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ABSTRACT     

A new parametric approach, termed the Wilshire equations, offer the realistic potential of being 

able to accurately life materials operating at in service conditions from accelerated test results 

lasting no more than 5,000h. These Wilshire equations contain discontinuities that have in the 

literature been interpreted either in terms of changing deformation mechanisms or changes in 

where deformation occurs within a material (i.e. within boundaries or crystals). This paper 

demonstrates that the rather restrictive nature of these discontinuities within the Wilshire 

equations can lead to problems in identifying an appropriate model for long term life prediction. 

An alternative framework is developed that removes these restrictions but still maintains the 

fundamental nature and characteristics of the Wilshire methodology. Further, when this 

alternative structure is applied to 1Cr-1Mo-0.25V steel, it produces more accurate and realistic 

looking long term predictions of the time to failure.  

Keywords:  

Creep, rupture time, Wilshire methodology, prediction  
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I. INTRODUCTION 

In general, when selecting alloy steels for large-scale components used in power and 

petrochemical plants, decisions are based on the ‘allowable creep strengths’, normally 

calculated from the tensile stresses causing failure in 100,000h at the relevant service 

temperatures [1]. However, creep life measurements for structural steels show considerable 

batch to batch variability so, in Europe, tests up to 30,000 h have often been completed for five 

melts of each steel grade [2]. The development of a parametric approach, termed the Wilshire 

equations [3,4], offers the realistic potential of being able to accurately life materials operating 

at in service conditions from accelerated test results lasting no more than 5,000h. A plethora of 

recent publications have applied these equations to a range of different materials [5,6,7,8] and 

have provided evidence to suggest that data extrapolation from accelerated tests using these 

Wilshire equations is a realistic and attractive alternative to expensive long term testing. This 

opportunity is particularly exciting when considering the development of new materials for 

high temperature applications. Indeed a reduction in the development cycle for new steels was 

identified as the No.1 priority in the 2007 UK Strategic Research Agenda [9]).  

The Wilshire equations [3,4] seem to avoid the unpredictable n value variations that are 

well known to exist when using the following power law expression for modelling creep 

properties as a function of stress and temperature  

  /RT)exp(-Qσ/σAε *

c

n

TS

*

m                                                                                                    [1] 

where T is the absolute temperature,  the stress, TS the ultimate tensile strength, R the 

universal gas constant and Q*
c the activation energy for self-diffusion. A* and n are further 

parameters of the model. Q*
c is normally estimated from the temperature dependency of m at 

constant /TS, whilst n is normally estimated from the normalised stress dependency of m at 

constant T (often this power law model is expressed in a format that excludes the tensile 

strength). 

In the Wilshire model, the unpredictable n variation is overcome by describing the 

stress and temperature dependencies of the minimum creep rate m  as  

    v*

cm2TS /RT).exp(Qkexpσ/σ                                                    [2] 

where k2 and v are further model parameters. This equation provides a sigmoidal data 

presentation such that m  ∞ as (/TS)  1 (provided v < 0), whereas m  0 as (/TS)  

0. Wilshire and Battenbough [3] proposed a very similar expression to Eq. [2] for the stress and 

temperature dependencies of the time to failure, tf  

    u*

cf1TS /RT)Q.exp(-tkexpσ/σ                                                                                       [3]                                                               

where  is often taken to be equal to unity and is the exponent in the Monkman – Grant relation 
[10]. To link this Wilshire expression to that for the minimum creep rate in Eq. [2], use must be 
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made of this Monkman and Grant relation which is an empirical relationship that exist between 

the time to failure and the minimum creep rate. This relationship is often expressed in the form 

Mt f 

mε                                                                                                                                  [4] 

where M is a material specific constant. Essentially, the value for M measures what the strain 

at rupture would have been had the material deformed at the minimum creep rate over its whole 

life. Monkman and Grant believed M to be independent of the test conditions.  

Rearranging Eq. [4] for mε and substituting the resulting expression into Eq. (2) gives  

                 
-v/*

cf

v/

2TS /RT)Q.exp(-tkexpσ/σ M                                                                       [5a] 

In terms of the Wilshire expression in Eq. [2], it must follow that in Eq. [3] the value 

for k1 and u should equal 

u = -v/  ;  k1 = k2M
v/                                                                        [5b] 

  

This paper aims to highlight a number of short comings associated with this Wilshire 

approach to estimating the life of materials operating at high temperatures. Some of these 

concerns are relatively minor in that they relate to estimation issues, but others are more serious 

in that they relate to restrictions the Wilshire equations impose on the deformation mechanism 

leading to creep failure and also to the unrealistic nature of the iso-thermal prediction lines 

produced by these equations. Specifically, the Wilshire equation allows for dramatic changes 

in the parameters of the model, including the activation energy, at specific values for the 

normalised stress. It does not allow such discontinuities with respect to temperature. To the 

extent to which such discontinuities reflect changing deformation mechanisms or changes in 

where deformation occurs within a material (within boundaries or crystals), the Wilshire 

equations do not therefore allow for mechanisms to change with respect to temperature – 

despite such changes being well recognised. The abruptness of these discontinuities in the 

Wilshire model also results in kink-like iso-thermal predictions where ideally, these iso-

thermal projections should be smooth in appearance. The paper then suggest how these 

limitations can be overcome by providing a new framework for modelling and estimation 

whilst remaining within the formulisation of the Wilshire approach. These limitations and 

modification will be illustrated using 1Cr1Mo0.25V – the data set on which is described in the 

next section. 

