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ABSTRACT  

 

Scale is highly detrimental to surface quality for tinplate products. There are a large number 

of process variables at a typical hot mill and principal component analysis is a well-known 

technique for reducing the number of process variables. This paper estimates the principal 

components associated with the hot mill process variables and puts these through an Adaptive 

Neuro Fuzzy Inference System (ANFIS) to find those hot mill running conditions that will 

minimise the amount of scale observed on the bottom of the rolled strip. It was found that the 

variation observed in all the hot mill process variables could be captured through the use of 

just six principal components, and that using just three of these in an ANFIS was sufficient to 

identify those operating conditions leading to coils being produced with a consistently low 

scale count. Specifically, it was found that the best operating conditions for the hot mill were 

when the first component was lower than -0.098 the second lower than 0.8058 and the third 

higher than -0.482. These ranges in turn corresponded to certain hot mill temperatures that 

depended to some extent on the base chemistry of the incoming slab.  

 

Keywords: Scale; Hot Mill; Fuzzy Logic; Neural Networks; Adaptive Neuro Fuzzy Inference 

System; Principal Components. 
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1. Introduction 

For high-end flat steel products scale is clearly detrimental to surface quality. Scale is 

formed at the hot mill but it has its greatest impact on quality after further processing. Scale 

can have a particularly negative impact on the quality of tinplate products. This occurs due to 

the scale interfering with the interface between the steel substrate and the tin, resulting in a 

product surface that is not suitable for the tight tolerances required by customers of tinplate 

products. A typical hot mill has many process variables associated with it including 

geometries and chemistries associated with the incoming slab and various temperatures 

associated with the different mills - all of which could potentially influence the final scale 

count on the finished coil. The aim of this paper is to demonstrate that a combination of well-

known data mining techniques can be used to extract important information from a 

multidimensional industrial data set that enables engineers to control the hot mill process and 

in particular to control the formation of scale at the hot mill.  

 

 

There are many well used and understood data mining techniques available for 

analysing process data. However, the hot mill process studied in this paper has a number of 

characteristics that prevent any one of these, on their own, being able to successfully model 

and predict the scale count on coils produced at the hot mill – see Fig. 1. First, the hot mill 

process has many process variables associated with it and many of these are highly 

correlated. One obvious solution to this problem is too combine them all into a smaller 

number of principal components that by construction are uncorrelated with each other. 

However, the usual approach of then regressing the scale count on these components is going 

to be inadequate here because count data of this nature are well known to have non normal 

distributions. More typically, count data is traditionally modified using the Poisson 

distribution or a suitable generalisation of it. 

 

Secondly, the relationship between the hot mill scale count and the principal 

components is not the same over all values for the process variables. This would suggest 

merging the technique of regression trees with principal components, as this would enable the 

principal components to have different effects on the scale count over different sub regions of 

the full data set. However, this straight forward merger would tend to create very artificial 

discontinuities in the modelled response surface that is not representative of the scale count 

data. It is more appropriate to allow the relationship between the hot mill scale count and 

principal components to change slowly around certain values for some or all of the principal 

components.  All of these requirements can be meet by using a fuzzy neural network where 

the inputs to the network are the principal components and where the data is spit into various 

sub divisions and in each subdivision the mean of the Poison distribution for scale count is 

related to the principal components. The parameters relating the mean count to the principal 

components are then optimised by allowing the fuzzy network to maximise the log likelihood 

of observing all of the scale counts in the data set. Sharp discontinuities between each sub 

division of the data are avoided by fuzzyfying where these breaks occur using S shaped 

membership functions. 

 

The novelty of this paper is that the resulting model is a generalisation of the 

Adaptive Neuro Fuzzy Inference System (ANFIS), first put forward by Jang (1993), to be 

referred to as ANFISPC in this paper. The unique features of this generalisation over the 

original ANFIS is the use of principal components as inputs, the use of a distribution for the 

variable being modelled (n this case scale count) and optimisation using a likelihood function 
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(associated with this distribution) instead of the average squared prediction error. This 

modified ANFIS will be of use in modelling count data obtained from other processes or 

fields of study, and offers the potential to produce more accurate count predictions. Further, 

with its emphasis on distributions, these predictions will be more useful and comprehensive 

in nature. Instead of a simple mean count prediction for a particular set of conditions, the 

model will produce a predicted distribution for the count so that assessments can be made on 

product quality or consistency in production. 

 

To achieve this aim, the paper is structured as follows. First, a review of scale and its 

formation is presented, and this is followed by a description of the hot mill at the Port Talbot 

works and how the scale data is collected there. This is followed by a section describing what 

principal components are and how they can be constructed. The section after this then 

describes how these components can be used within an Adaptive Neuro Fuzzy Inference 

system. The performance of this system is then reviewed in the penultimate section together 

with a discussion on how this model can be used to control scale formation at the hot mill. 

Some recommended operating conditions are given in the conclusions section. 

2.   Literature review on scale type and formation 

2.1  Scale 

 

Scale is an oxide layer that builds up on the surface of the steel when it is exposed to 

environmental conditions. Oxide can form at any point during the life cycle of the product; 

however it is particularly likely to occur at the hot mill. This is due to the high temperatures 

at the hot mill, which increases the speed of any chemical reaction. Bolt (2003) states that the 

important properties to consider for the oxide layer are thickness, composition, adhesion and 

structure.  

