, and44

that plants might be more resilient to drought than has been hitherto supposed.45

46

Deep roots have been excavated in the tropics and are believed to play an important role in drought-avoidance47

(Nepstad et al. 1994). Outside the tropics, 2-5 m tap roots are recorded at some boreal and mediterranean48

sites (Dawson & Pate 1996). However, the prevalence and importance of tap roots amongst different Plant49

Functional Types (PFTs) is not well established. (Acronyms and abbreviations used in the text are listed50

in Tab. 1). Compilations of multibiome measurements reveal that vast majority of root biomass lies in the51

upper metre (Jackson et al. 1996). Schenk & Jackson (2005) estimate that only 10% of global vegetation52

has >5% of root biomass deeper than 2 m, deep roots being most likely in seasonal (sub-)tropics for medium53
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texture soils. Even for trees, the majority of roots are constrained to the near-surface layers to allow com-54

petitive nutrient recycling. Shallow rooting appears to be even more prevalent in grassland (Oliveira et55

al. (2005); Jipp et al. (1998)). For example, Puecheta et al. (2004) record a scale depth of only 0.12 m in56

temperate grassland.57

58

Lee et al. (2005) argue that, given the small fraction of root biomass in deep tap roots, another mechanism59

must operate in order to sustain photosynthesis and evapotranspiration during the dry season. They claim60

that water from the lower, moist soil layers is redistributed to upper, drier soil layers in a process known61

as Hydraulic Redistribution (HR). HR operates via the root system, occurs mostly at night and potentially62

allows water to move more quickly through the soil profile compared to standard Darcian flow. Estimates63

of HR and its importance vary. One model simulation predicts that 20% of Amazonian evapotranspiration64

originates from HR (Lee et al. 2005). However, noctural recharge of the upper soil layers measured at one65

tropical broadleaf site indicates that only 10% evapotranspiration is provided by HR (Da Rocha et al. 2004).66

Sap flow measurements in arid savanna suggest that ∼10% of annual transpiration is supplied by HR (Scott67

et al. 2008). However, a simulation for arid shrubland predicts that HR supplies only 4% of total transpi-68

ration (Ryel et al. 2002).69

70

The expansion of the FLUXNET open access database allows a more extensive investigation into the preva-71

lence of tap roots and HR across many global PFTs and how their implementation into standard LSMs may72

reduce discrepancy between modelled and observed carbon fluxes. This may also relate to the long-standing73

enigma that standard LSMs systematically underestimate fractional soil water content (SWC) in the upper74

soil profile by 0.05-0.10 over a wide range of PFTs (Guo and Dirmeyer (2006)). This underestimation could75

spuriously increase simulated drought-stress. The bearing of HR and tap roots on this problem is currently76

unknown.77

78

This study modifies a state-of-the-art LSM to take account of tap roots and HR. The overarching goal is79

to compare revised simulations at 79 FLUXNET sites (482 siteyears and 10 vegetational types) against80

observed Net Ecosystem Exchange (NEE) and fractional SWC. Note that tap roots and HR have hitherto81

been implemented in only one or, at most, a few sites (e.g. Lee et al. 2005; Baker et al. 2008; Ichii et82

al. 2009). Further, the simultaneous analysis of fluxes and soil water has seldom been attempted in the83
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past, although the carbon and water cycles are strongly coupled through the process of photosynthesis and84

transpiration. In contrast to many previous studies, the current investigation also focuses on the ability of85

a state-of-the-art model to reproduce seasonal rather than diurnal fluxes and states. Our specific objectives86

are:87

1. to determine whether the inability of a standard LSM to reproduce dry season NEE in the tropics88

extends to other PFTs or climate zones;89

2. conversely, to identify PFTs where drought is evident in observed fluxes and may or may not be90

reproduced by the simulation;91

3. to reduce observation-model discrepancies for both seasonal carbon flux and soil water by implementing92

ecophysiological and field-based modifications for tap root and HR hydrology.93

3 Material and Methods94

The methodology consists of 3 experiments: (1) a standard, default simulation with traditional, shallow95

roots based on average field measurements (Jackson et al. 1996); (2) as (1) but adding a tap root; and (3)96

as (2) but allowing for HR between soil layers. First, the LSM and its modification are introduced. Then97

the datasets are described which serve either as model input (parameterisation and forcing) or for validation98

(fluxes and soil water content). Finally, the modelling protocol is explained.99

3.1 LSM and its Modification100

The current study uses the Joint UK Land Environmental Simulator (JULES-SF) which is an enhanced101

version of the new UK Met.Office Surface Exchange Scheme (Cox et al. 1999). Key equations for JULES-SF102

are given in the Appendix of Alton & Bodin (2010) with the exception of a subsequent reformulation of103

plant maintenance respiration which is summarised below. In the following model overview we focus on104

changes made to below-ground plant hydrology for the purposes of this study.105

106

JULES-SF takes account of diffuse and direct sunlight at multiple heights within the canopy and is one of107

most elaborate LSMs which operates globally in terms of light interception (Alton et al. 2007). The energy108

calculation central to JULES-SF is the standard Penman-Monteith approach (Monteith 1965), ensuring the109

balance of ingoing and outgoing energy fluxes at the land-surface. Photosynthesis is calculated separately110
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within each of 5 leaf layers according to a biochemical co-limitation model (Collatz et al. 1991), before111

summing to produce a canopy total. Leaf photosynthesis is linked to transpiration through a Ball-Berry112

stomatal model (Ball et al. 1987). Plant respiration depends on maintenance and growth terms (Ryan 1991).113