 

II. THE DATA 

To illustrate the points discussed above, the present study features forged 1Cr-1Mo-

0.25V steel for turbine rotors and shafts. For multiple batches of this bainitic product, both the 

creep and creep fracture properties have been documented comprehensively by the National 

Institute for Materials Science (NIMS), Japan [11].  NIMS creep data sheet No. 9B includes 

information on nine batches of as tempered 1Cr-1Mo-0.25V steel. Table I gives the chemical 

composition of each of these batches. Specimens for the tensile and creep rupture tests were 

taken radially from the ring shaped samples which were removed from the turbine rotors. Each 

test specimen had a diameter of 10mm with a gauge length of 50mm. 

Table I.   Composition and Heat Treatment of 1Cr-1Mo -0.25V Steel 
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These specimens were tested at constant load over a wide range of conditions: 333 MPa 

- 47MPa and 723K (450oC) – 923K (650 oC).   In addition to minimum creep rate ( mε ) and 

time to failure (tF) measurements, values were also given of the times to attain various strains 

(te) - 0.005, 0.01, .02 and 0.05 over this range of test conditions. Also reported were the values 

of the 0.2% proof stress (Y) and the ultimate tensile strength (TS) determined from high strain 

(~10-3 s-1) tensile tests carried out at the creep temperatures for each batch of steel investigated.  

III. TRADITIONAL APPROACH TO ESTIMATING k1, u AND Q*
c 

  Eq. [3] can be linearized through the use of a double logarithmic transformation of the 

normalised stress as follows 

*1*

cf
u

1

u

)ln(k
/RT)]Q.exp(-ln[  t      with          )]/ln(ln[*

TS                          [6] 

Over the last six years, this Wilshire equation has been applied to many power 

generating and aerospace materials [4-8]. However, in all these studies it has been found that 

when /RT)]Q.exp(-ln[ *

cf t is plotted against )]/ln(ln[ TS  two or more distinct straight line 

segments are present. That is, there appear to be distinct regions for the normalised stress, 

typically referred to as regions of “high” and “low “stress (or low, medium and high stress 

when three regions are present). This complicates the procedure for finding values for the 

unknown parameters k1, u and Q*
c. However, it is important to realise that such discontinuities 

do not invalidate the extrapolation from short term data using Eq. [6] because these regions are 

the same in short and long term data sets on a given material (unlike the n value in Eq. [1]). 

For example, the reader is referred to Wilshire and Whittaker [5] for an application to  2.25Cr-

1Mo steels where three distinct regions were identified by these authors and Wilshire and 

Scharning [4] for an application to 1Cr-1Mo-0.25V steel where only two distinct regions were 

identified. 

Whittaker and Wilshire [5] proposed the following procedure for estimating the 

unknown parameters in Eq. [6]. First, the presence of distinct regions is deliberately ignored. 

Q*
c is then determined as the value that minimises the least-squares fitting error that 

superimposes the individual data points on a plot of /RT)]Qexp(-ln[ *

cf. t  against 

)]/ln(ln[ TS  onto the best straight line given by Eq. [6]. The authors describe this as an 

iterative procedure whereby a value for Q*
c is guessed at (based on past activation energy 

studies presumably) which then enables the variable on the left hand side of Eq. [6] to be 

quantified. This constructed variable is then regressed on * to determine a value for k1 and u 

(using least squares principles). This process is repeated using a range of values for Q*
c around 

the initially guessed value and the correct value for Q*
c is taken to be that which results in the 

smallest least squares fitting error. Using this value for Q*
c, a plot of /RT)]Q.exp(-ln[ *

cf t  

against )]/ln(ln[ TS  will reveal visually where the break(s) in the straight line relationship 

between these two variables exists. Having identified all the straight line regions or breaks, the 

above approach is repeated on each region of data separately to determine the values for k1, u 

and Q*
c  that are most appropriate for each region. 
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IV. AVOIDING SUBJECTIVITY 

The first issue with this estimation procedure is that the authors don’t explicitly state 

the method used for minimising the least squares fitting error. Presumably, having split the data 

into different stress regions, the standard least squares formulas are used to select values for k1 