 

The thickness of the oxide layer will also be determined by its processing conditions. 

Bolt (2003) states that the most important parameters for thickness are the finishing 

temperatures and the coil gauge. Depending on the temperature of the strip, oxide could be 

formed at the run-out table (ROT) and also during coiling but that scale formation at these 

stages is rather modest. This is supported in the work by Yang et al. (2008), where they 

discuss the influence of Silicon on thickness. They investigated steels with Silicon contents 

ranging from 0.01-1.91 wt. % and concluded that oxidation rates and scale thickness 

decreased with increasing Silicon. They also concluded that different oxides are formed at 

different percentages of Silicon. This work is important because it demonstrates the 

importance of limiting the chemistry range to avoid scales with different properties forming. 

Taniguchi et al. (2001) further demonstrated the importance of limiting the chemistry range. 

They found that when Silicon is at high percentages (1.14 wt. % and above), the penetration 

depth of the scale increases with increasing Silicon. The work of Munther and Lenard (1999) 

concluded that thick scale provides a degree of lubrication to the work rolls, while a thin 

scale has a higher coefficient of friction and is more adherent to the metal substrate, which 

makes it harder to remove. However, Silicon is not likely to play an important part in this 

analysis due to the low levels present in the steel investigated. 

 

The composition of these formed oxides influences the properties of the scale. The 

classical three-layer scale model reveals that when pure iron is oxidised under normal 

conditions, Wustite (FeO) is formed closest to the steel substrate followed by magnetite 

(Fe3O4) and hematite (Fe2O3). Each of these oxides has their own individual properties. Bolt 
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(2003) states that at hot rolling temperatures, Wustite has a high plasticity, but is extremely 

brittle at room temperature, which means that a large amount of Wustite will result in poor 

scale cohesion at room temperatures. Hematite is extremely hard and brittle and is highly 

detrimental during all stages of processing due to the increased work roll wear it causes and 

the poor strip quality it creates. Magnetite is the phase that is least brittle at room 

temperature. This phase can be tolerated in small quantities, because it is not as hard as 

hematite and shows some plasticity at hot rolling temperatures. Thinner scales are more 

adherent than thicker scales and the reason for their increased adherence is the higher 

amounts of hematite and magnetite. This is because magnetite and hematite are a lot harder 

than Wustite and so is harder to remove through further processing of the coil.  

 

2.2     Temperature 

 

The thickness of the scale is proportional to temperature and time. Sun et. al. (2004) 

observed that as temperature and oxidation time increases the scale thickness also increases. 

It was observed that for the first 20 seconds the scale increased in thickness according to 

linear growth, and then by parabolic growth after that. They explain this observation by the 

transport mechanism of oxidation. Initially the scale is very thin which allows rapid diffusion 

of oxygen with the metal at the iron-air interface. As the scale layer increases in thickness the 

transport rate will reduce and the diffusion will obey parabolic laws. 

 

The composition of the scale that develops is also highly temperature dependent.  At 

temperatures greater than 570° C the main composition of scale is Wustite, which is generally 

the thickest layer. This is then followed by magnetite and hematite. The literature on what 

composition of scale is observed at different temperatures is highly variable, mostly due to 

different hot mill layouts, different types of steel, different experimental methods, and 

different temperatures. The literature review of Bolt (2000) concludes that as the temperature 

is increased the more likely it becomes that the scale formed will be composed of a higher 

percentage of magnetite and hematite at the expense of Wustite.  

 

2.3       Phosphorus 

 

If the diffusion of iron into the scale is suppressed then magnetite and hematite will 

form in preference to Wustite, and this makes it harder to remove the scale. The composition 

of the scale can be influenced by the steel composition. For tertiary scale formation, Bolt 

(2000) states that Phosphorus is of particular importance. This is because Phosphorus can 

suppress diffusion of iron into the scale. This suppression can, locally, completely cut off the 

diffusion, which means that as the steel is oxidised magnetite and hematite will form in 

preference to Wustite.  

3. The hot mill process 

 

There is no single process variable that can be attributed to scale formation, so to be 

able to determine variables that are significant in scale formation at the hot mill, it is 

important to identify all the process variables through a detailed description of the hot mill 

process.  A schematic view of this process is given in Fig. 2. As illustrated in this figure, slab 

(typically about 0.25 m thick) formed at the continuous caster enters the hot mill to be rolled 
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into thin sheet steel. The slab entering the hot mill will also have a specific chemistry that 

was determined at an early stage of production (i.e. before the slab was cast).  

 

 

The purpose of the hot mill is to take this thick slab and roll it into thin sheet steel 

suitable for forming packaging cans, car body panels and other products. At the end of the hot 

mill the rolled steel is stored as coils of thin sheet steel. Before rolling, the slab must be 

“softened” by heating it up (to over 10000C) in reheat furnaces – shown at the start of Fig. 2. 

As temperature is one of the most important determinants of oxidation, it is at this stage of 

the hot mill process that scale starts to be observed on the surface of slab. To be able to 

understand the impact of this critical area on scale formation, multiple temperature readings 

are made in the reheat furnaces because these furnaces are very large and consequently have 

a non- uniform temperature distribution within them.  