The former includes separate, additive terms for leaf and root respiration according to Q10 relationships114

based, respectively, on canopy and soil temperature (Law et al. 1999). Stem respiration depends on the115

ratio of stem-to-leaf nitrogen concentration (Cox et al. 1999; 2004). Surface albedo is estimated according116

to the two-stream approximation of Sellers et al. (1996).117

118

Within JULES-SF, the soil is divided into 4 layers of thickness (top downwards) of 0.1, 0.25, 0.65, 2.0 m. The119

total soil column is therefore 3 m. In the standard simulation (JULES-def), plant water extraction depends120

on the exponential fine root distribution which declines rapidly with depth. The exponential scale-depths121

are taken as averages (droot=0.1-0.3 m) from Jackson et al. (1996) who collate and average measurements122

for a wide range of PFTs. Most LSMs possess a similar shallow rooting depth although sometimes a bucket123

model is adopted in which a single soil layer defines the maximum depth to which the linear, rather than124

exponential, rootstock extends (e.g. Ichii et al. 2009).125

126

In the second experiment, we add a single tap root to the standard model (JULES-tap). This tap root127

is placed within the lowest soil layer (depth 1-3 m). There are few measurements of the partitioning of128

biomass between shallow root stock and tap roots which can be used directly to parameterise our model.129

From numerous compiled measurements, Jackson et al. (1996) estimate that root biomass below 1 m ranges130

from <1% in tundra to 8-9% in deserts and temperate needleleaf forest, with a median across all 11 biomes131

of only 2%. From a similar compilation, Schenk & Jackson (2005) estimate that only 10% global vegetation132

has >5% of root biomass deeper than 2 m. However, for broadleaf trees in a mediterranean climate, 17%133

of total root biomass is found at depths of 0.9m (Kurz-Besson et al. 2006). Further, nearly one third of134

roots have been found below 2 m from excavations at one tropical forest (Nepstad et al. 1994; Jackson et135

al. 1996). In order to assess the maximum impact of deep rooting we adopt a high value for the fraction of136

tap biomass (1/3).137

138

The properties of roots (specific hydraulic conductivity, diameter, length etc) differ considerably between139

shallow rootstock and deep tap roots (McElrone et al. 2004). However, these kind of detailed and differen-140
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tiated properties are not yet formulated explicitly in JULES-SF or any other global LSM. Extraction from141

each soil layer depends simply on the fraction of total root mass (shallow plus tap) present in that layer.142

This Ohm’s Law analogy to root conductance (Tyree & Ewers 1991; Sellers et al 1996), which is also adopted143

below for HR (see Eq. 1 in Appendix), is a necessary simplification but one that we examine critically in144

the Results.145

146

In the third experiment, we modify JULES-tap to allow for transport of water from wetter to drier soil layers147

via the root system (JULES-tap-HR). This hydraulic redistribution is in addition to the bulk Darcian soil148

flow present in all LSMs. The formulation of HR is based on Lee et al. (2005) and is described in detail in149

the Appendix. Note that HR can be either upwards or downwards according to whether the upper soil layers150

are subject to drought or heavy precipitation. We assume HR only takes place at night since transpiration151

is expected to drive water transport in the roots during the daytime.152

153

For all 3 experiments, the moisture content within each soil layer is determined as the balance between154

water input (precipitation) and water output. The latter consists of evapotranspiration (i.e. soil and canopy155

evaporation as well as transpiration) and runoff (both above and below-ground). The below-ground runoff156

or baseflow is missing in bucket models but present in most standard LSMs. The model can store water in157

the soil (∆SMC), on top of the soil surface as snow (∆SNOW) and on the surface of canopy leaves (∆CAN).158

∆CAN relates linearly to LAI. Both ∆SNOW and ∆CAN are small compared to ∆SMC. Fig. 1 given an159

overview of model hydrology and the key water-balance equation.160

161

The model contains 10 PFTs defined in Tab. 2. Based on site description, each FLUXNET location is162

attributed to one of these PFTs and simulations are conducted separately for each site.163

3.2 Datasets164

As described separately below, datasets serve either as model input or as validation of model output.165

3.2.1 Model Input166

As input, JULES-SF requires biophysical parameter values, meteorological forcing and a Leaf Area Index167

(LAI) timeseries or phenology. Many of the biophysical parameters are PFT-specific and include plant168
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attributes which are either structural (e.g. rooting depth, canopy height), optical (e.g. leaf absorptance)169

or physiological (e.g. photosynthetic capacity, minimum stomatal conductance). They are assigned using170

average collated field measurements (Alton & Bodin 2010). For the most influential parameter on modelled171

carbon fluxes, photosynthetic capacity (V 0
cmax

), we adopt the mean of Wright et al. (2004) and Kattge et172

al. (2009), weighting for the number of measurements for each PFT. Before doing so, we convert the mea-173

surements of leaf nitrogen collated by Wright et al. (2004) into estimates of V 0
cmax using the same procedure174

as Kattge et al. (2009). Although there may be overlap in measurements contained in Wright et al. (2004)175

and Kattge et al. (2009), removing duplicates from such large samples is beyond the scope of the present176

study. Furthermore, our approach yields measured V 0
cmax

averages per PFT which agree well with values177

retrieved in calibration experiments (Alton 2011). It is often advantageous to tune parameters such as V 0
cmax

178

to each site or at least for each PFT as part of the model calibration. However, the current study tests the179

impact of model changes and, hypothetically, a separate calibration in each experiment could offset differ-180

ences producted by reformulation of the model. Therefore, for the current investigation, we adopt constant181

values for each PFT based on the best average measurements available in the literature. Average soil com-182

position measured at each site is taken from the FLUXNET ancillary database (Agarwal 2012). Recorded183

clay and silt contents determine soil hydraulic properties (e.g. conductance at saturation, Clapp-Hornberger184

exponent) based on the soil categorisation in Campbell & Norman (1998).185

186

Model forcing consists of standard meteorological variables and LAI. Site meteorology is provided in the187