, u and Q*
c so as to minimise the sums of the squares of the fitting error, or e2 

e σ
u

1

u

)ln(k

RT

1
ρQ ]ln[t *1*

cf                                                                          [7] 

in each sub set of data (where the summation is over all the data points within the subset of 

data). However, this is a little too subjective as the precise point where the breaks occur should 

be part of the estimation procedure itself, i.e. the break points should not be guessed at from a 

visual inspection of a plot of /RT)]Qexp(-ln[ *

cf. t  against )]/ln(ln[ TS . Evans [12] put 

forward a formal procedure for doing exactly this through the use of binary variables. So when 

one break is present, Eq. [7] can be written as   

e/RT)(D]-[(1/RT)Q
u

1

u

)ln(k
)ln(t 221

*

kink

*

1

*

c

*1
f  D                   [8] 

where *
(kink)  is the value for  * at which the above described discontinuity occurs, i.e. at which 

the values for u and k1 change. D1 and D2 are binary variables such that D1 = D2 = 0 when * ≥ 

*
(kink)  and unity otherwise.  are further parameters to be estimated. Thus a simple grid search 

is conducted whereby the parameters in Eq. [8] are estimated for all values of *
(kink) in the 

range defined by the maximum and minimum values for *. For each value of *
(kink), Eq. [8] 

will have a different error sum of squares associated with it, i.e. e2 varies with *
(kink). The 

estimated values for u, Q*
c , k1,  and *

(kink) are then those that produce the smallest error 

sum of squares. Eq. [8] implies that below *
(kink), 1/u changes to 1/u +  and -ln(k1)/u will 

change to -ln(k1)/u - *
(kink) . This allows k1 and u to change at some specific value for the 

normalised stress. Additionally, below *
(kink), Q*

c changes to Q*
c + This technique is 

easily generalised when two or more break points exist. 

As an illustration, Eq. [8] was applied to the 1Cr-1Mo-0.25V data set described above. The 

least squares estimates for the unknown parameters in this equation were 

%49.97R

     [3.2]                                  [-20.7]                [79.8]            [45.8]       [-44.2]               

/RT)(D57.1819)0.1907(2275.4(1/RT)670,2834509.88681.22)ln(t

2

21

**

f



 D

     

                                             [9a] 

where student t values, that test the null hypothesis that the true value for the unknown 

parameters are zero, are given in parenthesis, and R2 is the coefficient of determination. These 

estimates imply that the break occurs at * = -0.1907 or at a normalised stress of /TS = 0.44. 

The student t values suggest that all the parameters are significantly different from zero at the 

5% significance level so that the k1, u and Q*
c all appear to change above and below this break 
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point stress. For this 1Cr-1Mo-0.25V data set, the values for M and  in the Monkman - Grant 

relation were estimated at 

052.0ε 9687.0

m
ft                                                                                                                        [9b] 

using ordinary least squares. So with  estimated as 0.9687, the activation energy is 

approximately 283,670/0.9687 ≈ 293 kJmol-1 when * ≥ *
(kink). When * then drops below the 

critical normalised stress this activation energy changes by approximately 2 kJmol-1, which 

whilst statistically significant, is a small change. Again, at this break point stress, the reciprocal 

of u changes by -4.2278 from 8.4509 – which in comparison to the activation energy change is 

a relatively big change. These estimates are in very good agreement with the values quoted in 

Wilshire and Scharning [4]. The R2 value shows that just over 97% of the variation in the log of 

the time to failure can be explained by the variables on the right hand side of  Eq. [8].  

This is all visualised in Figure 1. In Figure 1 the break at a normalised stress of 0.44 is 

visually apparent and the predictions given by Eq. [9a] are shown by the segmented line. The 

figure reveals that there is a tendency for this model to underestimate the failure times recorded 

at the lower stress levels at 823K (550oC)  . It can be seen from Figure 1 that the filled triangles 

at normalised stresses below 0.4 are consistently below the solid line corresponding to the 

models predictions – implying, given the nature of the constructed variable on the horizontal 

axis, an underestimate of tf. This is perhaps more clearly seen in Figure 4, where failure time 

itself is shown on the horizontal axis. The models predictions given by the solid line at 823K 

(550oC)  drifts further towards the lower end of the experimental failure times as stress 

diminishes. 

Fig. 1 - Dependence of /RT)]Qexp(-ln[ *

cf. t  on )]/ln(ln[ TS for 1Cr-1Mo-0.25V steel at 

723K (450oC) to 948K (675oC). (Failure time tf is in seconds, stress  is in MPa, and 

Temperature T is the absolute temperature). 

