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REVIEW Open Access

Dynasore - not just a dynamin inhibitor
Giulio Preta, James G Cronin and I Martin Sheldon*

Abstract

Dynamin is a GTPase protein that is essential for membrane fission during clathrin-mediated endocytosis in
eukaryotic cells. Dynasore is a GTPase inhibitor that rapidly and reversibly inhibits dynamin activity, which prevents
endocytosis. However, comparison between cells treated with dynasore and RNA interference of genes encoding
dynamin, reveals evidence that dynasore reduces labile cholesterol in the plasma membrane, and disrupts lipid raft
organization, in a dynamin-independent manner. To explore the role of dynamin it is important to use multiple dynamin
inhibitors, alongside the use of dynamin mutants and RNA interference targeting genes encoding dynamin. On the other
hand, dynasore provides an interesting tool to explore the regulation of cholesterol in plasma membranes.
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Introduction
Dynamin is an intracellular protein with essential roles
in membrane remodelling and fission of clathrin-coated
vesicles formed during endocytosis, and vesicles that
bud from the trans-Golgi network [1]. In particular,
endocytosis is dependent on dynamin for the invagin-
ation of plasma membrane to form clathrin-coated pits,
and dynamin polymerizes to form a helix around the
neck of budding vesicles of plasma membrane leading to
membrane fission and generation of free clathrin-coated
vesicles (Figure 1A) [2]. Clathrin-mediated endocytosis
regulates fundamental cellular processes, including the
homeostasis of plasma membrane, receptor turnover,
and the uptake of nutrients [3]. On the other hand,
many pathogens have evolved to exploit endocytosis to
enter eukaryotic cells. As well as linking to the actin
cytoskeleton during clathrin-coated vesicle formation,
interaction between dynamin and the actin cytoskeleton
occurs during the formation of membrane ruffles, lamel-
lapodia, and podosomes [4-6]. In addition, a growing
number of dynamin-like proteins have been identified,
such as mitochondrial DRP1, which contribute to the
fusion and remodelling of intracellular membranes [1,7].
Dynamin is a 100 kDa protein with multiple domains,

principally explored by generation of dynamin mutants.
Perhaps the most important domain is a large GTPase
enzyme essential for membrane fission [8,9,10]. In

addition to the GTPase domain, dynamin also contains a
pleckstrin homology domain implicated in membrane
binding, a GTPase effector domain essential for self-
assembly, and a C-terminal proline-rich domain, which
contains several SH3-binding sites [1]. Dynamin partners
bind to the proline-rich domain, stimulating dynamin’s
GTPase activity and targeting dynamin to the plasma
membrane [11]. In particular, dynamin is efficiently sup-
plied with GTP by interaction between the dynamin
proline-rich domain and nucleoside diphosphate kinases
NM23-H1/H2, to trigger membrane fission [12]. Purified
dynamin exists as a tetramer [13], which can self-assemble
into structures that resemble rings and helices [14]. In
Drosophila melanogaster and Caenorhabditis elegans only
one dynamin isoform has been identified [15-17]. How-
ever, three dynamin-encoding mammalian genes (DNM1,
DNM2 and DNM3) have been identified [18,19]. Although
the dynamin isoforms have similar functions, including
membrane fission during clathrin-mediated endocytosis,
dynamin 1 and dynamin 3 are mainly expressed in the
brain, whereas dynamin 2 is expressed ubiquitously [1].
Although overexpression of mutants has been used to ex-
plore the role of dynamin, even mutations that effectively
target the dynamin GTPase, such as dynamin K44A,
S45N, T65F and T65A, vary in their potency and the stage
at which they inhibit endocytosis [8,20]. Whilst the over-
expression of dynamin mutants and RNA interference tar-
geting the mammalian dynamin genes has been valuable,
progress in understanding the mechanism of action of

* Correspondence: i.m.sheldon@swansea.ac.uk
Institute of Life Science, College of Medicine, Swansea University, Swansea
SA2 8PP, UK

© 2015 Preta et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,
unless otherwise stated.