 

In an attempt to remove the scale created in the reheat furnaces, the heated slabs pass 

through the horizontal scale breakers shown in Fig. 2. The slabs then proceeds to the 

interstand spray system for further scale to be removed by this spray. The slab then proceeds 

to the rougher mills to be rolled into coils. At the edging and rougher mills the gauge 

(thickness) of the incoming slab is reduced from around 250 mm to 35 mm (and the 

processed steel at this stage is often termed the transfer bar). The hot mill at the Tata works in 

Port Talbot (UK) has a reversing rougher mill, hence several passes are necessary to achieve 

the required transfer bar thickness (five passes are most likely for the product under 

investigation).  The transfer bar is then held at the coil box to maintain the heat of the bar 

prior to entering the finishing mill. Various temperature measurements are made across the 

coil at the rougher mill.  

 

The crop shear temperature is the temperature just before the transfer bar enters the 

finishing mill. The crop shear temperature is likely to be of vital importance for predicting 

scale formation because tertiary scale is typically formed during the early stages of the 

finishing mill. Again, various temperature measurements are made across the coil just before 

the coil enters the finishing mill. On entry into the finishing mill the slab encounters the 

descalers again. The purpose of the finishing mill is to further reduce the gauge to between 

1.4 - 18.0 mm depending upon the intended market for the finished steel. The finishing mill 

also controls the shape and temperature of the strip that in turn controls the metallurgical 

properties achieved by the strip. Various temperature measurements are also made across the 

coil at the finishing mill. 

 

The phase transformations within the rolled steel occur on the run-out table (ROT) 

and the cooling is controlled with a water cooling system. The temperature control of the run 

out table is vital in controlling the austenitic phase transformation. The temperature, cooling 

rate and cooling path will affect the microstructure present, which in turn will control the 

mechanical properties of the steel. Finally, the rolled sheet steel is formed into a coil for 

storage purposes. Table 1 list all the hot mill process variables identified by this discussion of 

the process.  

4. Measuring scale count 

The Parsytec inspection system is a camera operated system that detects defects on the 

surface of the coil. The detection of defects is achieved by the identification of all non-

homogeneous sections of the strip. When the affected sections are detected then the Parsytec 

software classifies the detected sections into features. These features are compared to the 
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online defect catalogue and then the best match is used for labelling the defects. It is possible 

for defects to be misclassified or not classified. This can occur because the environment 

around the cameras has a lot of potential contamination including: 

 

 Water- from the descaler and cooling sprays at the finishing mill. 

 Overlapping defects. 

 Substrate appearance- every steel composition will have a different surface 

appearance under the parsytec cameras that makes detection rates variable.  

The Parsytec system monitors the top and the bottom of the strip, but they are located 

in different locations in the mill. The top surface monitor is located at the start of the ROT, 

while the bottom surface monitor is located at the end of the ROT. The Parsytec system 

counts the number of formed scales at the top and bottom of each coil on the ROT. Due to the 

fact that under high coiling temperatures scale can continue to grow on the ROT and that due 

to water and other contamination after leaving the finishing mill it was determined that the 

bottom surface monitor for scale would give more reliable results. The dataset is constructed 

using data associated with coils from Tata Steel Europe’s Port Talbot Hot Mill, collected 

using the Parsytec system described above. Each of the coils in the dataset is intended for a 

high surface quality tinplate application, so scale levels must be low. To minimise the effect 

of different heating/cooling conditions only coils of a single gauge of 2.1mm are included in 

the data set.  

 

Such coil data was collected between September 2009 and March 2010 and for each 

coil there was a recorded value for all the process variables described above. The dependent 

variable is the bottom scale count from the Parsytec system – denoted as y in Table 1. In total 

the data set consisted of some 1530 data points. Table 1 lists these process variables together 

with the means and standard deviations over the whole sample of data. These process 

variables are designated as xj.  

5. Fuzzy logic, neural networks and principal components 

 The Adaptive Neuro Fuzzy Inference System (ANFIS), first put forward by Jang 

(1993), integrates neural network and fuzzy logic principles. The advantage of such a 

combination is that the resulting predictive model is not just of a black box because it also 

provides guidance to operators of manufacturing systems as to how to achieve such 

predictions –through the appropriate setting of the levels for the process variables. The basic 

philosophy behind the original ANFIS model was to split the data up into subsets and then to 

fit a linear model to the data in each subset. This part of the system is therefore similar to the 

characterisation and regression tree methodology first put forward by Breiman et. al. (1984). 

The main difference is that instead of using an average in each subset of data a linear 

regression is used instead. In the use of such linear models, this part of an ANFIS is similar to 

the multivariate adaptive regression splines (MARS) put forward by Friedman (1991). The 

fundamental difference between an ANFIS and these more traditional data analysis 

techniques is that the boundaries defining each sub set of data are blurred. 

 

5.1   Principal component analysis 

Principal component analysis (PCA), see for example Jolliffe (2002) for a good 

review of this technique, is an extensively used technique of multivariate linear data analysis. 