V. ALLOWING FOR STRESS AND TEMPERATURE DEPENDENT BREAKS 

The second and more serious issue is that the estimation procedure used by Whittaker 

and Wilshire [5], allows changes in the value for k1, u and the activation energy to be exclusively 

stress dependent. At first sight this does not appear to be a problem, as for example, Wilshire 

and Whittaker [5] attribute this in their 2.25Cr-1Mo study to changing regions where 

deformation occurs within the material. For this material, these authors suggests that no 

transition takes place from dislocation to diffusional creep mechanisms with decreasing applied 

stress. Instead, dislocation creep processes are rate controlling at all stress levels, even though 

the detailed dislocation processes vary in different stress regimes. Thus, with 2.25Cr-1Mo 

steels, the creep and creep fracture properties differ above and below  ≈ Y (where Y is the 

yield stress). According to Wilshire and Whittaker [5], when  > Y, so that the initial strain on 

loading has both elastic and plastic components, creep is controlled by the generation and 

movement of dislocations within the grains. In contrast, when < Y, so that the strain on 

loading has essentially only an elastic component, new dislocations are not generated within 

the grains, so creep occurs within the grain boundary zones, i.e. by grain boundary sliding and 
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associated deformation in the grain regions adjacent to the boundaries. Hence, the creep rates 

when < Y are slower and the creep lives are longer than expected by direct extrapolation of 

m  data obtained when < Y. 

Another change in creep and creep rupture behaviour occurs when approximately 

equals 0.2TS. With this material, a transformation from bainite to ferrite and coarse carbide 

particles takes place in long-term tests at the highest creep temperatures. In these cases, because 

of the loss of creep resistance caused by this transformation, the
m  values are faster when   

< 0.2TS  than would be predicted by extrapolation of data collected at intermediate  levels. 

These authors have provided similar explanation for the observed breaks in other power 

generating materials as well. 

However, the conventional approach to describing creep is in terms of deformation 

mechanism diagrams that typical show how deformation mechanisms depend not just on stress 

but also on temperature. A classic presentation of a deformation mechanism diagram, taken 

from Ashby and Jones [13], is shown in Figure 2. Creep strain can be caused by different 

mechanisms that take place in different regions of the material depending on both stress and 

temperature. Yet, the estimation procedure describe by Whittaker and Wilshire [5] only allows 

for a change in mechanism with respect to stress and so may not identify the correct form of 

Eq. [7]. A more general estimation technique that allows for the possibility of breaks at 

differing stresses and temperatures is required. 

Fig. 2  -  Deformation mechanisms at different stresses and temperatures. Ashby and Jones [13]. 

Again working with the 1Cr-1Mo-0.25V data described above, this potential for model 

mis-specification can be easily illustrated. Instead of looking for breaks with respect to stress, 

it is arguably just as valid to look for breaks with respect to temperature. Deformation 

mechanism diagrams for example, typically suggest a transition from dislocation creep that is 

predominant in the bulk crystals to it being predominant along grain boundaries as the 

temperature is lowered as well as when stress is lowered. To search for a break as a function 

of temperature, the failure time is compensated by the normalised stress rather than the 

temperature. Placing all terms not containing temperature on the right hand side of Equation 

[7] and all other terms on the left hand side, leaves a plot of ln[tf exp(-*/u) against 1/RT. In 

the space defined by such a plot, a search can be carried out to find the critical temperature at 

which the activation energy and the parameters k1 and u change. So when one break is present 

in such a plot, the regression equation has the form   

e)(D
1

RT

1
(1/RT)Q

u

1

u

)ln(k
)ln(t *

2211

*

c

*1
f 
















  D

RT kink

     [10] 

where (1/RT)kink  is the value for 1/RT at which the above described discontinuity occurs, i.e. 

at which the value for  Q*
c changes. D1 and D2 are binary variables such that D1 = D2 = 0 when 

1/RT ≤ 1/RTkink  and  unity otherwise.  are further parameter to be estimated. Thus a simple 

grid search is conducted where by the parameters in Eq. [10] are estimated for all values of 



8 
 

(1/RT)kink  in the range defined by the maximum and minimum values for 1/RT in the 

experimental data set . For each value of (1/RT)kink , Eq. [10] will have a different error sum of 

squares associated with it. The estimated values for u, Q*
C , k1,  and (1/RT)kink  are then 

those that produce the smallest error sum of squares. Eq. [10] implies that above (1/RT)kink , 1/u 

changes to 1/u +  and -ln(k1)/u will change to -ln(k1)/u - (1/RT)kink  - hence allowing k1 and 

u to change at some specific value for the absolute temperature. Additionally, above (1/RT)kink 

, Q*
c changes to Q*

c + This technique is easily generalised when two or more break points 

exist. 

The least squares estimates for the unknown parameters in Eq. [10] are 

%30.97R

17.3] [                                       [-5.0]                [63.5]            [52.6]       [-39.6]              

)(D4652.2000146.0
RT

1
445,48(1/RT)679,3097513.42525.27)ln(t

2

*

21

*

f











  D

                      [11] 

so that the R2 value is maximised when (1/RT)kink = 0.000146 which corresponds to an absolute 

temperature of 823K (550oC). Whilst this break point in not so visually apparent in Figure 3 as 

is the break in Figure 1, (due to the additional scatter present in the data shown in Figure 3), it 

is non the less real or statistically significant as revealed by the student t values shown in 

parenthesis in Eq. [11]. For example, the student t value for 1 (of -5) exceeds its critical value 

at the 5% significance level, revealing that at (1/RT)kink = 0.000146 the activation energy 

undergoes a statistically significant change. A statistically significant change in the parameter 

u is also present at this break point.  