Preta et al. Cell Communication and Signaling  (2015) 13:24 
DOI 10.1186/s12964-015-0102-1



dynamin has also benefited from the discovery of dynamin
inhibitors, including the GTPase inhibitor dynasore [2].

Evolution of dynamin inhibitors
The first dynamin inhibitors to be identified were am-
monium salts, such as myristyl trimethyl ammonium
bromides (also known as MiTMAB), and the dimeric
tyrphostins [21,22]. Most of the first generation of dyna-
min inhibitors, and their subsequent derivatives, prevent
recruitment of dynamin to membranes. On the other
hand, compounds that inhibit ATPases and GTPases, for
example dynole 34–2 or dynasore inhibit the activity of
dynamin following recruitment of dynamin to plasma
membranes [23]. Dynasore was identified by Macia and
colleagues by screening ~16,000 compounds for the abil-
ity to inhibit the GTPase activity of dynamin 1, and evi-
dence for the activity of dynasore included inhibition of
endocytosis of the transferrin receptor and low density
lipoprotein receptor (LDLR) [2]. A characteristic of
dynasore is the non-competitive inhibition of the basal
and stimulated rates of GTP hydrolysis, without affect-
ing the affinity for GTP binding or dynamin self-
assembly [2]. Within 2 minutes, treatment of cells with

dynasore inhibits clathrin-mediated endocytosis, and this
effect can be reversed in approximately 20 minutes by
removal of the inhibitor (Figure 2A and Table 1) [2,24].
Thus, the discovery of dynasore provided an effective

tool to study endocytosis in a range of cell types, and in
cells derived from several species, including humans,
mice and cattle. However, dynasore also has undesirable
properties including the binding of serum proteins, caus-
ing the loss of dynamin inhibitory activity [25]. Further-
more, dynasore binds to detergents that are often used
for in vitro drug screening, which reduces the potency of
the inhibitor. These limitations of dynasore lead to the
synthesis of dihydroxyl and trihydroxyl dynasore ana-
logs, called the Dyngo compounds, which have improved
potency, reduced cytotoxicity, and reduced detergent
binding [26].

Dynasore in the regulation of cholesterol homeostasis:
beyond dynamin inhibition
An emerging role of dynamin is the regulation of cellular
cholesterol, and dynasore impacts cholesterol homeosta-
sis. Sixty to 90% of cellular cholesterol is located in the
plasma membrane, and cholesterol forms about half of

Figure 1 The stages of clathrin-coated vesicle formation. (A) Inititation and early invagination: a clathrin-coated pit is formed and
cargo-specific adaptors are selected. Late invagination: further clathrin is recruited and polymerizes in hexagons and pentagons to form the
clathrin coat. Constriction: dynamin is recruited to the neck of the forming vesicle where it forms helical structures, and induces membrane
scission. Fission: an endocytic vesicle is produced containing cargo molecules. Dynasore inhibits the GTPase activity of dynamin, blocking constriction
and fission. (B) The steps leading to macropinocytosis. During the vesicular trafficking process, cellular membranes undergo dynamic morphological
changes, in particular at the vesicle generation and fusion steps. Macropinocytosis involves the eruption of membrane ruffles from the cell surface that
can fuse with the plasma membrane to engulf surrounding cargo, a process that requires extensive actin mobilization. Macropinosomes then fuse with
compartments of the normal endocytic pathway. Dynasore reduces plasma membrane cholesterol, inhibiting mobilization of the cellular membrane.
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the total plasma membrane lipids [27]. Recent evidence
supports a concept for three pools of cholesterol in plasma
membranes [28]: a labile pool of cholesterol that is de-
pleted when cells are deprived of cholesterol; cholesterol
that is bound to sphyngomyelin and is not labile; and, fi-
nally an essential pool of cholesterol that is necessary for
cell viability. The amount of cholesterol in the labile,
sphyngomyelin-bound, and essential pools may vary be-
tween types of cells but is around 16%, 15% and 12% of
the plasma membranes of fibroblasts, respectively [28].
Cellular cholesterol homeostasis depends on the bal-