The main objectives of PCA are to reduce the dimensionality of the data whilst still 
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maintaining the original variability and to remove the correlation amongst all the process 

variables.  Such principal components (PC) can be calculated as follows. The p process 

variables (x1 to xp) are first standardised to have a zero mean and unit variance to avoid the 

problems associated with units of measurement. (For the hot mill data this is achieved by 

subtracting from each observation on xj the mean value and dividing the result by the 

standard deviation (both of which are shown in Table 1). Then p linear combinations of these 

variables can be formed as follows 

 

ppp2p21p1p

p2p2221212

p1p2121111

z....._azazaCP

z....._azazaCP

z....._azazaCP









                   (1a)

                         

 

where the z variables are the standardised values of the x process variables. The so called 

loadings, a11 to a1p, in the first principal component, are then chosen so as to maximise the 

variance of PC1 subject to the normalising condition 

 

1a......aa 2
p1

22

1211


                   (1b) 

 

PC1 is then said to be the first principal component and is a linear function of the z’s 

(and thus the process variables) that has the highest variance. PC2 then has the next highest 

variance and so on until all the variation in the z’s is picked up by the p principal 

components. That is 

 

variance(PC1) + variance(PC2) + .... + variance(PCp) = variance (z1) + variance(z2) + .... + 

variance(zp) = p 

 

with  

 

variance(PC1) > variance(PC2) > ... >variance(PCp)  

 

Various different algorithms can be used to find values for these loadings, ranging 

from the simple summation method put forward by Burt (1945) – (of which a good review 

can be found in Childs (1970)) - to algorithms that calculate a spectral decomposition of the 

correlation matrix amongst all the x variables (see for example the text by Mardia et al. 

(1979)). The Eigen values from this decomposition measure the variation in all the process 

variables explained by each principal component. Thus the first Eigen values from this 

decomposition measures the variation in all the process variables explained by the first 

principal component. The Eigen Vector from this decomposition contains the required 

loadings for each principal component. By construction these principal components are also 

all orthogonal and hence completely uncorrelated with each other.  

 

Principal components can also be given a best fit line interpretation as well. This is 

best illustrated using just two of the process variables from the hot mill – the maximum 

rougher mill temperature and the average rougher mill temperatures, x13 and x15 respectively. 

Let V be the variance - covariance matrix for these two variables 
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









19064.0

9064.01
V                    (2a) 

 

Down one of the diagonals of V are the variances for the standardised values for x13 

and x15, which because of this standardisation, are by definition equal to unity. The other 

diagonal contains the covariance between x13 and x15. The eigenvalues and eigenvectors of 

the symmetric matrix V are calculated to be 

 















7071.07071.0

7071.07071.0

2212

2111

aa

aa
rseigenvecto     










094.0

906.1
seigenvalue               (2b) 

 

In Eq. (2b) the matrix called eigenvectors is in fact made of up two eigenvectors, with 

the first column of the matrix being the first Eigen vector and the second column the second 

Eigen vector. If z13 and z15 are the standardised values for x13 and x15, the total variation in z13 

and z15 is two and the principal component  

 

PC1 = a11z13+a12z15 = 0.7071z13 + 0.7071z15                                                                                                                 

(2c) 

 

picks up 1.906/2 = 95.3% of this total variation. The final principal component 

 

PC2 = a21z13+a22z15 = -0.7071z13+ 0.7071z15                                                                                                                

(2d) 

 

picks up the remaining 0.094/2 = 4.7% of this total variation. Also PC1 and PC2 are 

completely uncorrelated as shown in Fig. 3a. 

 

 Further, Cattell (1952) has suggested that only those principal components having an 

Eigen value greater than 1 should be considered as essential and therefore retained in the 

analysis. This simple rule allows for a substantial reduction in the number of variables to be 

included in any model of the hot mill.  

 

Looking at the principal components in a less mathematical way allows a comparison 

with the technique of least squares to be made. In Fig. 3b, the standardised values for the 

average and maximum rougher mill temperatures are plotted against each other and the slope 

of the solid best fit line shown in the figure was chosen so as to minimise the total squared 

residual defined as 

 

 2,15,13

1

2

kk

n

k

k zze 


                              (3a) 

 

where  is the slope of the best fit line. This best fit line and the variation around it can 

therefore be written as  

 

z13 = z15+ e = 0.9064z15 + e                                                                                     (3b) 

 

where e represents the residual. As the mean value for e is by the definition of a best fit line 

zero, minimising Eq. (3a) is equivalent to minimising the variance of the residuals. One of 
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these residuals is highlighted in Fig.3b, and so the least squares technique positions the best 

fit line so as to minimise all the (squared) vertical distances between the data points and the 

line. The principal components constructed in Eqs. (2c,d) can also be given a residual 

interpretation. For example, take the principal component that has the smallest variance, i.e. 

that given by Eq. (2d) and write it as, 

 

z13= (a21/ a21)z15+ (PC2 / a21) = 1.0z15 + (PC2 / 0.7071)                                            (3c) 

 

Notice that Eqs. (3b,c) have a similar form, and so (PC2 / 0.7071) can be given a 

residual interpretation similar to e, whilst z13 = 1.0z15  can be given a best fit line 

interpretation. This is because PC2 has the smallest (i.e. minimised) variance of the two 

principal components. This best fit line is shown as the dashed line in Fig. 3b. However, 

(PC2/0.7071) is not the same residual as e. In fact (PC2/0.7071) is the distance along a line 

joining a data point to the best fit line given by Eq. (3c) - which is perpendicular to that best 

fit line. Thus principal component analysis positions a best fit line so as to minimise all the 

(squared) perpendicular distances between the data points and the best fit line.     