At the critical temperature of 823K (550oC) the reciprocal of u changes by 2.4652 from 

4.7513. At the critical temperature of 823K (550oC) the activation energy changes by -48,445 

Jmol-1 from 309.679 / 0.9687 ≈ 320 kJmol-1. The R2 value shows that just over 97% of the 

variation in the log of the failure time can be explained by the variables on the right hand side 

of Eq. [10]. This is all visualised in Figure 3, where the break at a 1/RT  = 0.000146 is visually 

apparent and a noticeable change in both the activation energy and the values for k1 and u 

occurs. 

Fig. 3  - Dependence of /u)].exp(-ln[ *

f t on RT/1 for 1Cr-1Mo-0.25V steel at 723K (450oC) 

to 948K (675oC). (Failure time tf is in seconds, stress  is in MPa, and Temperature T is the 

absolute temperature). 

Depending on whether a break is searched for with respect to stress or temperature two 

very different models emerge, both of which have similar fits to the data – just over 97% for 

the R2 value: 

    
     0.44σ/σwhen)294,714/RT.exp(-883.271expσ/σ

0.44σ/σwhen)292,836/RT.exp(-969.14expσ/σ

TS

0.237

fTS

TS

0.118

fTS









t

t
 

or 
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    
     823KTwhen)319,686/RT.exp(-309757expσ/σ

238Twhen)269,657/RT.exp(-368.16expσ/σ

0.210

fTS

0.139

fTS









t

Kt
 

But the physical interpretation that could be given to each has to be very different for 

these equations to make sense. In the second model, the rise in Q*
c towards 320 kJmol-1 could 

reflect the fact that creep is controlled more by lattice self-diffusion than grain boundary 

diffusion above 823K (550oC) – as the activation energy is higher  for the bulk of the material. 

However, the first model suggests a very different set of phenomenon. The value for the 

activation energy and the relatively small change in this activation energy with respect to stress 

is consistent with creep being controlled by lattice self-diffusion. However, below the critical 

stress, the longer duration of the tests in this regime leads to an evolution of the as received 

bainitic microstructure that progressively reduces creep resistance. This evolution then 

explains the observed change in the value for k1 and u. Clearly these two models are 

incompatible with each other in that only one of the explanations can be correct (and also the 

implied activation energy for lattice diffusions is different in each approach). This problem 

stems from searching for breaks with respect to only one of the test variables. 

 

VI. DISCONTINUITIES 

Finally, and related to this last point, is the fact that in reality changes in mechanism 

are not as abrupt as that implied by the Wilshire equations. The boundaries on deformation 

mechanism diagrams represent the conditions under which two or more creep processes 

contribute equally towards creep strain. It should therefore be expected that the parameters in 

the Wilshire equation should change gradually as movement from a low to a high stress regime 

takes place – and not abruptly at a break point as is usually visualised on Wilshire type plots 

of /RT)]Q.exp(-ln[ *

cf t against )]/ln(ln[ TS . Another way of saying this is that on the iso-

thermal prediction curves produced using the Wilshire equations, an abrupt change occurs at a 

specific stress for a given temperature. This is completely artificial as what should actually 

happen is a smooth and gradual change in the slope of the predicted iso-thermal curve as this 

stress point is approached and passed. This is visualised in Figure 4 where the solid curves are 

the creep lives predicted by Eq. [9a] at two selected temperatures – 823K (550oC) and 873K 

(600oC). These predictions were obtained using the average (over all batches) tensile strength 

at these two temperatures. The observed discontinuity occurring at a normalised stress of 0.44 

reflects both the change in k1 and u and the smaller change in the activation energy. This 

discontinuity occurs at slightly different stresses at each temperature because the tensile 

strength is temperature dependent. The dashed curves are the creep lifes predicted by Eq. [11] 

at these selected temperatures. Because a discontinuity occurs at a specific temperature, these 

iso-thermal predictions have no kink. But the resulting predictions at lower stresses are very 

different, especially at 823K (550oC) where one model appears to be underestimating the time 

to failure at the lowest stresses and the other is over-estimating at these stresses. Yet overall, 

the two models produce similar fits over the whole stress range and which to select is not 

obvious. 

Fig. 4  - Predicted times to failure obtained using Eq. [9a] and Eq. [11] for specimens tested at 

823K  (550oC)and 873K (600oC). 
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VII. MODIFIED MODEL 

 

A. The Model 

The discontinuity problem illustrated above can be overcome by allowing for a gradual 

change. The best way to explain this is to look at the simplest possibility first, namely where a 

change occurs with respect to the normalised stress only, so that 

e
RT

1
dσba]w[1

RT

1
dσbaw ]ln[t 2

*

2211

*

111f 
















                               [12a] 

where 

)](exp[1

1
w

*

kink

*

1

1
 

                                                                                              [12b] 

The interpretation of this model is as follows. When * = *
(kink), w1 will equal 0.5. 

