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 62 
Human activities, especially conversion and degradation of habitats, are causing global 63 
biodiversity declines. How local ecological assemblages are responding is less clear – a 64 
concern given their importance for many ecosystem functions and services. We analyze 65 
a terrestrial assemblage database of unprecedented geographic and taxonomic coverage 66 
to quantify local biodiversity responses to land-use and related changes. In the worst-67 
impacted habitats, these pressures reduce within-sample species richness by an average 68 
of 76.5%, total abundance by 39.5% and rarefaction-based richness by 40.3%. We 69 
estimate that, globally, these pressures have already slightly reduced average within-70 
sample richness (by 13.6%), total abundance (10.7%) and rarefaction-based richness 71 
(8.1%), with changes showing marked spatial variation. Rapid further losses are 72 
predicted under a business-as-usual land-use scenario: within-sample richness is 73 
projected to fall by a further 3.4% globally by 2100, with losses concentrated in 74 
biodiverse but economically poor countries. Strong mitigation can deliver much more 75 
positive biodiversity changes (up to a 1.9% average increase) that are less strongly 76 
related to countries’ socioeconomic status. 77 
 78 
Biodiversity faces growing pressures from human actions, including habitat conversion and 79 
degradation, habitat fragmentation, climate change, harvesting and pollution1.  As a result, 80 
global assessments show that species’ extinction risk is increasing on average while 81 
population sizes are declining1,2.  Such assessments have usually focused on data-rich 82 
vertebrates, so might not reflect broader biodiversity3. Furthermore, most have concentrated 83 
on the global status of species, whereas the long-term security of many ecosystem functions 84 
and services – especially in changing environments – is likely to depend upon local 85 
biodiversity4–6. Average trends in local diversity remain unclear: analyses of temporal 86 
changes in assemblages have suggested no systematic change in species richness7,8, but the 87 
available times-series data might under-represent transitions between land-use types9 and 88 
population time series suggest vertebrate populations have declined sharply in recent 89 
decades3. 90 

Spatial comparisons provide an alternative source of evidence on how human pressures 91 
affect biodiversity, assuming that differences in pressures have caused observed biodiversity 92 
differences between otherwise matched sites10–12. The prevalence of published spatial 93 
comparisons makes it possible to go beyond particular taxa or regions11,12 to develop global, 94 
taxonomically representative models.  Furthermore, the willingness of many researchers to 95 
share their raw data makes it possible to consider multiple aspects of biodiversity, rather than 96 
the single, simple metrics of most existing models10 which cannot capture all key aspects of 97 
diversity13. 98 

We present the most geographically and taxonomically representative models to date of 99 
how several aspects of the composition and diversity of terrestrial assemblages respond to 100 
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multiple human pressures. The explanatory variables in our models most directly measure 101 
land use and infrastructure, but might correlate14,15 with two other important pressures – 102 
harvesting and invasive species – for which comparable high-resolution spatial data are 103 
unavailable globally. We exclude climate change effects because they are not captured well 104 
by spatial comparisons. We use our models to infer past net changes in assemblages since 105 
1500, project future changes over this century under different socioeconomic scenarios of 106 
land use,  and relate projected national changes in local biodiversity to socioeconomic 107 
variables and natural biodiversity. 108 

Our models of local within-sample species richness (hereafter ‘richness’), rarefaction-109 
based species richness (hereafter ‘rarefied richness’), total abundance, compositional turnover 110 
and average organism size are based on among-site comparisons of ecological assemblage 111 
composition collated from the literature as part of the PREDICTS project16. The dataset 112 
consisted of 1,130,251 records of abundance and 320,924 of occurrence or species richness at 113 
11,525 sites (2-360 sites per study, median 15; Figure 1a). These data, from 284 publications 114 
(see Methods), represent 26,953 species – 1.4% of the number formally described17 

‒ and 13 115 
of the 14 terrestrial biomes (Extended Data Figure 1). Each site was scored for six putative 116 
pressures: land use11 and use intensity18, land-use history19, human population density20, 117 
proximity to roads21, and accessibility from the nearest large town.  Random effects in our 118 
models accounted for study-level differences in response variables and sampling methods, 119 
and for the within-study spatial arrangement of sites. 120 

 121 
Effects of pressures on site-level diversity 122 
 123 
Local richness, rarefied richness and total abundance were most strongly influenced by land 124 
use and land-use intensity: they were substantially lower in most other land-use types than in 125 
primary vegetation, especially in intensively-used areas (Figure 1; see Supplementary 126 
Information for statistics and coefficient estimates). These results extend those of previous, 127 
geographically or taxonomically restricted, meta-analyses (e.g. refs. 11,22). Other variables 128 
were weaker as main effects, but showed stronger effects in interaction (Extended Data 129 
Figure 2) and were often significant overall (see Supplementary Information). Richness and 130 
total abundance tended to be slightly lower at the highest human population densities, and 131 
richness was lower nearer to roads and in more accessible sites (Figure 1). Differences in 132 
richness were not driven solely by differences in abundance: rarefied richness23 (see Methods 133 
for details) showed weaker but mostly similar patterns, although the effects of variables other 134 
than land use and land-use intensity were not significant (Extended Data Figure 3a,b). Under 135 
the worst combinations of pressures, our models estimated richness, rarefied richness and 136 
total abundance to be 76.5%, 40.3% and 39.5% lower, respectively, than in minimally 137 
impacted sites. Effects of pressures on vertebrate, invertebrate and plant richness were 138 
statistically indistinguishable (P > 0.05; results not shown). The modelled coefficients were 139 
robust to efforts to correct for publication bias (Extended Data Figure 4). As with all studies 140 
based on data from the literature, unpublished data are almost unrepresented. Coefficients 141 
were also robust under cross-validation (Extended Data 3c,d), and the model residuals 142 
showed little spatial autocorrelation (Extended Data Figure 5). 143 

The importance of secondary vegetation for conservation is hotly debated11,24,25, and is 144 
crucial because this land-use will soon become the most widespread type26.  We find that the 145 
answer depends strongly on the secondary vegetation’s maturity: early-stage communities 146 
tend to be less diverse than those in primary vegetation and are compositionally distinct, but 147 
these differences are much reduced in mature secondary vegetation (Figures 1 & 2; we 148 
caution though that not all data sources clearly distinguished mature secondary from primary 149 
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vegetation). This successional rise in diversity accords with a recent meta-analysis of plant 150 
communities over time7. 151 
 Net changes in diversity provide an incomplete view of the effects of human activities 152 
on biodiversity because they ignore replacement of original species by newcomers8. We 153 
therefore analysed how land use affects similarity in species composition between sites. 154 
Communities under the same land use were, unsurprisingly, the most similar (Figure 2a). 155 
Across land uses, communities in primary vegetation were most like those in secondary 156 
vegetation, while plantation forest, pasture and cropland communities formed a different, 157 
human-dominated, cluster (Figure 2b). 158 
 Anthropogenic pressures can affect ecosystem functions and services more strongly 159 
than changes in species diversity would imply, if species’ responses depend on their traits27. 160 
Large size is often linked to species’ declines28,29 and is important for some ecosystem 161 
processes30. We combined abundance data with species’ average sizes to calculate site-level 162 
community-weighted mean plant height and animal mass.  As in local studies29, mean plant 163 
height was lower in human-dominated land uses than in primary and secondary vegetation, 164 
and tended to decline with increasing human population density (Figure 1d). Most field 165 
studies focused on particular plant taxa, so this difference does not simply reflect tree 166 
removal. Average animal mass did not change consistently with land use or human 167 
population density, but increased with proximity to roads (Figure 1d). 168 