           

5.2 Binary partitioning and regression trees 

 

Fig. 4 describes a binary partition of a hot mill process using just the first two 

principal components of the hot mill process variables. The variable y in this figure is the 

scale count on the bottom of the processed sheet just before final coiling at the hot mill. The 

number of principal components determines the number of layers present in this partition and 

consequently the number of sub divisions of the data. In the illustration of Fig. 4 there are 

two components and so two levels and four sub divisions. The decision tree partitions the 

input space into a number of non-overlapping rectangular regions depending on the values for 

PC1 and PC2. The tree identifies four simple if – then rules. The parameter a, which has the 

same units as variable PC1, defines where the first split in the data occurs such that all values 

for PC1 that are less than or equal to a form one subset (together with the values for PC2 that 

were recorded at these values for PC1) and the remaining values for PC1 form the other sub 

set. These two subsets of data are then further split depending upon whether the values for 

PC2 are above or below the parameter b, where b is in the same units as variable PC2. 

Parameters a and b are referred to as decision rule parameters. This is a neat way to describe 

the running conditions at the hot mill and will provide information on how to control the 

amount of scale formation.  

 

In each sub division the response of interest y (i.e. scale count) is modelled using 

separate functions, label i. The subscript i in i defines the (four) sub divisions of the data. 

Each i is the mean (or possibly the median) scale count associated with each sub division: 

n




in

1k

ik

i

y

                      (4a) 

 
where yik is the scale count made on the kth coil processed under all the different process 

conditions making up sub division i. ni is the sample size of sub division i (number of coils 

process under the hot mill conditions corresponding to this sub division). Essentially, this 

binary regression model states that under certain process conditions there is a mean or typical 

scale count and in addition to this there will be a frequency of occurrence of other scale count 
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values around this mean. Traditionally, this frequency of occurrence of count data is 

modelled using the Poisson distribution 

 

!
][

v

e
vyP

v

i

i

i 

                                (4b) 

 

P[yi = v]  reads the proportion of all coils belonging to sub group i (that are measured for 

scale) that have a scale count equal to v. The main limitation of the Poisson distribution is 

that the mean and the variance of scale count in each sub group must be equal. It is clear from 

Table 1 that before splitting the sample up this is not the case – with the variance being much 

larger than the mean (but it may be true for sub groups). The equality of mean and variance 

can be relaxed through the use of the negative binomial distribution. The Negin Q version of 

this distribution, as put forward by Cameron and Trivedi (1998), takes the form 
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where Q and i are additional parameters defining this negative binomial distribution. The 

variance in the scale count for sub group i is then given by 

 

}11{][ 1 Q

iiiiyVar                      (4d) 

 

Thus when Q = 1 and as i → ∞ the variance becomes equal to the mean scale count 

in sub group i, and so the Poisson distribution corresponds to this restriction. The role of i is 

therefore to allow the mean and variance to differ. Also, when Q = 1 (and with i not equal to 

infinity) the Negin 1 variant of the negative binomial distribution is obtained and when Q = 0 

the Negin 2 variant of the negative binomial distribution is obtained. 

 

  This simple visualisation of the hot mill process can be easily generalised. For 

example, each i could be made a function of the principal components PC1 and PC2 and for 

each region there would be a separate function. 

 

)Pββexp(
2

1j

jji,i,0i 


 C                                                   (4e) 

 

Eq. (4e) is an empirical specification, but if the PCj variables are mainly temperature 

dependent this specification would have some theoretical grounding to it as well. Further 

generalisations could include the use of the squares of the process variables in Eq. (4e).  Eq. 

(4e) essentially states that over all the hot mill operating conditions associated with sub 

division i, scale counts follows a distribution whose means shifts with these conditions.  

 

However as more and more sub groups are created, by using more and more principal 

components, so the hot mill operating conditions associated with sub division get narrower, it 

is to be expected that the ij in Eq. (4e) become negligible so the mean of the scale count 

distribution does not shift over such sub regions. 

 

 5.3  Fuzzy Logic 
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The problem with the approach outlined in the sub section above is that the resulting 

modelled response surface is highly discontinuous in that it changes abruptly at the decision 

rules – a and b. This problem is overcome by fuzzyfying the decision rules.  For example, the 

crisp decision rule associated with the left most branch of the binary tree in Fig. 4  is 

 

If PC1 ≤ a and PC2 ≤ b  then y = 1 

 

It is well known that fuzzy expert systems use membership functions to quantify 

possibilities (Jang et. al. (1997)), but the context is very different from possibility as defined 

by statisticians. A possibility is a fuzzy measure indicating the degree of evidence or belief 

that a certain value for say PC1 belongs to a subset, say set PC1 ≤ a. A membership function 

has a value between 0 and 1 such that PC1 values further and further below a, have 

membership values closer and closer to one. Similarly, PC2 values further and further below 

b, have membership values closer and closer to one. A common functional form used for 

these membership functions is the sigmoidal function  

 

𝛾𝑃𝐶1≤𝑎 =
1

1+𝑒𝑥𝑝[𝜌1(𝑃𝐶1−𝑎)]
   𝛾𝑃𝐶2≤𝑏 =

1

1+𝑒𝑥𝑝[𝜌2(𝑃𝐶2−𝑏)]
                                      (5) 

 

where  and  are parameters requiring estimation. The values for  determine the 

steepness of the membership functions about a and b. So the further PC1 is below a, the 

greater will be the value for PC1 ≤ a, indicating a stronger belief that this value for PC1 

belongs to the set PC1 ≤ a. PC1≤a varies over the range 0 to 1, with 1 indicating the strongest 

possible belief and this will occur the further PC1 is below a (when PC1 = a, the membership 

function takes on a value 0.5). The further PC2 is below b, the greater will be the value for 

PC1≤b, indicating a stronger belief that this value for PC2 belongs to the set PC2 ≤ b. PC2≤b 

varies over the range 0 to 1, with 1 indicating the strongest possible belief and this will occur 

the further PC2 is below b. The theory of fuzzy logic suggests various ways to combine 

membership functions and this is discussed in the next sub section. 
 