Then, two different creep processes (or groups of processes) contribute equally towards the 

overall minimum creep rate and rupture time. Then as * continues to fall below *
(kink), w1 

tends to unity and 1-w1 tends to zero so that the creep rate is increasingly determined by one 

of these creep mechanisms. When w1 = 1, the creep rate is determined only by a single 

deformation mechanism. In effect w1 measures the dominance of a particular deformation 

mechanism. Then d1 can be interpreted as the activation energy associated with one 

mechanism, whilst d2 is the activation energy associated with the other mechanism.   

Similarly, b1 can be interpreted as the value for 1/u associated with this mechanism, 

whilst b2 is the value for 1/u associated with the other mechanism. a1 is thus related to the value 

for k1 in the first mechanism and so on. For example, as * continues to rise above *
(kink) 

dislocation movements may become increasingly confined to the grain boundaries where the 

activation energy given by d2 applies. Then as * falls below *
(kink) the higher stresses may 

allow dislocation movements to occur within the crystal structure itself,  where the activation 

energy will be at a higher value given by d1 – and this will dominate creep as * becomes very 

small. 

This model allows for a gradual evolution in the deformation mechanisms determining 

creep as stress changes and so avoids the abrupt discontinuities of the original Wilshire model. 

To account for changing mechanisms with respect to temperature, this model can be 

appropriately generalised as follows 

e
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                                        [13a] 

where 
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w1= z1z2 ; w2 = z1(1-z2) ; w3= (1-z1)z2 ; w4 = (1-z1)(1-z2)                                                     [13b] 

and 

)](exp[1

1
z

*

kink
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1

1
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1
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2
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                         [13c] 

The idea behind Eq. [13b,c] is that z1 and z2 again measure the dominance of creep 

mechanisms that are stress and temperature dependent, respectively. In this model there are 

now four distinct regions. One region is where the transformed stress is below *
(kink) and the 

reciprocal of the absolute temperature is below (1/RT)kink. In this region a creep mechanism (or 

group of mechanisms) will dominate and the degree of dominance is determined by the product 

of z1 and z2, i.e. by w1. Essentially, z1 is measuring the extent to which * is below *
(kink) and 

z2 is measuring the extent to which 1/RT is below (1/RT)kink. The extent to which both * is 

below *
(kink) and 1/RT is below (1/RT)kink is the product of z1 and z2 (in much the same way as 

the probability of event A and event B occurring is the product of their individual probabilities 

for independent events). Thus as * drops further below *
(kink) and as 1/RT drops further 

below(1/RT)kink, z1 and z2 get closer to unity and so too does w1 and creep is then dominated 

by the mechanism(s) associated with high stresses and high temperatures. The activation 

energy associated with this mechanism is then given by d1 and b1 gives the value for 1/u 

associated with this mechanism. 

Eq. [13b,c] are such that all the w values sum to unity. In this model there are also creep 

strains determined by a mechanism (or mechanisms) associated with low stresses and 

temperatures, a low stress but a high temperature and a high stress but a low temperature. 

Further, given the S shaped nature of Eq. [13c] the degree to which these mechanisms dominate 

evolves slowly with changing stresses and temperatures with all mechanisms contributing 

equally at *
(kink) and (1/RT)kink. What is useful about this model is that if the estimated value 

for 1 and 2 are very large in absolute terms, the S shaped curves become very steep around  

points *
(kink) and (1/RT)kink. Then this model takes on the sharp discontinuity properties 

associated with the original Wilshire model. This framework therefore offers a means of testing 

the validity of this Wilshire property by looking at the magnitude of 1 and 2. 

B. Estimation 

It should be apparent from this modification that the parameters requiring estimation 

are ai, bi, di for i = 1 to 4, *
(kink), (1/RT)kink, 1 and 2. Estimation is actually relatively straight 

forward, but iterative. On the first iteration values for *
(kink), (1/RT)kink, 1 and 2 are guessed 

at. This allows values for wi to be calculated which in turn allows the following new variables 

to be calculated: wi, wi
* and wi/RT for i = 1 to 4. The following least squares regression can 

then be carried out 

e
RT

w
dσwbwa ]ln[t

4

1i

i
i

*
4

1i

ii

4

1i

iif  
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                         i = 1,….,4                               [14] 



12 
 

where the parameters ai, bi and di are chosen so as to minimise e2. Notice this is a standard 

multiple regression problem with no constant term included in the regression equation. Then a 

standard Gauss – Newton non-linear optimisation algorithm can be used to search for other 

values of *
(kink), (1/RT)kink, 1 and 2 that further reduce the value for e2 in Eq. [14]. In this 

way the optimal values for all parameters can be found. Or, alternatively, a grid search over all 

values for *
(kink) and (1/RT)kink could be carried out to find the combination that minimises 

e2 in Eq. [14]. These approaches are easily implemented using the Solver option in Microsoft 

Excel – 2013- for example.  