Models like ours that substitute space for time ignore time lags in biotic changes, 169 
which can be important31. We also assume that land uses are situated randomly within studies 170 
relative to sites’ intrinsic suitability for biodiversity. Adding global data on other important 171 
pressures as they become available, and also incorporating climate change, will give a more 172 
complete picture of human impacts on local biodiversity. 173 
 174 
Global effects on local diversity to date 175 
 176 
By applying our model for within-sample species richness – the most widely used and 177 
understood biodiversity measure – to maps of current pressure variables, we estimate the 178 
global pattern of net local changes to date in plot-level richness (Figure 3; we did not estimate 179 
total richness within the 0.5° × 0.5° grid cells). Human-dominated areas are inferred to have 180 
lost much more local diversity than have regions where more natural vegetation remains. The 181 
worst-affected cells showed a 31% reduction in average local richness – probably enough to 182 
impact ecosystem functioning substantially5. Local richness increased in 1.7% of cells (by ≤ 183 
4.8%). Total abundance and rarefied richness showed broadly similar patterns, although less 184 
pronounced in the latter case (Extended Data Figure 6). 185 

We applied our models to global spatial estimates of how land use and human 186 
population changed from 1500-200526 (see Methods) to infer the global history of local 187 
biodiversity change. We focus on within-sample species richness because of its wide use and 188 
easy interpretation. Our inferences incorporate uncertainty in model parameter estimates, but 189 
not in the trajectories of the drivers themselves (which have not been assessed32) nor effects 190 
of changes in roads and accessibility, for which temporal estimates could not be obtained. 191 

Richness is estimated to have declined most rapidly in the 19th and 20th centuries 192 
(Figure 4), with other metrics showing similar responses (Extended Data Figure 6). By 2005, 193 
we estimate that land use and related pressures had reduced local richness by an average of 194 
13.6% (95% CI: 9.1 – 17.8%) and total abundance by 10.7% (95% CI: 3.8% gain – 23.7% 195 
reduction) compared with what they would have been in the absence of human effects.  196 
Approximately 60% of the decline in richness was independent of effects on abundance: 197 
average rarefied richness has fallen by 8.1% (95% CI: 3.5 – 12.9%). Although these 198 
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confidence limits omit uncertainty in the projections of land use and other pressures, there is 199 
less uncertainty in estimates of current pressure levels than in changes over time33. 200 

Our inferences contrast with two recent analyses of community time series7,8, which 201 
suggested no overall trend in local diversity, and with the Living Planet Index3 which, based 202 
on vertebrate population time series, reports a much more rapid decline in abundance than we 203 
infer. Although time series potentially provide a more direct view of temporal trends than our 204 
space-for-time approach, the available data might under-represent transitions between land-205 
use types9. On the other hand, our approach may underestimate additions of species through 206 
climate change and species invasion (although accessibility and proximity to roads may 207 
partly capture the latter14,15). 208 
 209 
Global and national projections to 2095 210 
Global changes in local diversity from 2005 to 2095 were projected using estimated land use 211 
and human population from the four Intergovernmental Panel on Climate Change 212 
Representative Concentration Pathway (RCP) scenarios26, which correspond to different 213 
intensities of global climate change (Table 1). Although these estimates have limitations32, 214 
they are the most consistent available, are widely-used34, and are consistent with the 215 
historical estimates 26. However, they – like all other global land-use projections – include no 216 
estimate of uncertainty; therefore, each of our projections must be viewed as the predicted 217 
biodiversity outcome under one particular set of land-use assumptions. 218 

Projected net changes in average local diversity to 2095 vary widely among scenarios 219 
(Figure 4; Extended Data Figure 6). The scenario with the least climate change (IMAGE 2.6) 220 
yields the second-worst outcome for biodiversity, because it assumes rapid conversion of 221 
primary vegetation – especially in the tropics – to crops and biofuels26 (Table 1, Extended 222 
Data Figure 7). These projections do not imply that low-emission scenarios must entail large 223 
losses of biodiversity, but instead reflect that scenario’s mitigation strategy. Indeed, in 224 
MiniCAM 4.5 (where mitigation is through carbon markets, crop improvements and diet 225 
shifts: Table 1), average richness is projected to increase (though other diversity metrics 226 
respond more weakly: Extended Data Figure 6). The worst biodiversity outcomes arise from 227 
the scenario with most climate change – MESSAGE 8.5 – in which rapid human population 228 
growth drives widespread agricultural expansion (Table 1; Extended Data Figure 7). This 229 
scenario, which has been characterised as ‘business-as-usual’35, most closely matches recent 230 
trends in emissions36 and gives the worst outcomes even though our projections omit direct 231 
climate impacts on local assemblages. 232 

The global projections hide wide regional and national variation (Figure 5; Extended 233 
Data Figure 8). Projections for 2095 under ‘business-as-usual’ (MESSAGE 8.5) are strongly 234 
inequitable, presenting serious challenges for both sustainable development and global 235 
conservation of biodiversity (Figure 5a). Under this scenario, European and North American 236 
countries – typically with a high Human Development Index (HDI), low native biodiversity 237 
and widespread historical land conversion – are mostly projected to gain in local richness by 238 
2095. More naturally biodiverse but less economically developed Southeast Asian and 239 
especially sub-Sharan African countries, with more natural and semi-natural habitat, will 240 
suffer the greatest losses (Figure 5a; Extended Data Figure 8f). 241 

Such globally inequitable outcomes might be avoidable: the best scenario for 242 
biodiversity (MiniCAM 4.5; Figure 4) yielded country-level outcomes that are relatively 243 
independent of HDI, native species richness (Figure 5b) and past changes (Extended Data 244 
Figure 8e). For local richness, outcomes under MiniCAM4.5 were better than MESSAGE 8.5 245 
for 93% of countries worldwide (Figure 5c).  246 