ance between sequestration of cholesterol in membranes
or cholesterol metabolism, and the uptake of LDL-
derived cholesterol via endocytosis of the LDLR or chol-
esterol synthesis via the mevalonate pathway [29]. The
LDL-derived cholesterol esters are de-esterified in endo-
lysosomes to release free cholesterol, which transits to
the plasma membrane to resupply the pool of labile

cholesterol and, once the plasma membrane cholesterol
is replete, free cholesterol moves to the endoplasmic
reticulum (ER) [28]. Cholesterol synthesis via the meva-
lonate pathway is controlled by SREBP-2 [30]. When
cells have sufficient ER cholesterol, usually > 5% of ER
lipids, SREBP-2 in complex with the escort protein
(Scap) is bound to an ER membrane anchor protein
Insig. However, when ER cholesterol is < 5% of ER lipids,
the SREBP-2/Scap complex is released from the ER and
transported to the Golgi in COPII-coated vesicles. In the
Golgi, SREBP-2 is cleaved to release the active form,
which enters the nucleus and drives transcription of
genes encoding most components of the mevalonate
pathway, and for the LDLR. When there is excess chol-
esterol, or loss of sphingomyelin, plasma membrane
cholesterol is delivered to the ER where it is esterified by
the ER resident protein ACAT, and cholesterol esters are
stored in cytoplasmic droplets. Dynamin also plays a role

Figure 2 Dynamin-dependent and dynamin-independent effects of dynasore. (A) Dynasore inhibits the GTPase of dynamin, which prevents
clathrin-coated endocytosis, including internalisation of LDL receptors in the plasma membrane and inhibits the vesicular H+-ATPase, which is
involved in cholesterol recycling from endosomes back to the plasma membrane. (B) Dynasore also inhibits the movement of LDL-derived
cholesterol from the endolysosomal network to the endoplasmic reticulum. (C) In addition, dynasore impacts cholesterol homeostasis in a
dynamin-dependent manner, decreasing the amount of cholesterol in the Golgi apparatus. (D) Dynasore, perhaps by remodelling actin
filaments, as well as reducing plasma membrane cholesterol, disperses the organization of lipids in lipid rafts.
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in cholesterol homeostasis as LDLR internalization de-
pends on endocytosis [2]. Presumably by inhibition of
dynamin-dependent endocytosis, dynasore reduces LDL
uptake in HeLA cells to 10% of that of the control [31].
The implication of this observation is that dynasore treat-
ment would then lead to depletion of labile cholesterol in
the plasma membrane. However, dynamin also appears to
have an additional role in the delivery of free cholesterol
from the endolysosomal network to the ER since the use
of the K44A mutated form of dynamin, RNA interference
targeting dynamin, or dynasore, leads to accumulation of
free cholesterol and LDL-derived cholesterol within the
late endolysosomal compartment (Figure 2B and Table 1)
[31,32]. The importance of dynamin in cholesterol homeo-
stasis is further illustrated by the use of the dynamin
K44A mutant, as well as transient transfections with dom-
inant negative mutant constructs of dynamin 1 and dyna-
min 2, which inhibited cholesterol-induced vesiculation of
the Golgi (Figure 2C and Table 1) [33]. Taking the above
findings together, one inference is that cells deficient in
dynamin or treated with dynasore would not initiate
mechanisms to increase cellular cholesterol when choles-
terol is depleted in different compartments, because the
ER contains surplus free cholesterol. In support of this
concept, treatment of cells with dynasore reduces LDLR

gene expression, although less rapidly than supplying cells
with LDL [31].
As well as effects on cellular cholesterol attributable to