5.4    Combining neural networks, binary classification, fuzzy logic and principal components 

 

Eqs. (4a,4c,5) contains a number of unknown parameters, a, b, i and i A 

neural network is one possible framework within which the values for these unknown 

parameters can be estimated. The Adaptive Network –based Fuzzy Interference System (or 

ANFIS for short) of Tsoukalas and Uhrig (1997) is one such neural network.  There are 

various ANFIS architectures, but one using a first order Sugeno fuzzy model put forward by 

Takagi and Sugeno (1995) is the most common. The ANFIS proposed by Tsoukalas and 

Uhrig requires modification to incorporate principal components and a negative binomial 

distribution for the scale count data. This modified architecture is shown in Fig. 5 for the 

decision rules shown in Fig.4:  

 

Rule 1:  If x1 ≤ a and x2 ≤ b, then y = 1 

Rule 2:  If x1 ≤ a and x2 > b, then y = 2 

Rule 3:  If x1 > a and x2 ≤ b  then y = 3 

Rule 4:  If x1 > a and x2 > b, then y = 4 

 

In the first layer of the ANFIS shown in Fig. 5, each of the k values for PC1 and PC2 

are given membership quantities using the following sigmoidal functions  
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where 1 to 2 and a and b are parameters requiring estimation. In layer 2 weights are 

determined that represent the possibility that each pairing for the k values of PC1 and PC2 

belong to one of the four sets given by the decision rules above. These weights are given by 

 

w1 = (PC1≤a)(PC2≤b)                              (7a) 

 

w2 = (PC1≤a)(PC2>b)                   (7b) 

 

w3 = (PC1>a)(PC2≤c)                   (7c) 

 

w4 = (PC1>a)(PC2>c)                   (7d) 

 

These are examples of a T-norm operator for working out the possibility, for example, 

that PC1 is less than or equal to a AND PC is less than or equal to b. In Fig. 5,  stands for 

the use of this T-Norm. 

 

In layer 3 the likelihood of observing the scale count equal to yik is calculated by 

substituting yik = v into Eq. (4c). These likelihoods are then multiplied by the wi values so 

that more emphasis is placed on likelihoods corresponding to the rule most likely to describe 

the PC1 and PC2 pairing. Finally, in layer 4 these weighted likelihoods are added up to give 

the weighted average likelihood. Conjugate gradient methods are then used to optimise the 

values for the parameters a, b, 1 and 2, i and i (as well as the value for Q). This non- 

linear optimisation algorithm chooses values for all these parameters so as to maximise this 

weighted average likelihood. 

 

The outputs of this model are predicted mean scale counts for each sub group of hot 

mill operating conditions, together with a predicted frequency of occurrence for scale counts 

in each sub group. The above structure could be generalised to account for all of the principal 

components created from all the hot mill variables. In this paper the resulting ANFIS with 

principal components, or ANFISPC for short, is built up sequentially. First a principal 

component analysis is carried out using all p process variables at the hot mill. Second, all 

those principal components that have eigenvalues in excess of unity are constructed using the 

loadings from the Eigen vectors associated with these Eigen values.  Next the principal 

component with the highest Eigen value, PC1, is used to split the data into two parts with the 

value for a in the optimised ANFISPC determining this split point.  Optimising this simple 

ANFISPC also involves estimating values for 1, 2, 1 and 2 that maximise  the weighted 

average likelihood. Fourthly, the principal component with the next highest Eigen value, PC2, 

is added to the above ANFISPC so that the data is split into 4 parts using PC1 then PC2. The 

weighted average likelihood for this larger ANFISPC is then maximised. Additional principal 

components are added to the ANFISPC until there is little reduction in this weighted average 
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likelihood. It should be pointed out that this may not be the optimal search procedure in that it 

may be best to split first by a principal component other than PC1 – say PC5. Different search 

procedure could form an interesting topic for future research. 

6. Results and discussion 

 

Table 2 shows the results of applying the spectral decomposition method to the 

twenty two process variables measured at the hot mill. It can be seen that there are six 

principal components that have Eigen values noticeably above 1. These components in turn 

account for just under 60% of the total variation in all the process variables. Table 3 shows 

the loadings associated with these six principal components. By looking at the absolute 

values of these loadings, it appears that the variation in the various temperatures at the hot 

mill are picked up by the first principal component (PC1), whilst the variation in the different 

chemistries  seems to be picked up by the second principal component, PC2. The variation in 

the minimum rougher mill temperature is not being picked up at all by these six components. 

Using Cattells rule, these six components can be used in the ANFISPC instead of the original 

twenty two process variables. 