Under AIM 6.0, most Afrotropical countries are projected to gain in local richness but 247 
heavy losses are inferred for the Indo-Malay region (Extended Data Figure 8). Projections 248 
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under IMAGE 2.6 are spatially similar to those under MESSAGE 8.5. The land-use change 249 
caused by the biofuels-based strategy in IMAGE 2.6 is projected to have a major negative 250 
impact overall on terrestrial biodiversity (Extended Data Figure 8). 251 
 252 
Conclusions 253 
Many assessments of the state of biodiversity have focused on global metrics such as rates of 254 
species extinction37, but resilient delivery of ecosystem functions and services is more likely 255 
to depend on local diversity4–6. Our models suggest land-use changes and associated 256 
pressures strongly reduce local terrestrial biodiversity, and we estimate global average 257 
reductions to date of 13.6% in within-sample species richness, 10.7% in total abundance and 258 
8.1% in rarefaction-based species richness (Figs. 3 and 4). Climate change, which we could 259 
not include in our framework, is likely to exacerbate losses, especially under business-as-260 
usual38, although direct effects of climate change will increase local diversity in some 261 
regions8. 262 

It is important to remember that the habitat conversion and associated changes that 263 
reduced local biodiversity had largely positive consequences for people: agricultural 264 
intensification underpinned many countries’ development. However, benefits have not been 265 
shared equally among or within countries39. Losses of local species richness exceeding 20% 266 
are likely to substantially impair the contribution of biodiversity to ecosystem function and 267 
services, and thus to human well-being5. We estimate that reductions in average plot-level 268 
species richness currently exceed this level for 28.4% of grid cells, increasing to 41.5% of 269 
cells by 2095 under ‘business-as-usual’ (note that we do not estimate or project total richness 270 
across the cell). Importantly, our projections suggest that such widespread large losses are not 271 
inevitable. With concerted action and the right societal choices, global sustainability of local 272 
biodiversity may be an achievable goal. 273 
 274 
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Table 1. Key features of the four Representative Concentration Pathways (RCP) 435 
scenarios (land-use and human-population assumptions are detailed in ref. 26, energy 436 
assumptions in refs. 40–42, and climate implications in ref. 43). 437 
Scenario Land use (see also 

Extended Data Figure 7) 
Climate and energy Human population 

IMAGE 2.6 Agriculture moves from 
developed to developing 
countries. Large increase 
in area of biofuel 
plantations. Urban extent 
assumed constant. 

Increased energy 
efficiency. Increased use 
of carbon capture and 
storage, nuclear, 
renewable energy and 
biofuels. Approximately 
1 °C temperature increase 
by 2100 compared to pre-
industrial. 

10.1 billion by 2100 (UN 
Medium variant, 2010) 

MiniCAM 4.5 Carbon pricing leads to 
preservation of primary 
forest and expansion of 
secondary forest. Crop 
yield increases, improved 
agricultural efficiency 
and dietary shifts lead to 
decreases in cropland and 
pasture areas. Small 
increase in area of biofuel 
plantations. Urban extent 
assumed constant. 

Decline in overall energy 
use. Decreased use of 
fossil fuels and increase 
in nuclear and renewable 
energy, and in carbon 
capture and storage. 
Moderate increase in use 
of biofuels, but limited by 
availability of biomass.  
Approximately 1.75 °C 
temperature increase by 
2100. 

Peaks above 9 billion 
around 2065, then 
declines to 8.7 billion by 
2095. 

AIM 6.0 Urban area increases 
owing to human 
population growth. 
Cropland area increases 
to meet food demand. 
Pasture area declines 
strongly. 

Approximately 2.5 °C 
temperature increase by 
2100. 

9.1 billion by 2100 (UN 
Medium variant, 2004) 

MESSAGE 8.5 Increasing crop yields 
and intensification 
account for much of the 
increased production 
required, but area of 
cropland and, to a lesser 
extent, pasture increases 
rapidly. Small increase in 
area of biofuel 
plantations. Urban area 
increases owing to 
increased population. 

Small improvements in 
efficiency leading to high 
demand for energy. 
Conventional oil and gas 
become scarce, leading to 
shift in favour of 
unconventional and 
carbon-intensive fossil 
fuels. Moderate increase 
in use of biofuels. 
Approximately 
4 °C increase in 
temperature by 2100. 

12 billion by 2100. 

 438 
  439 
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Figure legends 440 
 441 
Figure 1. Locations of sites and responses of four metrics of local diversity to human 442 
pressures. a, Sites used in the models. Responses44 of richness, b, total abundance, c, and 443 
community-weighted mean organism size – plant height (crosses) and animal mass 444 
(triangles), d, to anthropogenic variables. Error bars show 95% confidence intervals. Primary 445 
= primary vegetation, YSV = young secondary vegetation, ISV = intermediate secondary 446 
vegetation, MSV = mature secondary vegetation, Plantation = plantation forest. Land-use 447 
intensity: minimal (circle), light (triangle), intense (diamond), and combined light and intense 448 
(square). HPD = human population density45, PR = proximity to roads46 (as –log(distance to 449 
nearest road)), ACC = accessibility to humans47 (as –log(travel time to nearest major city)) 450 
are shown as fitted effects from a model with no interactions between continuous effects and 451 
land use, at the lowest (L), median (M) and highest (H) values in the dataset. Sample sizes are 452 
given in full in the Methods (Table S2). 453 
 454 
Figure 2. Similarity in assemblage composition as a function of land use. a, Average 455 
dissimilarity of species composition (1 – Sørenson Index) between pairs of sites within and 456 
among land uses (shown relative to the similarity between pairs of primary-vegetation sites); 457 
blue and red colours indicate, respectively, more and less similar composition; numbers 458 
indicate numbers of studies within which comparisons could be made. b, Clustering of land-459 
use types based on average compositional dissimilarity; urban sites were excluded owing to 460 
the small sample size. Land-use labels as in Figure 1. 461 
 462 
Figure 3. Net change in local richness caused by land use and related pressures by 2000. 463 
Projections used an IMAGE reference scenario10. The baseline landscape was assumed to be 464 
entirely uninhabited, unused primary vegetation. Shown using a Lambert Cylindrical Equal-465 
Area projection at 0.5° × 0.5° resolution. 466 
 467 
Figure 4. Projected net change in local richness from 1500 to 2095. Future projections 468 
were based on the four RCP scenarios (Table 1). Historical (shading) and future (error bars) 469 
uncertainty is shown as 95% confidence intervals, rescaled to zero in 2005. The baseline for 470 
projections is a world entirely composed of uninhabited, unused primary vegetation; thus, the 471 
value at 1500 is not constrained to be zero because by then non-primary land uses were 472 
present – and in some regions widespread. The global average projection for MESSAGE 8.5 473 
does not join the historical reconstruction because that scenario’s human-population 474 
projections start in 2010 and because human population  and plantation-forest extent have not 475 
been harmonized among scenarios. 476 
 477 
Figure 5. Biodiversity projections at the country level. a-b, Country-level projections of 478 
average net local richness change between 2005 and 2095 under the worst (a, MESSAGE 479 
8.5) and best (b, MiniCAM 4.5) RCP scenarios for biodiversity, shown in relation to the 480 
Human Development Index. Colours indicate biogeographic realms; colour intensity reflects 481 
natural vertebrate species richness (more intense = higher richness); point size is proportional 482 
to (log) country area. c, Correlation between projected richness changes under the MiniCAM 483 
4.5 and MESSAGE 8.5 scenarios, with dashed line showing equality; colours as in a and b; 484 
colour intensity is proportional to the HDI (more intense = higher index). 485 
 486 
Methods 487 
 488 
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Data collation 489 
 490 
Between March 2012 and April 2014 we collated among-site comparisons of ecological 491 
assemblage composition from published studies (or from unpublished datasets where the 492 
methods have been published) examining the effect of human activities on more than one 493 
named taxon. A full description of how the dataset was assembled and curated is presented 494 
elsewhere16. We define sites to be in the same study if they were sampled using the same 495 
methodology and the data were reported in the same paper; therefore, some publications 496 
contain multiple studies. After six months of broad searching, we targeted efforts towards 497 
under-represented taxa, habitat types, biomes and regions. We accepted data only from 498 
published or in-press papers, or data collected using a published methodology, and we 499 
required that the data providers agreed to our making their data publicly available at the end 500 
of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial 501 
Systems) project in 2015. We accepted data only where abundance, occurrence or richness 502 
had been measured at two or more sampling locations and/or times, and where all sites were 503 
sampled using the same sampling procedure and with either the same effort or site-specific 504 
data on effort. We used geographical coordinates preferentially from the paper or supplied by 505 
data providers; but where coordinates were not thus available, we georeferenced them from 506 
maps in the papers. The final dataset came from 378 studies49-332 and two unpublished 507 
datasets (M. E. Hanley, 2005 and 2011) that were collected with published methods146. 508 