inhibition of dynamin, recent observations imply that
dynasore also influences cholesterol homeostasis in a
dynamin-independent manner. As expected, endocytosis
of the transferrin receptor was blocked in fibroblast cells
that have a triple knockout of DYN1, DYN2 and DYN3,
although uptake of dextran, called fluid-phase endocyto-
sis, was not affected [34]. Surprisingly, treatment of the
triple knockout fibroblasts with dynasore or Dyngo-4a
inhibited fluid-phase endocytosis, implicating dynamin-
independent effects of the inhibitors [34]. Furthermore,
membrane ruffling was prevented by dynasore or
Dyngo-4a but not the triple knockout of dynamin. Mem-
brane ruffles are actin-rich protrusions of the plasma
membrane that can be observed on the surface of many
cell types, often involved in macropinocytosis (Figure 1B).
Macropinocytosis, unlike clathrin-mediated endocytosis,
is a dynamin-independent processes [35]. Thus, it ap-
pears that dynasore and Dyngo-4a have unexpected off-
target effects. One possibility is an effect on plasma
membrane cholesterol because extraction of cholesterol
with methyl-β-cyclodextrin also inhibits the formation of
membrane ruffles at the plasma membrane, and inhibits

Table 1 Evidence supporting dynamin-dependent and dynamin-independent effects of dynasore

Dynamin-dependent effects

Effect Supporting approaches Reference

Clathrin-mediated endocytosis Dynasore [1,2,8,20,34]

Dynamin mutants

Triple dynamin knock out

Dyngo-4a

Dynamin inhibitor peptide

siRNA

Accumulation of cholesterol in ER Dynasore [31,32]

Dynamin mutants

siRNA

Golgi vesiculation Dynasore [33,53]

Dynamin mutants

siRNA

Inhibition of V-ATPase activity Dynasore [37]

Dynamin inhibitor peptide

siRNA

Dynamin-independent effects

Effect Supporting approaches Reference

Disruption of lipid rafts Dynasore differs from dynamin inhibitor peptide and siRNA [24]

Inhibition of membrane ruffling Dynasore and Dyngo 4a differ from triple dynamin knock out [34]

Destabilization of F-actin Dynasore and Dyngo 4a differ from triple dynamin knock out [34]

Preta et al. Cell Communication and Signaling  (2015) 13:24 Page 4 of 7



the reorganization of filamentous actin at the cell per-
iphery necessary for the formation of membrane ruffles
(Figure 2D and Table 1) [36]. A further potential mech-
anism underlying the dynamin-independent effect of
dynasore on cellular cholesterol is related to dynasore
inhibition of vacuolar H+-ATPase (V-ATPase) enzymes
(Figure 2D and Table 1) [37]. Inhibition of V-ATPase
perturbs clathrin-coated vesicle formation, with reten-
tion of cholesterol in non-acidified endosomes, and loss
of cholesterol from the plasma membrane, and the effect
is partially rescued be providing exogenous cholesterol
[38]. Reduction of passive cholesterol efflux from HeLA
cells and macrophages also provides supporting evidence
that dynasore reduces the labile pool of plasma mem-
brane cholesterol [31]. The mechanism for this “off-tar-
get” effect is not known, but it is interesting to note that
GTPase activity is important for assembly of the COPII-
coated vesicles of liposomes and endoplasmic reticulum
[39,40].