C. Illustration 

As an illustration, Eqs. [13] were applied to the 1Cr-1Mo-0.25V data set described above. The 

estimates for *
(kink) and (1/RT)kink were -0.190 and 0.00014617 respectively. Likewise, the 

estimates for 1 and 2 are respectively -25.01 and -481.13. These estimates for the break points 

closely coincide with those estimated in Eqs. [9a,11], whilst the values for 1 and 2 suggest a 

gradual transition with respect to stress, but a rather abrupt transitions with respect to 

temperature. The complete estimated model is then given by 
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                                                                                                                                               (15) 

where 

w1= z1z2 ; w2 = z1(1-z2) ; w3= (1-z1)z2 ; w2 = (1-z1)(1-z2) 

                                                                                                                                                  

and  

)]1900.0(011.25exp[1
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1
z2  

This model is capable of explaining over 99.9% of the variation in the log times to 

failure, where w1 measures the extent to which deformation is dictated by the failure 

mechanism(s) associated with the lowest stresses and temperatures in the data set, through to 

w4 which measures the extent to which deformation is dictated by the failure mechanism(s) 

associated with the highest stresses and temperatures in the data set. The student t values are 
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shown in parenthesis in Eq. [15] and imply that all the estimated parameters are statistically 

different from zero at the 5% significance level. These t values can be used to construct % 

confidence intervals for the estimated parameters assuming that these estimates follow a 

normal distribution. For example, 99% confidence intervals are given by 

23.10)-  to-28.3(a;9.4)-  to-31.7(a 21   

2.5)  to-16.9(a;4.2)-  to-18.1(a 43   

4.7)  to(4.2b;8.0)  to(4.4b 21   

9.4)  to(6.0b;8.7)  to(7.6b 43   

318,747)  to(279,757d;339,537)  to(191,747d 21   

240,899)  to(100,523d;251,334)  to(161,638d 43   

Taking first the confidence intervals for bi. The overlap of the intervals for b1 and b2 

and the intervals b3 and b4 suggest that there is no significant change in the stress relationship 

above and below (1/RT)kink = 0.00014617. On the other hand, the non overlap of the intervals 

for b1 and b3 and the intervals b2 and b4 suggest that there is a significant change in the stress 

relationship above and below *
(kink) = -0.190. A similar conclusion holds for the activation 

energy as well. The overlap of the intervals for d1 and d2 and the intervals b3 and b4 suggest that 

there is no significant change in the activation energy above and below (1/RT)kink = 

0.00014617. On the other hand, the non overlap of the intervals for d2 and d4 and the intervals 

d2 and d3 suggest that there is a significant change in the activation energy above and below 

*
(kink) = -0.190. 

These results suggests that a suitable parsimonious model of the creep data is that of 

the simplified version given by Eq. [12]. Estimating this model resulted in the following 

equation 
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                                                                                                                                               [15] 

with  

)]3355.0(2120.5exp[1

1
w

*1





 

These estimates suggest that when *
(kink) = -0.3355 (i.e. when /TS =0.49), two 

different creep deformation mechanisms (or two different groups of mechanisms) contribute 

equally towards the overall creep strain. Notice this break point is estimated slightly differently 



14 
 

to that in the general model above. This is shown by w1 = 0 .5 at this stress boundary in Figure 

5. Given the above interpretation that can be given to the weight w1, it can also be seen from 

this figure that when *= 0.1, about 90% of the observed creep strain is attributable to one of 

these mechanisms or group of mechanisms, whilst the other group of mechanisms dominates  

(90% domination) when *= -0.75. So if the explanation given by Wilshire and Scharning [4] 

is correct, these estimates suggest that once * has reached 0.1, 90% of the observed creep 

strain is attributable to dislocation movements within grain boundaries, whilst once * has 

reached -0.75, 90% of the observed creep strain is attributable to dislocation movements within 

the crystal structure itself. When *= -0.3355, these regions contribute equally to creep 

deformation. 

Fig. 5 -  The dominance of different deformation mechanisms at different stresses for 1Cr-

1Mo-0.25V steel at 723K (450oC) to 948K (675oC). (Stress  is in MPa). 

Again student t values are shown in parenthesis and this model is capable of explaining 

over 99.9% of the variation in the log times to failure. The t values reveal that all the parameters 

are significantly different from zero at the 5% significance level. More than that, these t values 

imply that the 95% confidence intervals for each of the parameter estimates are: 

27.01)-  to-29.42(a;12.28)-  to-16.65(a 21   

4.46)  to(3.97b;6.21)  to(4.82b 21   

327417)  to(310,385d;227,197)  to(196,472d 21   

so that in the two identified regimes, the activation energies are significantly different from 

each other, as are the values for u and k1 implied by the above intervals for bi and ai. So again, 

based on the Wilshire and Scharning explanation, the activation energy associated with grain 

boundaries is between 196 and 227 kJmol-1 with 95% certainty, whilst the activation energy 

associated with the crystal structure is between 310 and 327 kJmol-1 with 95% certainty – which 

is statistically significantly higher. 