Studies compared from 2 to 360 sites (median = 15; 82% had ≥ 5 sites); most sampled 509 
species from multiple families but fewer than half sampled multiple orders. Over 70% of sites 510 
were from studies that sampled entire communities within a taxonomic group rather than a 511 
target list of species. Removing studies having a target list did not substantially alter model 512 
coefficients (results not shown) and increased the projected global net average loss of local 513 
species richness until 2005 by 0.6%. Sites varied in the maximum linear extent sampled 514 
(median 106 m; interquartile range 50 m to 354 m). Model coefficients for the approximately 515 
50% of studies that reported maximum linear extent were robust to its inclusion in the models 516 
(results not shown). 517 

The great majority of listed taxa were species-level, although many could not be given 518 
explicit species identifications (e.g. morpho-species)16; henceforth we refer to distinct taxa in 519 
our dataset as species. We matched taxonomic names given in the source paper to the 520 
Catalogue of Life 2013 Annual Checklist (COL)333, obtaining the full taxonomic 521 
classification. In order to relate the taxonomic names to species-level trait databases, we 522 
generated, for each taxon, a ‘best-guess’ Latin binomial as: a) the taxon name from COL if 523 
the COL query returned a species-level identification; b) the first two words of the text 524 
returned by the COL query if this was a sub-species designation; c) the first two words of the 525 
taxon name in the source publication if the COL query returned neither a species or sub-526 
species name, and the taxon name in the source publication contained two or more words. 527 
Taxa that met none of these criteria were not matched to trait data, but were included in the 528 
calculation of richness and total abundance, and for estimating turnover in community 529 
composition among sites. 530 

The resulting data set contained data for 26,953 species at 11,525 sites. For many high-531 
diversity taxa, the database contains data for more than 1% of the number of species thought 532 
to have been formally described (Extended Figure 1a). The distribution of sites among major 533 
biomes is roughly proportional to the amount of terrestrial net primary productivity (NPP) 534 
fixed within each biome (Extended Figure 1b). 535 
 536 
Site-level composition and diversity 537 
 538 
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We computed four site-level biodiversity metrics: within-sample species richness, total 539 
abundance, rarefaction-based richness and community-weighted mean organism size. These 540 
were calculated as follows.  541 
 542 
Within-sample species richness was calculated as the number of differently-named taxa 543 
recorded at a given site in a standardised sampling unit (a measure also known as species 544 
density334). We gave precedence to the author’s classification of species, even where a search 545 
of global databases revealed potential synonymies, because only certain taxonomic groups 546 
could be reliably matched to accepted taxonomies. 547 

This measure of richness is appropriate for conservation questions but among site-548 
differences could be due to effects on numbers of individuals as well as to changes in the 549 
shape of the species accumulation curve334. We therefore also calculated rarefaction-based 550 
species richness by taking 1000 random samples of n individuals from each site, where n is 551 
the smallest total number of individuals recorded at any site within its study, and calculating 552 
the mean species richness across samples. This index could only be calculated for sites 553 
where, in addition to the criteria above being met, abundance was recorded as number of 554 
individuals. Rarefied species richness was rounded to the nearest integer for analysis with 555 
Poisson errors. 556 
 557 
Total abundance was calculated as the sum of the measures of abundance of all taxa at a 558 
site; we were thus unable to estimate abundance for sites where only species occurrence or 559 
overall richness or diversity had been recorded (17% of sites). Some abundance metrics – 560 
those not reported as densities per unit time, distance, area or volume sampled – were 561 
sensitive to sampling effort. When a study reported any of these metrics and sampling effort 562 
varied among sites within a study, we corrected the raw abundance measurements for the 563 
sampling effort expended at each sampling location and time; this was done by rescaling the 564 
sampling efforts within each study, so that the most heavily sampled site had a value of one, 565 
and then dividing the raw abundance measurements by this relative sampling effort. The 566 
rescaling was performed to prevent introducing additional heterogeneity in the modelled 567 
abundance values. 568 
 569 
Community-weighted mean organism size was calculated as the arithmetic mean of log-570 
transformed height of plants (available for 4,235 species in our dataset) or the log-571 
transformed body mass or volume of vertebrates, beetles and hoverflies (5,236 species) 572 
present at a site, weighted by abundance335. Plant height data were taken from the TRY 573 
database336; for 61 species where plant vegetative height data were unavailable, we estimated 574 
it from generative height from a regression across the 2,554 species with estimates of both 575 
traits (R2 = 0.91). Data on vertebrate body mass were taken from the PanTHERIA database 576 
for mammals337, from BirdLife International’s World Bird Database for birds, and from a 577 
wide range of published and grey-literature sources for amphibians 338–384. Length data for 578 
reptiles were taken from published385,386 and unpublished (S. Meiri & A. Feldman, 579 
unpublished data) sources, and converted to estimates of body mass using published length-580 
mass allometries387,388. Arthropod size data (beetles and hoverflies) were collated from 581 
published sources389,390. Beetle length and amphibian snout-vent length values were raised to 582 
the power three so that they had the same dimensionality as the other animal size measures. 583 
For both plant height and vertebrate body mass, missing values were interpolated as the 584 
average values for congeners, since both of these traits are strongly conserved 585 
phylogenetically (Pagel’s λ = 0.98, 0.997, 0.93, 0.89 for plant height, vertebrate body mass, 586 
beetle body length and hoverfly thorax volume, respectively). 587 
 588 
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Human pressure data 589 
 590 