Dynasore targets lipid rafts
Lipid rafts are membrane microdomains that are
enriched in cholesterol, sphingomyelin, sphingolipids
and phospholipids, and these areas of membrane differ in
composition from the surrounding regions of plasma
membrane [41,42]. Lipid rafts contribute to the
compartmentalization of membranes and the spatiotem-
poral regulation of cellular signalling. Pathogenic bacteria
and viruses also exploit lipid rafts to cause pathology or to
gain entry into mammalian cells [43-45]. Microbes not
only target the clusters of receptors often concentrated in
lipid rafts but also utilize their cholesterol-rich microdo-
mains [46]. In particular, the pore-forming, cholesterol-
dependent cytolysins, such as Aerolysin, bind to lipid rafts
[47]. Some cholesterol-dependent cytolysins bind to cellu-
lar receptors that are enriched in lipid rafts; glycosyl
phosphatidylinositol-anchored receptors in the case of
Aerolysin. However, other cholesterol-dependent cytoly-
sins, such as Perfringolysin O, bind the labile cholesterol
in cellular membranes [28]. Cholesterol-dependent cytoly-
sins multimerise in plasma membranes to form pores,
leading to osmotic cell death. As might be expected, de-
pletion of cellular cholesterol using methyl-β-cyclodextrin
is protective against the effect of cholesterol-dependent
cytolysins [48]. However, dynasore was recently reported
to protect HeLA cells and fibroblasts from the toxic effect
of two members of the cholesterol-dependent cytolysin
family, Pyolysin and Streptolysin-O, as efficiently as
methyl-β-cyclodextrin [24]. Moreover, there was evidence
that the effect of dynasore was dynamin-independent be-
cause RNA interference targeting to reduce dynamin ex-
pression did not protect against Pyolysin. The dynamin-
independent effect of dynasore was not only associated
with reduced cellular cholesterol but also dispersal of

plasma membrane lipid rafts (Figure 2D and Table 1).
Similarly, the lipid raft-dependent uptake of the subtilase
cytotoxin of Escherichia coli was suppressed by dynasore,
but was not influenced by RNA interference targeting
dynamin expression [49]. The importance of disruption of
lipid rafts is also supported by studies of innate immunity,
where cell plasma membrane receptors such as Toll-like
receptor 4 (TLR4) and CD14, which bind the pathogen-
associated molecule lipopolysaccharide (LPS), are localised
to lipid rafts [50]. Indeed, dynasore also reduced the in-
flammatory cytokine response to LPS in fibroblasts [24]. It
would be interesting for future work to explore if dynasore
impacts not only labile cholesterol in plasma membranes,
but also the sphyngomyelin-bound cholesterol in lipid
rafts. This would be particularly important as statin and
cyclodextrin molecules only appear to deplete the labile
pool of cholesterol in plasma membranes [28].
In addition to changes in plasma membrane choles-

terol, the physical properties of cell membranes and the
shape of cells may be modulated by interactions between
dynasore and actin. Indeed, dynasore destabilizes and re-
models F-actin in vitro [51,52]. Dynamin triple knockout
cells changed shape following dynasore treatment, pro-
viding evidence for a dynamin-independent effects on
actin (Figure 2D and Table 1) [34]. Taken together, the
inhibition of membrane ruffles and prevention of CDC-
mediated cytolysis by dynasore [31,24], implies that
dynasore actively influences the content and distribution
of cholesterol in plasma membranes, and that this is in-
dependent of dynamin. Further work is now need to de-
termine the mechanism by which dynasore exerts
dynamin-independent effects on mammalian cells.

Conclusion
Dynasore provides rapid and reversible inhibition of
dynamin-dependent endocytosis, which is effective in
cells from several species. However, in addition to inhib-
ition of the GTPase of dynamin, dynasore has wider ef-
fects on cellular cholesterol, lipid rafts, and actin. The
mechanisms associated with these “off-target” effects re-
quire further exploration. Understanding how dynasore
modulates plasma membrane cholesterol is particularly
intriguing as this may uncover novel methods to counter
pathogen entry, and reduce the impact of cholesterol-
dependent cytolysins and other pore-forming toxins on
cell viability. However, caution is required when using
dynasore to determine the role of dynamin in the biol-
ogy of cells. Robust evidence for the impact of dynamin
likely requires the combined use of several dynamin in-
hibitors, alongside RNA interference targeting the genes
encoding dynamin.

Competing interests
The authors declare that they have no competing interests.