FLUXNET database and this is averaged to the 3-hourly model timestep. Although the FLUXNET meteo-188

rology is gap-filled (Falge et al. 2002), some siteyears contain a hiatus e.g. in winter. We fill these extended189

gaps with the Princeton global reconstructed climatology (Sheffield et al. 2006) using the 3-hourly mete-190

orology within the corresponding 1◦ grid square. This allows the model to simulate total annual fluxes191

where necessary. However, our focus is the growing season for which the tower-based site meteorology is192

usually fairly complete. The main model calculation (Penman energy balance and simulation of sites fluxes)193

is 3-hourly, consistent with the Princeton forcing used to fill extended gaps in the site meteorology. This194

also provides sufficient temporal resolution to simulate precipitation infiltration and Darcian flow in the195

soil. However, HR allows for faster moisture transfer and we modify the model so that it updates moisture196

in the soil layers on a half-hourly basis. This is an internal ministep which does not increase the overall197

computational burden significantly (an important consideration in a model that is normally run globally)198
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but provides additional numerical stability in the calculation of water balance when HR is occurring rapidly.199

200

For LAI, we adopt the Collection 5 MODIS MCD15A2 product (Schaaf et al. 2002). A 7km×7km subset201

(49 pixels) centred on the site location is used to mean average pixels of good quality (i.e. main algorithm,202

no significant cloud and >50% detectors working; Yang et al. 2006). The satellite phenology is normalised203

to maximum in situ LAI where available (2/3 of sites). MODIS data are only available from 2002. For204

earlier siteyears (one third of sample), we create a satellite phenology based on the median value acquired205

for the same day-of-year over the period 2002-2008. The error introduced by this approximation is small206

compared to other model errors stemming from, for example, parameter calibration.207

3.2.2 Validation208

To validate model output we compare against NEE, SWC and, to a lesser extent, latent heat flux (LE), all209

recorded in the main FLUXNET database. Measurements are available to the general modelling commu-210

nity for 79 sites and encompass 482 siteyears between 1991-2010, though the bulk (93%) range 1997-2009211

(Falge et al. 2002; Yuan et al. 2010). Sites are distributed worldwide but are biassed towards forest in212

North America and Europe. To minimise the impact of incomplete energy closure (Foken 2008), we exclude213

fluxes recorded under low frictional velocity (<0.16 ms−1; Goulden et al. 1996; Reichstein et al. 2003) or, if214

frictional velocity is unrecorded, where windspeed <2 ms−1 (Medlyn et al. 2003). To compare with model215

output, good quality observed NEE is averaged over a 3hr interval in the first instance, although much of our216

seasonal analysis relies on weekly averages of both modelled and observed fluxes, as discussed in the Results.217

218

SWC is measured at an average depth of 8 cm (SWC1) and 19 cm (SWC2). Coverage is quite low. Thus,219

SWC1 and SWC2 are only available for, respectively, 46% and 32% of the eddy covariance fluxes. No valid220

measurements are available for tundra, shrubs and C4 crops. To filter out spurious (unreasonable) observa-221

tions, we reject the 1% of SWC1 and SWC2 values in excess of 0.55.222

223

Tab. 2 shows the number of sites per PFT whilst Tab. 3 summarises the main datasets.224
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3.3 Modelling Protocol225

A simulation is conducted for each site using JULES-def, JULES-tap and JULES-tap-HR. Model soil mois-226

ture is spun-up by a 3yr pre-simulation using the site meteorology placed back-to-back where necessary (<3227

siteyears available). Initially, the model is validated against seasonal moisture content and, to that end,228

both modelled and observed NEE and SWC are averaged over weekly bins.229

230

For most sites, SWC1 and SWC2 do not provide sufficient coverage either in time or depth to reconstruct231

seasonal total soil moisture content (SMC in kg m−2). Therefore, we sought a proxy for total SMC or232

soil moisture stress. We explored the MODIS mid-infrared to near-infrared reflectance ratio (Ceccato et233

al. 2001; Cheng et al. 2006) and the evaporative fraction ratio, the latter based on observed sensible and234

latent heat fluxes (Schwalm et al. 2010). However, both ratios correlate strongly with LAI (R2=0.07-0.44235

and R2=0.35-0.86, respectively; p<0.01) making them unreliable as proxies. Both Zhao & Running (2010)236

and Angert et al. (2005) rely on the Palmer Drought Index but this is a modelled variable using a bucket237

approach to soil water balance. Reichstein et al. (2007) define an index of water availability as the ratio of238

actual evapotranspiration to potential evapotranspiration. However, as the authors themselves admit, this239

index does not isolate the limitation by water availability since actual evapotranspiration, though measured,240

depends on LAI. Furthermore, potential evapotranspiration is partly modelled. To compare moisture stress241

in a range of LSMs, Guo & Dirmeyer (2006) use simulated Plant Available Water (PAW) defined as the242

difference between current soil moisture content and the plant wilting point. In lieu of a suitable observed243

variable, we adopt a dual approach to broaden our perspective. Firstly, we examine NEE (measured fluxes)244

against simulated fractional Soil Water Content (SWC) across the total soil column. Then, we examine245

Gross Primary Product (GPP; derived from fluxes) against simulated PAW for the total soil column. GPP246

is derived as RE - NEE where RE is the ecosystem respiration, which is modelled separately for each247

sitemonth as a quadratic function of air temperature and best-fit to observed nighttime NEE (Medlyn et248

al. 2003). The PAW is derived assuming a wilting point of -4 MPa in soil water potential.249
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4 Results and Discussion250

4.1 Carbon fluxes251

In Figs. 2 and 3, we plot modelled and observed NEE against the deficit in fractional SWC (∆SWC)252

for the default model (JULES-def) and the tap root model (JULES-tap), respectively. To separate the253

approximate seasonal change in peak carbon assimilation and respiration, NEE is shown separately for254

canopy light saturation (shortwave irradiance >300 Wm−2; NEE(sat)) and for nighttime (NEE(night)). A255

similar approach has been adopted by previous authors (e.g. Goulden et al. 2004) who wish to focus on256

measured (NEE) rather than derived (e.g. GPP) fluxes. Observation minus model differences in NEE un-257

der light-saturation, ∆NEE(sat), correlate inversely and strongly with observation minus model differences258

in LE under light-saturation, ∆LE(sat) (∆NEE(sat)[µmol m−2 s−1]=-0.12∆LE(sat)[Wm−2]-2.9; R2=0.64;259

p<0.001), suggesting that both are driven by the same process (photosynthesis and transpiration).260