While many human pressures can impact local biodiversity, we focus on those that can 591 
be obtained for sites around the world and for which, as far as possible, spatiotemporal data 592 
are available for 1500-2095; this focus enables us to use our statistical models as a basis for 593 
projecting responses through time. Each site was assigned to one of eight land-use classes 594 
based on the description of the habitat given in the source paper (see Extended Data Table 1 595 
for definitions): primary vegetation, secondary vegetation (subdivided into mature, 596 
intermediate or young secondary vegetation), plantation forest, cropland, pasture and urban16. 597 
These classes were selected to match the land-use classification adopted in the 598 
Intergovernmental Panel on Climate Change Representative Concentration Pathways 599 
scenarios26 in order to facilitate the projection of our models onto these scenarios. Sites were 600 
also assigned to a level of human intensity of use ‒ minimal, light or intense ‒ within each 601 
major land-use class, also based on the description of the habitat in the source paper (see 602 
Extended Data Table 1 for definitions). The factors that determined this level depended on 603 
the land-use class (e.g. bushmeat extraction and limited logging in primary and secondary 604 
vegetation; or stocking density and chemical inputs in pasture; Extended Data Table 1). Sites 605 
that could not be classified for land-use and use intensity were excluded from the analyses. 606 
The final dataset contained the following numbers of sites in each land use and land-use 607 
intensity level: Primary vegetation, minimal use – 1546 (from 183 studies), light use – 860 608 
(76 studies), intense use – 449 (33 studies); mature secondary vegetation, minimal use – 198 609 
(52 studies), light/intense use – 213 (23 studies); intermediate secondary vegetation, minimal 610 
use – 404 (55 studies), light/intense use – 269 (30 studies); young secondary vegetation, 611 
minimal use – 431 (50 studies), light/intense use – 331 (34 studies); plantation forest, 612 
minimal use – 356 (47 studies), light use – 402 (42 studies), intense use – 238 (29 studies); 613 
cropland, minimal use – 427 (45 studies), light use – 632 (43 studies), intense use – 703 (36 614 
studies); pasture, minimal use – 525 (43 studies), light use – 434 (52 studies), intense use – 615 
174 (23 studies); and urban, minimal use – 174 (23 studies), light use – 244 (26 studies), 616 
intense use – 195 (18 studies). 617 

We overlaid our sites with available global data sets to obtain site-level estimates of 618 
human population density45, distance to the nearest road46 and estimated travel time to nearest 619 
population centre with greater than 50,000 inhabitants47. For distance to nearest road, the map 620 
of roads was first projected onto a Berhmann equal-area projection. These operations were 621 
carried out using Python code implemented using the arcpy Python module in ArcMap 622 
Version 10.0391. In the main figures, the inverses of distance to roads and travel time to major 623 
population centre (proximity to roads and accessibility) were presented so that high values 624 
corresponded to higher hypothesized human impact. To estimate the history of human use of 625 
the landscapes within which sites were located, we calculated the number of years since the 626 
30-arc-second grid cell containing each site became 30% covered by human land uses 627 
(cropland, pasture and urban), according to the HYDE model48. Collinearity among variables 628 
describing anthropogenic change was low: the highest correlation was between land use and 629 
human population density (Pearson R2 = 0.31). 630 
 631 
 632 
Modelling site-level diversity, composition and turnover 633 

 634 
The response of site-level diversity to the measures of anthropogenic change was 635 

modelled using generalized linear mixed effects models, implemented in the lme4 package 636 
Version 1.0-544 in R Version 3.0.2392. We first compared candidate random-effects structures 637 
using the full candidate fixed-effects structure393. Random-intercept terms considered in all 638 
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models were the identity of study from which data were taken, to account for study-level 639 
differences in the response variables and sampling methods used, and – within-study – the 640 
spatial block in which the site was located, to account for the spatial arrangement of sites. For 641 
models of species richness (within-sample and rarefied), we also fitted an observation-level 642 
random effect (i.e. site identity) to account for the overdispersion present394. We also 643 
considered random slopes, with respect to study, of each of the main fixed effects (land use, 644 
land-use intensity, human population density, distance to nearest road, travel time to nearest 645 
major city and time since the landscape was majority converted to human uses). Random 646 
effects were retained or discarded based on Akaike Information Criterion values.  647 

Once the best random-effects structure had been selected, we performed backward 648 
stepwise model simplification to select the best fixed-effects structure (see ‘Full Statistical 649 
Results’)393. Human population density, distance to roads, travel time to nearest major city 650 
and time since major human use of the landscape were log transformed in the analyses, with a 651 
value of 1 added to human population density, travel time to nearest major city and time since 652 
major landscape conversion to deal with zero values. These four variables were fitted as 653 
continuous effects, with quadratic polynomials for human population, distance to roads and 654 
travel time to nearest major city, and as a linear effect for time since human landscape 655 
conversion. For variables fitted as quadratic polynomials, we also tested linear effects during 656 
the backward stepwise model selection. All continuous variables were rescaled prior to 657 
analysis so that values ranged between zero and one. Interaction terms were tested first, and 658 
then removed to test the main effects. All main effects that were part of significant interaction 659 
terms were retained in the final models regardless of their significance as main effects. For 660 
the model of community-weighted mean body mass and plant height, because the number of 661 
sites with data was smaller than for the other metrics, only land use (excluding urban sites, 662 
which were few), human population density and distance to roads, and no interactions, were 663 
fitted (for the model of plant height, sample sizes in each land use were: primary vegetation – 664 
634  sites, secondary vegetation – 851 sites, plantation forest – 222 sites, cropland – 72 sites, 665 
pasture – 412 sites; and for the model of animal mass: primary vegetation – 1728 sites, 666 
secondary vegetation – 805 sites, plantation forest – 602 sites, cropland – 641 sites, pasture – 667 
440 sites). The decision whether or not to retain terms was based on likelihood ratio tests. 668 
The coefficient estimates of the best models are shown in Figure 1b-d and Extended Data 669 
Figure 2, and the formulae and statistical results are shown in the Supplementary 670 
Information. To test for spatial autocorrelation in the residuals of the final best models, we 671 
calculated Moran’s I values and associated P-values, separately for each study considered in 672 
the models, using the spdep package Version 0.5-68395 in R; the distribution of P-values 673 
across studies was used as an indication of whether spatial autocorrelation was likely to cause 674 
a problem. This revealed that the residuals showed little spatial autocorrelation (Extended 675 
Data Figure 5). We used cross validation to assess the robustness of model parameter 676 
estimates, first based on dividing the studies randomly into 10 equal-sized sets and dropping 677 
each set in turn (Extended Data Figure 3c), and secondly based on leaving out the studies 678 
from each biome in turn (Extended Data Figure 3d). 679 