Preta et al. Cell Communication and Signaling  (2015) 13:24 Page 5 of 7



Authors’ contributions
GP and IMS wrote the paper, and JGC prepared the figures. All authors read
and approved the final manuscript.

Acknowledgement
Work in the Sheldon laboratory is funded by the U.K. Biotechnology and
Biological Sciences Research Council (grant number BB/K006592/1).

Received: 4 February 2015 Accepted: 26 March 2015

References
1. Ferguson SM, De Camilli P. Dynamin, a membrane-remodelling GTPase. Nat

Rev Mol Cell Biol. 2012;13:75–88.
2. Macia E, Ehrlich M, Massol R, Boucrot E, Brunner C, Kirchhausen T. Dynasore,

a cell-permeable inhibitor of dynamin. Dev Cell. 2006;10:839–50.
3. McMahon HT, Boucrot E. Molecular mechanism and physiological functions

of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol. 2011;12:517–33.
4. Orth JD, Krueger EW, Cao H, McNiven MA. The large GTPase dynamin

regulates actin comet formation and movement in living cells. Proc Natl
Acad Sci U S A. 2002;99:167–72.

5. Ochoa GC, Slepnev VI, Neff L, Ringstad N, Takei K, Daniell L, et al. A
functional link between dynamin and the actin cytoskeleton at podosomes.
J Cell Biol. 2000;150:377–89.

6. Jones SM, Howell KE, Henley JR, Cao H, McNiven MA. Role of dynamin in
the formation of transport vesicles from the trans-Golgi network. Science.
1998;279:573–7.

7. Williams M, Kim K. From membranes to organelles: emerging roles for
dynamin-like proteins in diverse cellular processes. Eur J Cell Biol.
2014;93:267–77.

8. Marks B, Stowell MH, Vallis Y, Mills IG, Gibson A, Hopkins CR, et al. GTPase
activity of dynamin and resulting conformation change are essential for
endocytosis. Nature. 2001;410:231–5.

9. McNiven MA. Dynamin: a molecular motor with pinchase action. Cell.
1998;94:151–4.

10. Sever S, Damke H, Schmid SL. Dynamin:GTP controls the formation of
constricted coated pits, the rate limiting step in clathrin-mediated
endocytosis. J Cell Biol. 2000;150:1137–48.

11. Hinshaw JE. Dynamin and its role in membrane fission. Annu Rev Cell Dev
Biol. 2000;16:483–519.

12. Boissan M, Montagnac G, Shen Q, Griparic L, Guitton J, Romao M, et al.
Membrane trafficking. Nucleoside diphosphate kinases fuel dynamin
superfamily proteins with GTP for membrane remodeling. Science.
2014;344:1510–5.

13. Muhlberg AB, Warnock DE, Schmid SL. Domain structure and intramolecular
regulation of dynamin GTPase. EMBO J. 1997;16:6676–83.

14. Hinshaw JE, Schmid SL. Dynamin self-assembles into rings suggesting a
mechanism for coated vesicle budding. Nature. 1995;374:190–2.

15. Chen MS, Obar RA, Schroeder CC, Austin TW, Poodry CA, Wadsworth SC,
et al. Multiple forms of dynamin are encoded by shibire, a Drosophila gene
involved in endocytosis. Nature. 1991;351:583–6.

16. van der Bliek AM, Meyerowitz EM. Dynamin-like protein encoded by the
Drosophila shibire gene associated with vesicular traffic. Nature.
1991;351:411–4.

17. Clark SG, Shurland DL, Meyerowitz EM, Bargmann CI, van der Bliek AM. A
dynamin GTPase mutation causes a rapid and reversible temperature-
inducible locomotion defect in C. elegans. Proc Natl Acad Sci U S A.
1997;94:10438–43.

18. Cao H, Garcia F, McNiven MA. Differential distribution of dynamin isoforms
in mammalian cells. Mol Biol Cell. 1998;9:2595–609.