261

Focusing firstly on measurements for trees and shrubs, observed NEE(sat) is largely neutral with respect to262

increasing seasonal soil moisture deficit (Fig.2). However, there is an increase in NEE(sat) for natural grass.263

For C3 grass this may be partly attributable to increased seasonal ecosystem respiration, which is reflected264

in increasing NEE(night). Expressing carbon fluxes as GPP against PAW provides a somewhat different265

perspective (Fig. 4). There is a steady decrease in GPP as PAW is reduced, the decline being gentle for266

broadleaf trees but somewhat steeper for needleleaf trees. For mediterranean needleleaf trees there appears267

to be an inconsistency between Fig.2 and Fig. 4. On closer inspection, we find that PAW is more sensitive268

than ∆SWC to soil type and its assumed properties (for example, the wilting point differs quite a lot between269

sand or loam soils) and this tends to produce steeper gradients across the dependent variable. Fig. 4 shows270

the role of the tap root in sustaining GPP to lower PAW, at least for broadleaf and tropical broadleaf trees.271

However, there is often an offset present e.g. for shrubs and tropical broadleaf, possibly owing to an absence272

of model calibration in the current study.273

274

Both Schwalm et al. (2010) and Reichstein et al. (2007) claim a drop in gross productivity under drought.275

However, both these studies are based on annual fluxes, either comparing sites for different climate zones276

or comparing several years for the same site. Relative few studies quantify the response across the season277

for the same site or PFT under changing soil moisture deficit. For a temperate deciduous broadleaf forest,278
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Wilson & Baldocchi (2000) claim to detect the onset of seasonal drought in both the ratio of measured279

sensible and latent heat and the inferred surface conductance. However, both these quantities are sensitive280

to LAI and the seasonal response is therefore convoluted by phenology. Likewise, Fig. 2 cannot be purely281

interpreted as a response to soil moisture stress. For example, the concomitant change in average LAI with282

∆SMC is strong for crops. Furthermore, crop phenologies recorded in situ and by satellite often match283

poorly owing to the mosaic of vegetation covered by the satellite footprint. This gives rise to large differ-284

ences between observed and modelled NEE(sat) for C3 crops (Cr3) in Fig. 2 since the model is primarily285

driven by satellite (MODIS) phenology.286

287

Reichstein et al. (2003) infer a reduction in seasonal photosynthetic capacity from eddy covariance fluxes288

recorded at 3 mediterranean sites, comprising two forests and one shrubland. However, this drought stress289

is only detected at very low soil moisture (SWC∼0.07) which occurs only infrequently at most of our sites290

(≤6% of measurements; see panel (a) of Fig. 7, which is discussed in detail below in §4.2). For the dry season291

within a tropical broadleaf forest, Goulden et al. (2004) measure a small systematic decrease in ecosystem292

respiration (2 µmol m−2 s−1) and a gross productivity which is either sustained or increasing owing to access293

to deep (10 m) water (Baker et al. 2008).294

295

Our results are somewhat ambiguous according to how we define soil moisture status (∆SWC or PAW).296

However, for trees and shrubs, there is an apparent absence of stress on observed NEE at light saturation297

over a large range of soil moisture conditions (Fig. 2) and a generally gentle decline in GPP. In contrast,298

NEE(sat) simulated by the default model exhibits an increase with soil moisture deficit for most PFTs and a299

marked reduction in GPP. Compared to the observations, the model is oversensitive to drought, particularly300

for trees and especially for tropical broadleaf forest. This behaviour is also reflected in the corresponding301

seasonal profiles for LE (not shown). In tropical broadleaf forest, for example, an increase in modelled302

NEE(sat) at ∆SWC< -0.07 (reduction in carbon assimilation) is mirrored by a one third reduction in mod-303

elled LE at light saturation.304

305

The implementation of a tap root yields a better match between model and observed NEE for trees and306

shrubs (Fig. 3; see also Tab. 4). It also produces a shallower gradient with respect to PAW and sustains307

GPP to lower PAW. This is particularly beneficial to simulations of tropical broadleaf forest. The deep root308
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allows plants to access water in the lowest soil layer (1-3 m) which would otherwise remain in the lower soil309

column or drain out of the system as baseflow runoff. With the tap root implemented, there is no obvious310

improvement for crops because of the limiting accuracy of phenology, discussed above. Furthermore, there311

is no obvious improvement for grassland (Fig. 2-4). Depth-resolved soil moisture measurements indicate312

that grass roots are short compared to trees (Oliveira et al. 2005; Jipp et al. 1998; Pucheta et al. 2004) and313

long-term eddy-covariance studies reveal that grassland gross productivity and ecosystem respiration are314

very sensitive to drought (Scott et al. 2010). Using compiled global root measurements, Schenk & Jackson315

(2005) claim that perennial herbs are five times less likely to be deeply rooted compared to shrubs and trees.316

For tropical broadleaf forest, some stress is still apparent in the model even after implementation of a tap317

root (Fig. 3).318

319

With HR implemented, seasonal NEE does not differ significantly from Fig. 3 for JULES-tap (Tab. 4). As320

discussed below, the main impact of HR appears to be on weekly rather than seasonal timescales. Although321

HR can move water around the soil profile to irrigate roots in the drier layers, once water has been removed322

from the total soil column, either by evapotranspiration or baseflow, HR does little to alleviate soil moisture323

stress. Thus, HR acts to delay rather than to preclude drought-stress. Both the reduction in observation-324

model NEE discrepancies with tap root implementation and the largely neutral seasonal impact of HR are325

quantified in Tab. 4.326

327

Although the improvement in model performance with tap root implementation depends to some extent328

on PFT (trees/shrubs versus grass), climate also plays important a role. Fig. 5 shows the change in Root329