Publication bias is a potential problem for any large-scale synthesis of data from many 680 
publications. In standard meta-analyses, funnel plots396 can be used to test for any 681 
relationship between standard error and effect size, as a bias in effect sizes at high standard 682 
error toward more positive or more negative effects indicates a likely effect of publication 683 
bias. Creating funnel plots for our data was more complicated because ours was a site-level 684 
analysis of raw diversity estimates rather than a traditional meta-analysis. Instead we 685 
generated individual models relating diversity to land use for each study that sampled at least 686 
two sites within each of at least two land-use types. We focused on land use because: a) there 687 
were a small number of sites included in most within-study models; and 2) the original 688 
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studies focused on effects of land use – not generally on land-use intensity, human population 689 
density or distance to roads – and thus any effect of publication bias would likely be seen in 690 
the land-use coefficients. Funnel plots were generated by plotting, for each land-use type, the 691 
estimated model coefficients against the associated standard errors (Extended Data Figure 4). 692 
There were some indications of an effect of publication bias, with less certain coefficient 693 
estimates tending to have more negative estimates for some of the land uses (Extended Data 694 
Figure 4). On the other hand, study-level random slopes of human-dominated land uses 695 
tended to be more negative for studies that sampled more sites (Extended Data Figure 4). It is 696 
important to emphasize that in a site-level analysis like ours, studies with fewer sites have 697 
less weight in the models. Modelled coefficient estimates were generally robust to the 698 
removal of these studies (Extended Data Figure 4). Basing projections on coefficient 699 
estimates from models where small studies were excluded led to a less than 1% change in the 700 
estimated global richness values (results not shown). As with all studies based on data from 701 
the literature, we under-represent unpublished data. 702 

To model turnover of species composition between pairs of sites, we calculated average 703 
dissimilarity23 in the lists of present species (1 − Sørensen index) between all pairs of sites 704 
within each study. For this analysis, we were only able to consider studies with more than one 705 
site in at least one of the land-use types considered. Once compositional similarity had been 706 
calculated for every pair of sites within each study, the average compositional similarity was 707 
calculated for every pair of land-use types considered within each study (including 708 
comparisons between sites in the same land-use type). Finally, the average compositional 709 
similarity was calculated for each pair of land-use types across all studies. To visualize the 710 
clustering of different land-use types in terms of community composition, we performed a 711 
hierarchical complete-linkage cluster analysis on the compositional dissimilarity (i.e. 1 − 712 
similarity) matrix, using the hclust function in R Version 3.0.2392. To test whether differences 713 
in the average geographic distance between pairs of sites in different land-use combinations 714 
affected these results, we correlated average compositional similarity with average distance 715 
between sites, for all pairwise combinations of land use (including comparisons of a land-use 716 
type with itself). Correlations between average distance and average community similarity 717 
were only very weakly negative (R2 = 0.001), suggesting they do not strongly distort the 718 
comparisons of community composition. However, the fact that some land uses tend to occur 719 
more closely together than others could influence the diversity patterns seen in our models, if 720 
some land uses are typically close to high-diversity habitats and so are more likely to benefit 721 
from dispersal. For example, sites in secondary vegetation and plantation forest were closer, 722 
on average, to primary vegetation sites than were those in cropland, pasture and urban 723 
(average distances to sites in primary vegetation were: other primary vegetation sites = 7.38 724 
km, mature secondary vegetation = 4.4 km, intermediate secondary vegetation = 3.9 km, 725 
young secondary vegetation = 6.9 km, plantation forest = 4.2 km, cropland = 16.4 km, 726 
pasture = 10.1 km, and urban = 11.4 km). Accounting for distance in such already-complex 727 
models is not computationally tractable. In making the projections, we therefore implicitly 728 
assume that the average distances will not change (i.e. that secondary vegetation and 729 
plantation forests will remain closer to primary vegetation than cropland, pasture and urban 730 
habitats). 731 
 732 
Projecting the Models onto Spatial Estimates of Anthropogenic Variables 733 
 734 

We projected the best overall models of richness (within-sample and rarefied), 735 
abundance and community-weighted mean organism size onto estimates of land use, land-use 736 
intensity and human population density at 0.5° × 0.5° resolution, using historical estimates 737 
for 1500 to 2005, and four Representative Concentration Pathways scenarios of future 738 
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changes (IMAGE 2.6, MiniCAM 4.5, AIM 6.0 and MESSAGE 8.5; the names refer to the 739 
integrated assessment models used and the numbers to the amount of radiative forcing 740 
assumed in 2100)397. In the absence of global projections, proximity to roads and accessibility 741 
were omitted from our projections. 742 

Estimates of land use for both the historical reconstruction and the future scenarios 743 
were taken from the harmonized land-use data accompanying the scenarios26. Estimates of 744 
the stage of secondary vegetation (young, intermediate or mature) are not available directly in 745 
the RCP land-use data. However, these data contain estimates of the transition each year 746 
between secondary vegetation and all other land-use types. To convert this into an estimate of 747 
the proportion of secondary vegetation in each of the stages of maturity, we considered any 748 
transition to secondary vegetation to result in secondary vegetation of age zero. Each year, 749 
this age was then incremented by one. In the absence of better information, any transitions 750 
from secondary vegetation to any other land-use type were assumed to be drawn evenly from 751 
the ages currently represented. For the purposes of the projections, secondary vegetation was 752 
considered to be young until an age of 30 years, intermediate between 30 years and 100 753 
years, and mature thereafter. We developed C# code to convert land-use transitions into 754 
estimates of the stage structure of secondary vegetation. 755 

Gridded temporal estimates of human population density were directly available for the 756 
HYDE historical scenario and MESSAGE future scenario. Human population trajectories in 757 
the MiniCAM model were resolved only to the level of United Nations regions41; we 758 
therefore downscaled these to grid cells assuming no temporal change in the spatial pattern of 759 
relative population density within regions compared to present day patterns45, which is the 760 
method used in other RCP-scenario land-use models lacking human population data resolved 761 
to grid cells26. Gridded estimates of human population from the MESSAGE model were 762 
downloaded from http://www.iiasa.ac.at/web-apps/ggi/GgiDb/. For the scenarios for which 763 
human population projections were not available (IMAGE and AIM), we used country-level 764 
estimates from the ‘medium’ scenario of the United Nations population division398, which 765 
gives the closest global predictions of future human population to those assumed by IMAGE 766 
and AIM26. These country-level estimates were downscaled to grid cells using the same 767 
method as for MiniCAM’s regional projections. 768 