19. Urrutia R, Henley JR, Cook T, McNiven MA. The dynamins: redundant or
distinct functions for an expanding family of related GTPases? Proc Natl
Acad Sci U S A. 1997;94:377–84.

20. Damke H, Binns DD, Ueda H, Schmid SL, Baba T. Dynamin GTPase domain
mutants block endocytic vesicle formation at morphologically distinct
stages. Mol Biol Cell. 2001;12:2578–89.

21. Hill TA, Odell LR, Quan A, Abagyan R, Ferguson G, Robinson PJ, et al. Long
chain amines and long chain ammonium salts as novel inhibitors of
dynamin GTPase activity. Bioorg Med Chem Lett. 2004;14:3275–8.

22. Hill T, Odell LR, Edwards JK, Graham ME, McGeachie AB, Rusak J, et al. Small
molecule inhibitors of dynamin I GTPase activity: development of dimeric
tyrphostins. J Med Chem. 2005;48:7781–8.

23. Hill TA, Gordon CP, McGeachie AB, Venn-Brown B, Odell LR, Chau N, et al.
Inhibition of dynamin mediated endocytosis by the dynoles–synthesis and
functional activity of a family of indoles. J Med Chem. 2009;52:3762–73.

24. Preta G, Lotti V, Cronin JG, Sheldon IM. Protective role of the dynamin
inhibitor Dynasore against the cholesterol-dependent cytolysin of Trueperella
pyogenes. FASEB J. 2015;29:1516–28.

25. Kirchhausen T, Macia E, Pelish HE. Use of dynasore, the small molecule
inhibitor of dynamin, in the regulation of endocytosis. Methods Enzymol.
2008;438:77–93.

26. McCluskey A, Daniel JA, Hadzic G, Chau N, Clayton EL, Mariana A, et al.
Building a better dynasore: the dyngo compounds potently inhibit dynamin
and endocytosis. Traffic. 2013;14:1272–89.

27. Lange Y, Swaisgood MH, Ramos BV, Steck TL. Plasma membranes contain
half the phospholipid and 90% of the cholesterol and sphingomyelin in
cultured human fibroblasts. J Biol Chem. 1989;264:3786–93.

28. Das A, Brown MS, Anderson DD, Goldstein JL, Radhakrishnan A. Three pools
of plasma membrane cholesterol and their relation to cholesterol
homeostasis. Elife. 2014;3:e02882.

29. Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol
homeostasis. Science. 1986;232:34–47.

30. Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol
metabolism by proteolysis of a membrane-bound transcription factor. Cell.
1997;89:331–40.

31. Girard E, Paul JL, Fournier N, Beaune P, Johannes L, Lamaze C, et al. The
dynamin chemical inhibitor dynasore impairs cholesterol trafficking and
sterol-sensitive genes transcription in human HeLa cells and macrophages.
PLoS One. 2011;6:e29042.

32. Robinet P, Fradagrada A, Monier MN, Marchetti M, Cogny A, Moatti N, et al.
Dynamin is involved in endolysosomal cholesterol delivery to the endoplasmic
reticulum: role in cholesterol homeostasis. Traffic. 2006;7:811–23.

33. Grimmer S, Ying M, Walchli S, van Deurs B, Sandvig K. Golgi vesiculation
induced by cholesterol occurs by a dynamin- and cPLA2-dependent
mechanism. Traffic. 2005;6:144–56.

34. Park RJ, Shen H, Liu L, Liu X, Ferguson SM, De Camilli P. Dynamin triple
knockout cells reveal off target effects of commonly used dynamin
inhibitors. J Cell Sci. 2013;126:5305–12.

35. Nichols B. Caveosomes and endocytosis of lipid rafts. J Cell Sci.
2003;116:4707–14.

36. Grimmer S, van Deurs B, Sandvig K. Membrane ruffling and macropinocytosis
in A431 cells require cholesterol. J Cell Sci. 2002;115:2953–62.