Mean-Square Error (RMSE) between JULES-def and JULES-tap when sites are plotted against annual po-330

tential evapotranspiration. There is an improvement with tap root implementation (∆RMSE decreasing) for331

sites experiencing a higher atmospheric demand for water (higher potential evapotranspiration). However,332

the systematic improvement is small (1 µmol m−2 s−1) compared to the typical RMSE of the default sim-333

ulation (4 µmol m−2 s−1). High RMSE is caused by the large observational errors which characterise eddy334

covariance fluxes (1.5-3 µmol m−2 s−1; Goulden et al. 1996; Medlyn et al. 2005). Furthermore, model bias is335

evident, even when drought stress is minimal (e.g. at ∆SWC=0 in Fig. 2 for tropical broadleaf forest), and336

our simulations (necessarily) use PFT averages for biophysical parameters such as photosynthetic capacity337

which are known to vary greatly even within PFTs (Wright et al. 2004). Somewhat surprisingly, inclusion338



14

of annual precipitation into the water balance of Fig. 5 (e.g. potential evapotranspiration minus precipita-339

tion) does not yield a stronger relationship against ∆RMSE. However, the Princeton dataset providing our340

estimate of annual precipitation possesses only a coarse spatial resolution (∼100 km).341

342

Given the influence of climate on the inferred presence of tap root, we re-run the JULES-tap simulation,343

allowing the fraction of tap root (with respect to total root biomass) to be optimised for each site. This is344

done using a gradient-based Levenberg-Marquardt search algorithm (Press et al. 1992) which minimises the345

χ2 differences between observed and modelled fluxes i.e. χ2 =
∑

(obs−mod)2/σ2 where σ is assumed to be346

3 µmol m−2 s−1 and 30 W m−2 for NEE and LE, respectively (Goulden et al. 1996; Medlyn et al. 2005).347

The retrieved optimised values of tap root fraction exhibit a large range (Fig. 6). However, only a third348

of our sites have more than 5% in tap roots. Extrapolating from site measurements, Schenk & Jackson349

(2005) estimate that only 10% global vegetation has >5% of root biomass deeper than 2 m. Thus we might350

expect at least 10% of our sites to possess >5% of roots in the lowest JULES soil layer (i.e. deeper than 1351

m). By far the PFT with the highest tap root fraction is tropical broadleaf forest (median value 0.4). This352

substantial fraction is approximately consistent with excavations at one tropical forest which reveal that one353

third of root biomass exists in deep roots (Nepstad et al. 1994; Jackson et al. 1996). Field measurements354

reveal that tap roots are present in 75% tropical trees (Canadell et al. 1996). Canadell et al (1996) compile355

the maximum rooting depth recorded in different biomes, rather than the proportion of root mass below 1356

m appropriate for parameterisation/validation of our model. Notably, however, they find that the deepest357

roots are present in deserts (not covered by present study) and tropical biomes.358

359

McElrone et al. (2004) measure a hydraulic conductivity which is 2.3-6.0 (mean 3.8) times higher in deep360

roots compared to shallow roots for broadleaf and needleleaf trees in an environment which is susceptible to361

seasonal drought. All else being equal, increasing tap root conductivity by a factor of 3.8 would reduce the362

optimised tap root fraction by the same factor owing to the Ohm’s law analogy formulated in JULES (see363

Eq. 1 in the Appendix which shows how water flow for HR, which works in a similar way, is proportional to364

the product of conductance and root fraction). However, a factor 3.8 is likely to be the maximum reduction365

since the water path length is longer for tap roots compared to shallow roots (e.g. factor ∼2 in McElrone366

et al. 2004) which reduces the conductance for tap roots relative to shallow roots (conductance is propor-367

tional to the product of conductivity and path length; Tyree & Ewers 1991). In conclusion, our simulations368
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suggest that the tap root fraction could be as little as 11% for tropical broadleaf forest and even smaller for369

other PFTs. The minor fraction within tap roots explains, in part, why deep roots have been overlooked in370

standard LSMs despite their important function in relieving seasonal drought.371

372

4.2 Soil moisture373

Fig. 7 compares the fraction of soil water content at depths 8 cm and 19 cm (SWC1 and SWC2, respec-374

tively) for both the model and observations using the median average within weekly bins. A median is375

adopted to remove sensitive towards high precipitation events in the observations. Results are shown for376

JULES-tap and JULES-tap-HR only. The result for the default simulation is similar to JULES-tap because377

the tap root model extracts additional moisture from the lowest soil layer (depth 2.5 m) rather than from378

the upper soil profile pertaining to SWC1 and SWC2. On average, the fractional moisture observed in the379

lower soil level (SWC2) is 0.03 higher than the value measured in the upper layer (SWC1). The model has380

difficulty reproducing this offset especially with HR implemented. We investigated whether the observed381

offset was due to a vertical change in soil composition and associated hydraulic properties. However, there382

is no evidence of an increase in clay content with depth from the FLUXNET ancillary database (Agarwal383

2012) which, if present, might give rise to greater holding capacity at lower soil depth.384