 

PC1 is now used to split the scale count data set into two sub components. The 

ANFISPC estimates that the best split occurs above and below PC1 = a = -0.098. The estimate 

for 1 in Eq. (6a) is 5 and the resulting membership function is shown in Fig. 6. The 

membership function is relatively step around a so that the value for the membership function 

ranges from 0.1 to 0.9 over a very limited range of values for PC1. Thus  PC1 values less than 

-0.52 have memberships functions in excess of 0.9 and so can strongly be considered to 

belong to the subset PC1 ≤ -0.098. W a fairly step membership function the range of PC1 

values that could belong to either subset (PC1 > -0.098 as well) is quite narrow. The degree of 

fuzzyfication is therefore quite limited. 

 

The ANFISPC estimates that the mean scale counts for each sub group defined above, 

are 1 = 161 and 2 = 354. Thus the model predicts that if the hot mill is operated under those 

conditions for which PC1 ≤ -0.098, the average scale count on all coils produced under such 

conditions will be 161. Then if the hot mill is operated under those conditions for which PC1 

> -0.098, the average scale count on all coils produced under such conditions will be much 

higher at 354. This however says very little about the spread to be expected about these 

averages. A feel for this can be obtained by looking at the ANFISPC estimates of i. These 

estimates are 1 = 1.59 and 2 = 0.43 and with Q = 1.1. These values, together with Eq. (4d), 

suggest that in both  sub groups the variance in the scale count is more than the mean, but that 

this process variability is much greater in the sub group corresponding to PC1 > -0.098. The 

model therefore predicts that those hot mill conditions leading to a higher mean scale count 

also leads to greater variability about this mean count.  

 

In Figs. 7 the actual proportion of coils having scale counts of various values is 

plotted together with the predicted proportion from the ANFISPC model using the negative 

binomial distribution for each sub group. It can be seen from Fig.7a that when the hot mill is 

run under conditions corresponding to PC1 ≤ -0.098, just over 75% of all coils actually 

manufactured had a bottom scale count of 100 or less with over 85% of such coils having a 

scale count of 200 or less. The operating conditions corresponding to PC1 > -0.098 (Fig.7b) 

are much less favourable with only 42% of all coils manufactured having a bottom scale 
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count of 100 or less and with only 54% of coils having a scale count of 200 or less. The 

ANFISPC model predicts these proportions reasonably well in each operating sub group. 

 

In terms of actual process conditions, recall that in Table 3 the size of the loadings in 

PC1 were such that this component was mainly determined by the temperature variables and 

hardly at all by the alloying elements. Using the loading values in Table 3 for the first 

principal component it is straight forward to calculate what a particular hot mill temperature 

must be to ensure PC1≤ -0.098 under various hot mill running scenarios. As an illustration 

this paper considers two such scenarios but many others can easily be considered. The first 

scenario assumes the hot mill is running at the average values for all the process variables 

shown in Table 1, except the one temperature corresponding to each column heading in Table 

4. Table 4 therefore shows that to ensure PC1 ≤ -0.098, the maximum rougher mill 

temperature must be no higher than 11170C when all other process variables are at their 

average values.  As another example, under scenario 1, the average finishing mill temperature 

must be no higher than 8800C to ensure that PC1≤ -0.098.  

 

These types of scenario may be an unrealistic representation of actual hot mill 

practice. Often the hot mill accepts slabs of a given chemistry and then tries to control scale 

through temperature variations. Scenario 2 illustrates how this model copes with this type of 

situation. Consider a slab entering the hot mill with the chemistry shown in the first row of 

Table 5. The second scenario assumes the hot mill is running at the average values for all the 

temperature variables shown in Table 1, except the one temperature corresponding to each 

column heading in Table 4 when this slab chemistry enters the hot mill. Table 4 now shows 

that to ensure PC1≤ -0.098, the maximum rougher mill temperature must be no higher than 

11110C (at this chemistry and when all the other temperatures are at their average values). As 

another example, under scenario 2, the average finishing mil temperature must be no higher 

than 8300C to ensure that PC1≤ -0.098.  

 

To find out what the best alloying contents are, the second principal component needs 

to be added to the ANFISPC model, because as in Table 3 show the size of the loading in PC2 

were such that this component was mainly determined by the alloying variables and hardly at 

all by the temperature variables. The second principal component was therefore added to this 

simple ANFISPC. The scale count data is now therefore split into four sub sections using cut 

off values for PC1 and PC2. The estimated value for a in Eq. (6a) is unchanged at -0.098. 

Thus the scale count data set described above was first split into two sub sections using PC1 = 

-0.098 as the split point. The estimated value for b in Eq. (6b) was 0.805. Thus each of these 

two sub groups are split further into another two sub groups using PC2 = 0.805 as the split 

point. The estimate for 2 in Eq. (6b) was the same as that for 1, i.e. 5.  

 

The ANFISPC estimates that the mean scale count for each of these four sub groups 

was 1 = 139, 2 = 220, 3 = 350 and 4 = 365. Thus the model predicts that if the hot mill is 

operated under those conditions for which PC1 ≤ -0.098 and PC2 ≤ 0.805, the average scale 

count on all coils produced under such conditions will be at its lowest - 139. This is a big 

improvement on the average scale count associated with the best sub group of the previous 

simpler ANFISPC. Then if the hot mill is operated under those conditions for which PC1 ≤ -

0.098 and PC2 > 0.805, the average scale count on all coils produced under these conditions 

will be much higher at 220. If the hot mill is operated under those conditions for which PC1 > 

-0.098 and PC2 ≤ 0.805, the average scale count on all coils produced under these conditions 

will be higher again at 350. Finally, if the hot mill is operated under those conditions for 
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which PC1 > -0.098 and PC2 > 0.805, the average scale count on all coils produced under 

these conditions will at its highest of 365.  