Figure 6 shows the life time predictions given by Eq. [15] at 823K (550oC) and 873K 

(600oC), and for comparison purposes these are shown alongside those given by the original 

Wilshire predictions Eq. [9a]. All the unwanted discontinuities in these iso-thermal predictions 

are now removed by this approach. More importantly, the predictions at 823K (550oC) are 

much better – running now through the mid points of the observed failure times at the lowest 

stresses. At 873K (6000oC) the two predictions are very similar.  

Fig. 6  - Predicted times to failure obtained using Eq. 9a and Eq. 15 for specimens tested at 

823K (550oC) and 873K (600oC). 

VIII. CONCLUSIONS 

The proposed new estimation framework provided confirmation that the original 

identification by Wilshire and Scharning of a break point with respect to stress, rather than 
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temperature, for 1Cr-1Mo-0.25V steel was indeed correct (as shown by (1/RT)kink = 

min(1/RT)). However, this modified model revealed some difference between that original 

study and this illustration. First, the break point in this study was estimated to occur at a 

normalised stress of 0.49 rather than 0.44. Secondly, the predictions made at 823K (550oC) 

were much more in agreement with the experimental data – especially at the all-important 

lower stresses that correspond more closely to the in service stresses experienced by these 

materials in power plants. Third, the model identifies a big difference in the activation energies 

associated with dislocation movements along grain boundaries and within the main crystal 

structure – a difference not revealed by the original Wilshire study. Finally, the modified model 

provides additional information on the relative contribution of deformation within these two 

regions to total creep strain as stress varies. 
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Fig. 1 - Dependence of /RT)]Qexp(-ln[ *

cf. t  on )]/ln(ln[ TS for 1Cr-1Mo-0.25V steel at 

723K (450oC) to 948K (675oC). (Failure time tf is in seconds, stress  is in MPa, and 

Temperature T is the absolute temperature). 

 

Fig. 2 -  Deformation mechanisms at different stresses and temperatures. Ashby and Jones [13]. 
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Fig. 3 -  Dependence of /u)].exp(-ln[ *

f t on RT/1 for 1Cr-1Mo-0.25V steel at 723K (450oC) 

to 948K (675oC). (Failure time tf is in seconds, stress  is in MPa, and Temperature T is the 

absolute temperature). 

 

Fig. 4 -  Predicted times to failure obtained using Eq. 9a and Eq. 11 for specimens tested at 

823K (550oC) and 873K (600oC). 



19 
 

 

Fig. 5 -   The dominance of different deformation mechanisms at different stresses for 1Cr-

1Mo-0.25V steel at 723K (450oC) to 948K (675oC). 

 

Fig. 6 -  Predicted times to failure obtained using Eq. 9a and Eq. 15 for specimens tested at 

823K (550oC) and 873K (6000oC). 
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Table I.  Composition and Heat Treatment of 1Cr-1Mo -0.25V Steel 
Batch code Chemical composition (mass percent) 

C Si Mn P S Ni Cr Mo Cu V Al N 

Requirements 

0.25

-

0.35 

0.15

-

0.35 


1.0 


0.015 


0.018 


0.75 

0.9-

1.5 

1.0-

1.05 
- 

0.2-

0.3 

- - 

VaA 0.28 0.20 0.72 0.015 0.012 0.32 1.02 1.12 0.20 0.27 0.002 0.0075 

VaB 0.28 0.18 0.75 0.012 0.009 0.32 1.00 1.25 0.14 0.26 0.002 0.009 

VaC 0.29 0.20 0.75 0.010 0.009 0.34 1.00 1.25 0.14 0.26 <0.002 0.0075 

VaD 0.3 0.28 0.72 0.014 0.006 0.35 0.93 1.22 0.16 0.21 0.002 0.0093 

VaE 0.3 0.26 0.79 0.016 0.015 0.32 1.03 1.13 0.19 0.23 <0.002 0.0085 

VaG 0.29 0.26 0.76 0.009 0.007 0.45 1.12 1.18 0.07 0.23 0.002 0.0103 

VaH 0.29 0.26 0.77 0.009 0.007 0.46 1.12 1.20 0.08 0.23 <0.002 0.0095 

VaJ 0.29 0.21 0.66 0.010 0.008 0.51 1.07 1.29 0.06 0.23 0.002 0.0097 

VaR 0.3 0.27 0.70 0.012 0.012 0.44 1.10 1.35 0.11 0.27 0.002 0.0082 

 

 

 

 

 

 

 