385

For JULES-tap there is quite a lot of dispersion between SWC1 and SWC2. This is partly explained by386

clusters of points where the top soil layer has reached wilting point but moisture is still draining from the387

lower layer. In HR, this situation does not arise since the roots equilibrate soil moisture across the vertical388

soil layers. For the observations, the dispersion could be associated with the inherent diversity of soil hy-389

draulic properties which are rather poorly known at individual sites and estimated in the model according390

to silt and clay content. Furthermore, the observations often provide only an instantaneous measurement391

that may fall either side of a heavy precipitation event, whereas the model averages all 3-hourly steps over392

the duration of a week.393

394

It is difficult to determine which revised model (JULES-tap or JULES-tap-HR) performs better against the395

observations until the systematic offset between modelled and observed fractional SWC is removed and the396

full diversity of soil hydraulic properties is accounted for at all sites. The systematic offset is highlighted in397
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Fig. 8, where modelled SWC2 is compared against measurement throughout the year. For model output,398

only JULES-tap is shown. JULES-def exhibits a similar seasonal behaviour though slightly offset to lower399

values (i.e. away from the observations). JULES-tap-HR is very similar to JULES-tap (see also Tab. 4 which400

quantifies the RMSE for each simulation). Although the model often captures observed seasonal behaviour,401

on average it is too dry with respect to the observations, even with tap root and HR enhancements. This402

is a general problem of LSMs. A diverse range of models underestimate growing season fractional SWC in403

the top metre by a significant amount (0.05-0.10) when compared against measurements in forest, grassland404

and cropland (Guo & Dirmeyer 2006). Stöckli et al. (2008) implement a catchment-scale aquifer into the405

Community Land Model to allow for water storage below the 3.5 m soil layer and irrigation of the root-zone406

during drought. This novel enhancement significantly improves predicted LE at 15 FLUXNET sites but407

the simulated fractional SWC, whilst increased, still lies 0.05-0.10 below observed values during the driest408

part of the growing season. Furthermore, our simulations demonstrate that this offset is not eliminated409

by implementing tap roots or HR. Clearly more work is required to resolve this systematic offset using410

site-specific measurements of soil hydraulic properties, deep soil moisture (to monitor aquifer and tap root411

sources) and bedrock features (which may alter baseflow runoff).412

413

When tap roots and HR are implemented together (JULES-tap-HR), there is an average increase in annual414

transpiration of 13% compared to shallow rooting. In a few cases, the additional transpiration is 100 mm415

which is significant. Most of the 13% increase comes from the tap root, with HR contributing a mere 2% to416

the annual total. HR seems to be more important on weekly (Fig. 7) rather than seasonal timescales.417

418

Previous estimates of the importance of HR vary. Lee et al. (2005) simulate a 20% increase in annual evapo-419

transpiration over Amazonia when HR is implemented although it is not clear how the roots are distributed420

in their model. Measured nocturnal recharge of the upper soil layers at one tropical broadleaf site, Tapajos,421

indicates that a maximum of 10% annual evapotranspiration is provided by HR (Da Rocha et al. 2004).422

Sap flow measurements in arid savanna suggest that ∼10% of annual transpiration is supplied by HR (Scott423

et al. 2008) although a simulation of HR within arid shrubland predicts that only 4% annual transpiration424

arises from HR (Ryel et al. 2002).425

426

Some previous measurements and simulations suggest that HR could be important seasonally, at least in427
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combination with deep roots. Thus, isotope measurements within trees under a mediterranean climate428

indicate that a broad proportion of dry season transpiration (9-47%) originates from water lifted by deep429

roots (Dawson & Pate 1996). However, seasonally, our results suggest that it is the tap root, rather than430

nocturnal HR, which sustains carbon assimilation under soil moisture deficit (Figs. 2 and 3). Our simulations431

are rather insensitive to the parameter values adopted for HR. For example, a factor 2 increase in Csat (Eq. 1432

in Appendix), covering the range used for HR in the literature (Becker et al. 1999; Ryel et al. 2002; Lee et433

al 2005), only produces a change of 2% in annual transpiration. Our simulations also confirm one problem434

already noted by Lee et al. (2005), that HR can lead to overestimates of nighttime evaporation as transported435

water is lost from the upper soil layer rather than transpired next day. We believe that more depth-explicit436

site measurements of root distribution and soil moisture are required in order to formulate HR correctly in437

the model.438

4.3 Limitations of Study439

Although providing some initial insights into the role that deep roots and HR could play in land-surface440

modelling, our study has significant limitations:441

1. Dawson & Pate (1996) distinguish lateral, shallow, nutrient-acquiring fine roots from stouter, sinker tap442

roots, both categories having different hydraulic conductivities and efficiencies. Although we endeavour443

to account for some of these differences when estimating the tap root fraction, our experiment is444

necessarily a simple first step in representing dimorphic root systems in global LSMs;445

2. Although inclusion of deep roots generally appears to improve simulations of seasonal NEE in trees446

and shrubs, we cannot exclude the possibility that other model enhancements could produce a similar447

effect (e.g. accounting for seasonal change in V 0
cmax). However, we know that deep roots are found in448

the field and that they are neglected in the vast majority of LSMs. Moreover, any seasonal increase449

in V 0
cmax

implies greater transpiration which requires better access to deep soil water (via tap roots);450

3. Ultimately, in order to be useful to global simulations, we have analysed our sites according to PFT.451

However, within any given PFT, extraction from different parts of the soil profile may relate to life452

strategy (e.g. deciduous-evergreen habit) of individual species (Jackson et al. 1995).453
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5 Summary and Conclusions454

The current study investigates the prevalence of seasonal drought across 79 FLUXNET sites (482 siteyears)455

using a state-of-the-art land-surface model, JULES-SF, enhanced to take account of tap roots and hydraulic456

redistribution. We examine both carbon flux and fractional soil water content across a wide range of plant457

functional types. Our most important findings are as follows:458

1. Although somewhat sensitive to how we represent soil moisture deficit, the seasonal drought-stress459

inferred from observed carbon fluxes is less severe for trees and shrubs than that simulated by a460

traditional model using shallow rooting. The simulated drought-stress is reduced considerably by461

implementation of a 2 m tap root.462

2. The prevalence of deep roots also depends on climate. Sites with high potential evapotranspiration463

rates appear to benefit most from the introduction of a tap root. A Levenberg-Marquardt optimisation464

of the model suggests that only one third of our sites possess >5% root biomass within tap roots. Tap465

roots appear most important in tropical broadleaf forest (40% root biomass). Note, however, that466