Land-use intensity was an important explanatory variable in our models, but global 769 
maps of land-use intensity are not available. We therefore generated global estimates of 770 
current land-use intensity based on a map of ‘Global Land Systems’399, which divides coarse 771 
land-use types into sub-categories based on levels of cropland intensity, livestock densities 772 
and human population density. We mapped each Global Land Systems class onto one or 773 
more relevant combinations of our classes of land use and land-use intensity (Extended Data 774 
Table 2). The Global Land Systems dataset has a spatial resolution of 5 arc-minutes. To 775 
calculate the proportion of each 0.5° cell occupied by each land use and land-use intensity 776 
combination we calculated the proportion of 5-arc-minute cells within each 0.5° cell 777 
containing matching Global Land Systems categories (see legend of Extended Data Table 2 778 
for details). 779 

To generate past and future estimates of land-use intensity, we modelled the current 780 
proportion of each land-use type estimated to be under minimal, light or intense levels of 781 
intensity within each grid cell (one model for each intensity level), as a function of the 782 
prevalence of the land-use type within each cell and human population density, with the 783 
relationships allowed to vary among the 23 United Nations (UN) sub-regions (i.e. we fitted 784 
interaction terms between UN sub-region and both the prevalence of each land-use type and 785 
human population density). UN sub-region data were taken from the world borders shapefile 786 
Version 0.3 (http://thematicmapping.org/downloads/world_borders.php) and converted to a 787 
0.5° × 0.5° raster using ArcMap Version 10.0391. The models were developed using 788 
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generalized linear models with a binomial distribution of errors, implemented in the lme4 789 
package Version 1.0-544 in R Version 3.0.2392. The resulting models explained between 790 
30.6% and 76.7% of the deviance in estimated current levels of intensity. Past and future 791 
land-use intensities were estimated by applying the models to the same past and future 792 
estimates of land use and human population density as above. 793 

The scenarios gave the proportion of each grid cell estimated to be occupied by each 794 
combination of land use and land-use intensity. We did not attempt to resolve human 795 
population density within grid cells for our historical estimates or forecasts, thereby assuming 796 
it to be spatially (not temporally) constant within each cell. The coefficients from the models 797 
of site-level diversity were thus applied to each combination of land use and intensity within 798 
each cell, with the same human population density estimate across all combinations. All 799 
predictions were expressed as a percentage net change compared with a baseline before 800 
human land-use impacts on biodiversity, in which all land use was assumed to be primary 801 
vegetation of minimal intensity of use, and with a human population density of zero. Each 802 
cell’s average value of net biodiversity change was calculated as the area-weighted mean 803 
value across all land uses and intensities. Global average values were calculated as mean 804 
values across all cells, weighted by cell area and an appropriate weighting factor to account 805 
for the fact that cells have different baseline levels of diversity. The weighting factors applied 806 
were: terrestrial vertebrate species richness in the case of richness, and net primary 807 
production (NPP) in the case of total abundance. No weighting factor was applied for 808 
projections of community-weighted mean plant height. Terrestrial vertebrate species richness 809 
was estimated by overlaying extent-of-occurrence range maps for mammals, birds, 810 
amphibians and reptiles, using Python code written by ourselves and implemented in ArcMap 811 
Version 10.0391. Data on Net Primary Production were estimates of potential NPP (i.e. in the 812 
absence of human impacts) from the Lund-Postdam-Jena (LPJ) Dynamic Global Vegetation 813 
Model400. 814 

The 95% confidence intervals around the projected values of biodiversity for each 815 
combination of pressure variables were estimated based on uncertainty in the modelled 816 
coefficients. We were unable to conduct multi-model averaging to account for uncertainty in 817 
the structure of the models (i.e. projections were based only on the final best model) because 818 
applying such complex mixed-effects models, based on such large datasets, to multiple 819 
scenarios of human pressure at a global scale was intractable both in terms of time and 820 
computer-memory requirements. We were also unable to account for uncertainty in the 821 
trajectories of the human pressure variables, because uncertainty estimates are not available 822 
for any of the variables considered. 823 