37. Sakai H, Moriura Y, Notomi T, Kawawaki J, Ohnishi K, Kuno M. Phospholipase
C-dependent Ca2 + −sensing pathways leading to endocytosis and
inhibition of the plasma membrane vacuolar H + −ATPase in osteoclasts.
Am J Physiol Cell Physiol. 2010;299:C570–8.

38. Kozik P, Hodson NA, Sahlender DA, Simecek N, Soromani C, Wu J, et al. A
human genome-wide screen for regulators of clathrin-coated vesicle formation
reveals an unexpected role for the V-ATPase. Nat Cell Biol. 2013;15:50–60.

39. Antonny B, Madden D, Hamamoto S, Orci L, Schekman R. Dynamics of the
COPII coat with GTP and stable analogues. Nat Cell Biol. 2001;3:531–7.

40. Yoshihisa T, Barlowe C, Schekman R. Requirement for a GTPase-activating
protein in vesicle budding from the endoplasmic reticulum. Science.
1993;259:1466–8.

41. Simons K, van Meer G. Lipid sorting in epithelial cells. Biochemistry.
1988;27:6197–202.

42. Simons K, Ikonen E. Functional rafts in cell membranes. Nature.
1997;387:569–72.

43. Zaas DW, Duncan M, Rae Wright J, Abraham SN. The role of lipid rafts in the
pathogenesis of bacterial infections. Biochim Biophys Acta. 2005;1746:305–13.

44. Bavari S, Bosio CM, Wiegand E, Ruthel G, Will AB, Geisbert TW, et al. Lipid
raft microdomains: a gateway for compartmentalized trafficking of Ebola
and Marburg viruses. J Exp Med. 2002;195:593–602.

45. Barman S, Nayak DP. Lipid raft disruption by cholesterol depletion enhances
influenza A virus budding from MDCK cells. J Virol. 2007;81:12169–78.

46. Lafont F, van der Goot FG. Bacterial invasion via lipid rafts. Cell Microbiol.
2005;7:613–20.

47. Abrami L, van Der Goot FG. Plasma membrane microdomains act as
concentration platforms to facilitate intoxication by aerolysin. J Cell Biol.
1999;147:175–84.

Preta et al. Cell Communication and Signaling  (2015) 13:24 Page 6 of 7



48. Amos MR, Healey GD, Goldstone RJ, Mahan S, Duvel A, Schuberth HJ, et al.
Differential endometrial cell sensitivity to a cholesterol-dependent cytolysin
links Trueperella pyogenes to uterine disease in cattle. Biol Reprod.
2014;90:54,1–13.

49. Nagasawa S, Ogura K, Tsutsuki H, Saitoh H, Moss J, Iwase H, et al. Uptake of
Shiga-toxigenic Escherichia coli SubAB by HeLa cells requires an actin- and
lipid raft-dependent pathway. Cell Microbiol. 2014;16:1582–601.

50. Triantafilou M, Miyake K, Golenbock DT, Triantafilou K. Mediators of innate
immune recognition of bacteria concentrate in lipid rafts and facilitate
lipopolysaccharide-induced cell activation. J Cell Sci. 2002;115:2603–11.

51. Mooren OL, Kotova TI, Moore AJ, Schafer DA. Dynamin2 GTPase and
cortactin remodel actin filaments. J Biol Chem. 2009;284:23995–4005.

52. Yamada H, Abe T, Li SA, Masuoka Y, Isoda M, Watanabe M, et al. Dynasore, a
dynamin inhibitor, suppresses lamellipodia formation and cancer cell
invasion by destabilizing actin filaments. Biochem Biophys Res Commun.
2009;390:1142–8.

53. Weller SG, Capitani M, Cao H, Micaroni M, Luini A, Sallese M, et al. Src kinase
regulates the integrity and function of the Golgi apparatus via activation of
dynamin 2. Proc Natl Acad Sci U S A. 2010;107:5863–8.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Preta et al. Cell Communication and Signaling  (2015) 13:24 Page 7 of 7