assuming an enhanced hydraulic conductivity for deep roots, these tap root fractions could be as467

much as four times lower i.e. a minor fraction of root biomass, which partly explains their neglect in468

standard LSMs despite their important function.469

3. The model simulates quite well the seasonal change in fractional soil water content. However, as470

with other land-surface models, the current model, even with tap root and hydraulic redistribution471

enhancements, is too dry with respect to the observations. This systematic offset makes it difficult472

to establish whether the model performs better with hydraulic redistribution or not. In any case,473

hydraulic redistribution appears to have more impact on weekly soil moisture rather than seasonal474

totals. Thus, it is the tap root rather than hydraulic redistribution which extracts efficiently from the475

deeper (1-3 m) soil layers, yielding an average increase in annual transpiration of 10% compared to476

traditional shallow rooting.477

6 Appendix478

Hydraulic Redistribution (HR) is based on Lee et al. (2005). Thus, HR water flux (kg m−2 s−1) is defined479

as:480
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Q = −Csat

r∆ψ

1 + exp[0.02(ψcrit − ψ)]
(1)

where Csat (kg m−3 s−1) is the root hydraulic conductance when the soil column is saturated. A value481

of 2.5 × 10−6LAImax is adopted for Csat (Becker et al. (1999); Ryel et al. (2002)), where LAImax is the482

maximum Leaf Area Index (m2 m−2) during the year. In Eq. 1, r is the root fraction in the uptake layer,483

∆ψ (m) is the difference in soil water potential between the uptake (wet) and release (dry) layers. The484

denominator is a stress function which describes the steep reduction observed in water transport via the485

roots once soil water potential in the uptake layer (ψ in m) falls below a critical value ψcrit (-200m; Sellers486

et al. 1996). HR constitutes a low-resistance conduit, relative to the bulk soil Darcian flow, between dry487

and wet soil layers.488
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Table 1: An alphabetical list of acronyms and abbreviations used in the main text. Units are given where
appropriate.

Definition

GPP Gross Primary Product (µm m−2 s−1)
HR Hydraulic Redistribution
JULES-SF Joint UK land environmental simulator
LAI Leaf Area Index (m2 m−2)
LE Latent Energy flux (W m−2)
LSM Land Surface Model
MODIS Moderate Resolution Imaging Spectroradiometer
NEE Net Ecosystem Exchange (µm m−2 s−1)
PFT Plant Functional Type
RMSE Root Mean Square Error
SMC Soil Moisture Content (kg m−2)
SWC fractional Soil Water Content (-)

Table 2: Plant functional types examined in the current study with the corresponding abbreviation (Desig.))
adopted in subsequent figures and tables. The number of sites is given by n. Climate is described by aver-
age ± standard deviation for latitude, Mean Annual Precipitation (MAP) and Mean Annual Temperature
(MAT).

Plant Functional Type Desig. n Latitude (◦) MAP (mm) MAT (◦C)

Non-tropical Broadleaf Forest BL 17 44±7 850±294 10±4
Non-mediterranean Needleleaf Forest NL 16 51±7 595±319 5±5
C3 Crop Cr3 8 44±7 787±433 10±4
C4 Crop Cr4 1 37±9 864±209 15±8
Tundra Shrub Tu 2 69±1 158±231 -9±1
Tropical Broadleaf Forest TBL 4 2±10 2150±631 27±2
C3 Grass C3 14 43±8 651±383 10±6
C4 Grass C4 4 -5±30 542±250 21±4
Non-tundra Shrub SH 7 34±5 336±213 17±7
Mediterranean Needleleaf Forest MNL 6 34±4 1370±572 16±4
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Table 3: Main datasets adopted in the present study. Model input data also includes biophysical parameters
for each PFT averaged from collated literature values (Alton & Bodin 2010). Note that the temporal
resolution refers to the original dataset and does not necessarily correspond to that used either in the
model simulations (3-hourly) nor in the analysis (weekly or annual). LAI, NEE, LE, SWC and PET refer,
respectively, to Leaf Area Index, Net Ecosystem Exchange, Latent Energy heat flux, fractional Soil Water
Content and Potential Evapo-Transpiration.

Purpose Dataset Source Resolution Reference
Spatial Temporal

Model Input

LAI MODIS 7 km 8-day Schaaf et al. (2002)
Main Met. FLUXNET <1 km ∼ hourly Falge et al. (2002)
Gap-filling Met. Princeton 1◦ 3hr Sheffield et al. (2006)
Soil composition FLUXNET <1 km singular Agarwal (2012)

Validation
NEE, LE FLUXNET <1 km ∼ hourly Falge et al. (2002)
SWC1, SWC2 FLUXNET <1 km ∼ weekly Falge et al. (2002)
PET Princeton 1◦ annual Sheffield et al. (2012)

Table 4: Root-mean square error (RMSE) in simulated Net Ecosystem Exchange at light saturation
(NEE(sat)) and fractional soil water content (SWC2). Averaging is over weekly values for all siteyears
comprising any given PFT. Designation for PFT follows Tab. 2. RMSE is shown separately for each model
(JULES-def, JULES-tap, JULES-tap-HR). No SWC2 measurements are available for C4 crops, tundra and
shrubs.