To estimate average biodiversity change in individual countries, we intersected the 824 
gridded projections with the world borders shapefile (see above) using the extract function in 825 
the raster package Version 2.2-12401 in R Version 3.0.2392. Mean values across the cells 826 
associated with each country were calculated, weighted by cell area. To interpret the 827 
outcomes for countries in terms of their natural biodiversity, we related the country-level 828 
projections to estimates of average natural vertebrate species richness (see above). To 829 
interpret the outcomes for countries in terms of their socio-economy, we related the 830 
projections to estimates of the Human Development Index, which is an indicator of 831 
education, life expectancy, wealth and standard of living (https://data.undp.org/). 832 
 833 
Extended Data Legends 834 
 835 
Extended Data Figure 1. Taxonomic and geographic representativeness of the dataset 836 
used. a, The relationship between the number of species represented in our data and the 837 
number estimated to have been described17, for 47 major taxonomic groups; lines show (from 838 
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bottom to top) 0.1%, 1% and 10% representation of described species in our dataset; magenta 839 
= invertebrates, red = vertebrates, green = plants, blue = fungi, and grey = all other taxonomic 840 
groups. b, the relationship across biomes402 between the percentage of global terrestrial net 841 
primary production and the number of sites in our dataset; A = tundra, B = boreal forests and 842 
taiga, C = temperate conifer forests, D = temperate broadleaf and mixed forests, E = montane 843 
grasslands and shrublands, F = temperate grasslands, savannas and shrublands, G = 844 
Mediterranean forests, woodlands and scrub, H = deserts and xeric shrublands, J = tropical 845 
and subtropical grasslands, savannas and shrublands, K = tropical and subtropical coniferous 846 
forests, M = tropical and subtropical dry broadleaf forests, N = tropical and subtropical moist 847 
broadleaf forests, P = mangroves; note that the flooded grasslands and savanna biome is not 848 
represented in the dataset; grey line show 1:1 line. 849 
 850 
Extended Data Figure 2. Detailed response of local diversity to human pressures. 851 
Modelled effects (controlling for land use) of human population density (HPD), distance to 852 
nearest road, time since 30% conversion of a landscape to human uses (TSC) and time to 853 
nearest population centre with greater than 50,000 inhabitants (a-d), interactions between 854 
pairs of these variables (e), and interactions between these variables and land use (f-i) on site-855 
level diversity: a-c, f, g, within-sample species richness; e, h, i, total abundance; and d, 856 
community-weighted mean vertebrate body mass. Shaded polygons in a-d show 95% 857 
confidence intervals. For clarity, shaded polygons in f-i are shown as ±0.5 × SEM. 858 
Confidence intervals in e are omitted. Rugs along the x axes in the line graphs show the 859 
values of the explanatory variables represented in the dataset used for modelling. Only 860 
significant effects are shown. Note that distance to nearest road and travel time to major 861 
population centre measures are the raw (log-transformed) values fitted in the models rather 862 
than the proximity to roads and accessibility values (obtained as 1 minus the former values) 863 
presented in Figure 1. Sample sizes are given in full in the Methods. 864 
 865 
Extended Data Figure 3. Robustness of modelled effects of human pressures. a, Effects 866 
of land use, human population density (HPD) and proximity to nearest road (PR) on 867 
rarefaction-based species richness. b, To test that any differences between these results and 868 
the results for within-sample species richness presented in the main manuscript were not 869 
because rarefied species richness could only be calculated with a smaller dataset, we also 870 
show modelled effects on within-sample species richness with the same reduced dataset. c-d, 871 
Cross-validated robustness of coefficient estimates for land use and land-use intensity: 872 
crosses show 95% confidence intervals around the coefficient estimates under ten-fold cross-873 
validation, excluding data from approximately 10% of studies at a time (c), and under 874 
geographical cross-validation, excluding data from one biome at a time (d); colours, points, 875 
error bars and land-use labels are as in Figure 1 in the main text. Primary, primary vegetation; 876 
YSV, young secondary vegetation; ISV, intermediate secondary vegetation; MSV, mature 877 
secondary vegetation; plantation, plantation forest. Sample sizes are given in full in the 878 
Methods. 879 
 880 
Extended Data Figure 4. Tests of the potential for publication bias to influence the 881 
richness models and projections. Left-hand panels (a, d, g, j, m) show funnel plots of the 882 
relationship between the standard error around coefficient estimates (inversely related to the 883 
size of studies) and the coefficient estimates themselves for each coarse land-use type; there 884 
is evidence for publication bias with respect to some of the land-use types, as indicated by an 885 
absence of points on one or other side of zero for studies with large standard errors (but note 886 
that small studies are down-weighted in the model); red points show studies with more than 5 887 
sites in the land use in question (10 for secondary vegetation and plantation forest because 888 
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there were more sites for these land uses and some studies with between 5 and 10 sites 889 
showed variable responses); horizontal dashed lines show the modelled coefficients for each 890 
land use. Central panels (b, e, h, k, n) show the relationship between study size (log-891 
transformed total number of sites) and the random slope of the land use in question with 892 
respect to study identity, from a random-slopes-and-intercepts model; where a significant 893 
relationship was detected using a linear model, fitted values and 95% confidence intervals are 894 
shown as a red dashed line and red dotted lines, respectively; conversely to what would be 895 
expected if publication bias was present, where significant relationships between study size 896 
and random slopes were detected, these were negative (i.e. larger studies detected more 897 
negative effects). Right-hand panels (c, f, i, l, o) show the robustness of modelled coefficients 898 
to removal of studies with few sites in a given land use (black points in the left-hand panels); 899 
left-hand error bars show coefficient estimates for all studies and right-hand error bars show 900 
coefficient estimates for studies with more than 5 sites in that land use (10 for secondary 901 
vegetation and plantation forest). 902 
 903 
Extended Data Figure 5. Tests for spatial autocorrelation in the model residuals. For the 904 
four main modelled metrics of site-level diversity — a, within-sample species richness; b, 905 
total abundance; c, community-weighted mean plant-height; and d, community-weighted 906 
mean animal mass — histograms of P-values from sets of Moran’s tests for spatial 907 
autocorrelation in the residuals of the best models for individual studies. The percentage of 908 
studies with significant spatial autocorrelation (P < 0.05; indicated by vertical red line) is 909 
shown. 910 
 911 
Extended Data Figure 6. Current, past and future projections of all metrics of local 912 
biodiversity. Net change in local diversity caused by land use and related pressures by 2000 913 
under an IMAGE reference scenario10: a, richness; b, rarefied richness; c, total abundance; 914 
and d, community-weighted mean plant height. Note that the values used to divide the 915 
colours are the same in all panels, but that the maximum and minimum values are different, 916 
as indicated in the legends. Historical and future estimates of net change in local diversity 917 
from 1500-2095, based on estimates of land-use, land-use intensity and human population 918 
density from the four Representative Concentration Pathways (RCP) scenarios (Table 1): e, 919 
richness; f, total abundance; and g, community-weighted mean plant height; historical 920 
(shading) and future (error bars) uncertainty shown as 95% confidence intervals, with 921 
uncertainty rescaled to be zero in 2005 to show uncertainty in past and future change 922 
separately; the global average projection for the MESSAGE scenario does not directly join 923 
the historical reconstruction because projections start in 2010 (human population estimates 924 
are available at 15-year intervals) and because human population (and thus land-use intensity) 925 
and plantation-forest extent have not been harmonized among scenarios. In panel e, the 926 
dashed line shows projected diversity change under land-use change only (i.e. without land-927 
use intensity and human population density, the projections of which involved simplifying 928 
assumptions), and the dotted line shows projections of rarefaction-based species richness. 929 
 930 
Extended Data Figure 7. Reconstructed and projected total global land-use areas under 931 
the Representative Concentration Pathways (RCP) scenarios. a, estimated total area of 932 
the major land-use types. b-f, estimated total area of secondary vegetation in different stages 933 
of recovery. 934 
 935 
Extended Data Figure 8. Biodiversity projections at the country level. a-d, Country-level 936 
projections of net change in local richness between 2005 and 2095 under the four RCP 937 
scenarios (a, IMAGE 2.6; b, MiniCAM 4.5; c, AIM 6.0; and d, MESSAGE 8.5), shown in 938 
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relation to the Human Development Index (an indicator of education, life expectancy, wealth 939 
and standard of living) in the most recent year for which data are available. e-f, Country-level 940 
projections of net change in local richness between 2005 and 2095 under the best- and worst-941 
performing RCP scenarios in terms of biodiversity (e. MiniCAM 4.5; f, MESSAGE 8.5), 942 
shown in relation to past change in biodiversity from a baseline with no human land-use 943 
effects to 2005 according to the HYDE land-use reconstruction. Colours indicate 944 
biogeographic realms (key in b); colour intensity reflects native vertebrate species richness 945 
(more intense = higher species richness); point size is proportional to (log) country area. 946 
 947 
 948 
 949 
Extended Data Table 1. Land use and land-use intensity classification definitions (from 950 
ref. 16). 951 
 952 
Extended Data Table 2. Conversion between Global Land Systems dataset and our 953 
intensity classification for each major land-use type. To estimate proportional coverage of 954 
each intensity class for each land-use type in the 0.5° × 0.5° grid cells used for projection, we 955 
calculated the number of finer-resolution Global Land Systems399 cells with a matching 956 
intensity class for the land-use type in question, as a proportion of Global Land Systems cells 957 
matching any intensity class for the land-use type in question. For example, to calculate the 958 
proportion of urban land that is under intense use, we divided the number of cells with a 959 
Global Land Systems classification of ‘urban’ by the number of cells classified as ‘urban’ or 960 
‘peri-urban and villages’. None of the Global Land Systems classes could inform about the 961 
intensity of plantation forest, and so we assumed that any plantation forest was composed of 962 
equal proportions under minimal, light and intense use. 963 
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