PFT RMSE(NEE(sat)) RMSE(SWC2)
[µmol m−2 s−1] [-]

JULES-def JULES-tap JULES-tap-HR JULES-def JULES-tap JULES-tap-HR

BL 3.60 2.87 2.76 0.108 0.090 0.093
NL 2.31 2.02 2.19 0.063 0.060 0.085
Cr3 10.92 8.24 7.01 0.099 0.077 0.108
Cr4 2.64 3.13 3.65 – – –
Tu 0.12 0.06 0.10 – – –
TBL 7.77 5.23 4.75 0.130 0.110 0.096
C3 3.34 4.51 4.58 0.043 0.031 0.055
C4 14.05 12.99 14.61 0.039 0.044 0.033
SH 4.35 1.07 0.74 – – –
MNL 2.33 1.50 1.57 0.065 0.052 0.061
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Figure Captions:696

697

Fig.1: Schematic of JULES hydrology. Soil moisture content (kg m−2) within each of n soil layers (SMC(n);698

n=4) is determined by the balance between water input (precipitation (PPT)) and water output (Evapo-699

transpiration (ET) and Runoff (RUN)), as well as changes in two smaller reservoirs (SNOW and CAN). ET700

consists of transpiration (TR) and evaporation from soil and plant surfaces (ES). Soil depths (m) are given701

to the left of the depicted soil and root system. Dashed lines denote potential water flow between vertically702

adjacent soil layers.703

704

Fig.2: Observed (solid line) and modelled (dashed line) weekly Net Ecosystem Exchange (NEE) against705

modelled deficit of soil water content (∆SWC). For any given site, ∆SWC is the maximum value simu-706

lated for that site (approximately field capacity) minus the SWC in any given week. For NEE, we average707

fluxes into bins of 1 week and then average weekly bins from the same PFT into bins of ∆SWC. Model708

results pertain to the default model (JULES-def). Profiles above zero correspond to nighttime exchange709

(NEE(night)) whilst negative profiles refer to NEE at light saturation (NEE(sat)). Panel labels follow the710

PFT designation in Tab. 2. For tundra (Tu) insufficient data are available to create a profile.711

712

Fig.3: As Fig.2 but plotting for JULES-tap. Note that ∆SWC is a modelled variable. Therefore, both713

observed and modelled NEE span a different range in ∆SWC compared to Fig.2.714

715

Fig.4: Gross Primary Product (GPP) plotted against Plant Available Water (PAW) averaged over weekly716

bins as in Fig. 2. GPP is given under canopy light saturation as values inferred from observed carbon fluxes717

(obs) and from the JULES-def (def) and JULES-tap (tap) simulations.718

719

Fig.5: Change in Root-Mean Square Error (∆RMSE) between the default and the tap root simulations720

(JULES-tap minus JULES-def). RMSE is calculated for a given site using all NEE fluxes recorded across all721

relevant siteyears and represents the difference between observed and modelled fluxes. ∆RMSE is plotted722

against the corresponding annual Potential Evapo-Transpiration (PET). The plot is produced using all sites723

with available NEE measurements with rejection of three 2σ outliers (n=59). The solid line shows the best724

linear fit.725
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726

Fig.6: Relative histogram of tap root fraction for individual sites retrieved from the model optimisation727

(n=79).728

729

Fig.7: Observed (panel a) and modelled (panels b and c) fractional soil water content at average depths of730

8 cm (SWC1) and 19 cm (SWC2). Points are pooled for all siteyears and PFTs for which observations are731

available and represent median weekly averages for each siteyear.732

733

Fig.8: Observed (solid line) and modelled (dashed line: JULES-tap) fractional soil water content at depth734

19 cm (SWC2) against week of the year. The graphs uses the corresponding points in Fig. 7 mean-averaged735

over each PFT. PFT designation follows Tab. 2.736

737
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Figure 1: Schematic of JULES hydrology. Soil moisture content (kg m−2) within each of n soil layers
(SMC(n); n=4) is determined by the balance between water input (precipitation (PPT)) and water output
(Evapotranspiration (ET) and Runoff (RUN)), as well as changes in two smaller reservoirs (SNOW and
CAN). ET consists of transpiration (TR) and evaporation from soil and plant surfaces (ES). Soil depths (m)
are given to the left of the depicted soil and root system. Dashed lines denote potential water flow between
vertically adjacent soil layers.
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Figure 2: Observed (solid line) and modelled (dashed line) weekly Net Ecosystem Exchange (NEE) against
modelled deficit of soil water content (∆SWC). For any given site, ∆SWC is the maximum value simulated
for that site (approximately field capacity) minus the SWC in any given week. For NEE, we average
fluxes into bins of 1 week and then average weekly bins from the same PFT into bins of ∆SWC. Model
results pertain to the default model (JULES-def). Profiles above zero correspond to nighttime exchange
(NEE(night)) whilst negative profiles refer to NEE at light saturation (NEE(sat)). Panel labels follow the
PFT designation in Tab. 2. For tundra (Tu) insufficient data are available to create a profile.
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Figure 3: As Fig.2 but plotting for JULES-tap. Note that ∆SWC is a modelled variable. Therefore, both
observed and modelled NEE span a different range in ∆SWC compared to Fig.2.
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Figure 4: Gross Primary Product (GPP) plotted against Plant Available Water (PAW) averaged over weekly
bins as in Fig. 2. GPP is given under canopy light saturation as values inferred from observed carbon fluxes
(obs) and from the JULES-def (def) and JULES-tap (tap) simulations.
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Figure 5: Change in Root-Mean Square Error (∆RMSE) between the default and the tap root simulations
(JULES-tap minus JULES-def). RMSE is calculated for a given site using all NEE fluxes recorded across all
relevant siteyears and represents the difference between observed and modelled fluxes. ∆RMSE is plotted
against the corresponding annual Potential Evapo-Transpiration (PET). The plot is produced using all sites
with available NEE measurements with rejection of three 2σ outliers (n=59). The solid line shows the best
linear fit.
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Figure 6: Relative histogram of tap root fraction for individual sites retrieved from the model optimisation
(n=79).
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Figure 7: Observed (panel a) and modelled (panels b and c) fractional soil water content at average depths
of 8 cm (SWC1) and 19 cm (SWC2). Points are pooled for all siteyears and PFTs for which observations
are available and represent median weekly averages for each siteyear.
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Figure 8: Observed (solid line) and modelled (dashed line: JULES-tap) fractional soil water content at depth
19 cm (SWC2) against week of the year. The graphs uses the corresponding points in Fig. 7 mean-averaged
over each PFT. PFT designation follows Tab. 2.
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