 

This says very little about the spread to be expected about these averages. A feel for 

this can be obtained by looking at the ANFISPC estimates of i. These estimates are 1 =  

3.43, 2 =  0.81,  3 =  0.54 and 4 = 0.36 and with Q = 1.04. These values, together with Eq. 

(4d), suggest that in all sub groups the variance in the scale count is more than the mean, but 

that this process variability is much greater in the sub group corresponding to higher mean 

scale counts.  

 

In Figs. 8 the actual proportion of coils having scale counts of various values is 

plotted together with the predicted proportion from the ANFISPC model using the negative 

binomial distribution for each sub group. It can be seen from Fig.8a that when the hot mill is 

run under conditions corresponding to PC1 ≤ -0.098 and PC2 ≤ 0.805, nearly 81% of all coils 

actually manufactured had a bottom scale count of 100 or less with over 90% of such coils 

having a scale count of 200 or less. The corresponding percentages in the best sub group from 

the previous simplified model were around 75% and 85% respectively, so this newly 

identified set of operating conditions associated with new sub group produces coils with 

consistently lower scale counts than the conditions associated with the best sub group of the 

simpler ANFISPC above. The least favourable operating conditions corresponding to PC1 > -

0.098 and PC2 > 0.805 where the mean scale count is 365 and where only 46% of all coils 

manufactured have a bottom scale count of 100 or less and where only 55% of such coils 

have a scale count of 200 or less. The ANFISPC model predicts these proportions reasonably 

well in each operating sub group. In the same way as above, the actual chemistries and 

temperatures leading to hot mill operations where PC1 ≤ -0.098 and PC2 ≤ 0.805 is readily 

found. 

 

Next the third principal component is added to the ANFISPC so that the data set is 

then split up into eight sub groups. The estimated value for a and b in Eqs. (6a,6b) are 

unchanged at -0.098 and 0.805 respectively. Thus the scale count data set described above 

was first split into two sub sections using PC1 = -0.098 as the split point and then into four 

sub sections using PC2 = 0.805 as the split point. The estimated value for c in  

 

)](exp[1
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cPC

cPC
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

  

 

was -0.482. Thus each of the four sub groups just described were split into two further sub 

groups using PC3 = -0.482 as the split point. The estimate for 3 in in the equation above was 

the same as that for 1, i.e. 5.  

 

The resulting ANFISPC estimated that the mean scale count for each of these eight 

sub groups was 1 = 146, 2 = 133, 3 = 306, 4 = 185,5 = 331, 6 = 362, 7 = 464 and 8 = 

289. Thus the model predicts that if the hot mill is operated under those conditions for which 

PC1 <= -0.098 and PC2 <= 0.8058 and PC3 > -0.482, the average scale count on all coils 

produced under these conditions will be at its lowest at 133. This is only a small 

improvement on the average scale count associated with the best sub group of the previous 

simpler ANFISPC (where the average scale count was 139). This suggests there would be 

little to gain from expanding this ANFISPC through the introduction of the 4th principal 

component and the construction of 16 sub group operating conditions. 
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If the hot mill is operated under those conditions for which PC1 > -0.098 and PC2 > 

0.8058 and PC3 <= -0.482, the average scale count on all coils produced under these 

conditions will be at its highest of 464. These estimates for i were 1 =  1.99, 2 =  6.91,  3 

=  0.34, 4 = 1.65,  5 =  0.48, 6 =  0.57,  7 =  0.24 and 8 = 0.60 and with Q = 1.06. These 

values, together with Eq. (4d), suggest that in all sub groups the variance in the scale count is 

more than the mean, but that this process variability is much greater in the sub group 

corresponding to higher mean scale counts. In fact in the sub group with the lowest mean, the 

variance is substantially lower than in any other group so that operating conditions associated 

with this sub group produces coils that consistently have the lowers scale counts. 

 

In Figs. 9 the actual proportion of coils having scale counts of various values is 

plotted together with the predicted proportion from the ANFISPC model using the negative 

binomial distribution for each sub group. It can be seen from Fig.9b that when the hot mill is 

run under conditions corresponding to PC1 <= -0.098 and PC2 <= 0.8058 and PC3 > -0.482, 

nearly 83% of all coils actually manufactured had a bottom scale count of 100 or less with 

over 90% of such coils having a scale count of 200 or less. The least favourable operating 

conditions corresponding to PC1 > -0.098 and PC2 > 0.8058 and PC3 <= -0.482 where the 

mean scale count was 464 and where only 35% of all coils manufactured had a bottom scale 

count of 100 or less and where only 44% of such coils had a scale count of 200 or less (Fig. 

9g). The ANFISPC model predicts these proportions reasonably well in each operating sub 

group.  

 

 

 

In the same way as above, the actual chemistries and temperatures leading to hot mill 

operations where PC1 <= -0.098 and PC2 <= 0.8058 and PC3 > -0.482 is readily found. In 

Fig.10a, the three principal components are plotted against the average rougher mill 

temperature. The values for the principal components are obtained using the average values 

for all the process variables together with the average rougher mill temperatures shown on the 

horizontal axis of this figure. It is clear from this graph that all the average rougher mill 

temperatures lead to a PC2 value below 0.8058. However, an average rougher mill 

temperature below about 1140oC is needed to ensure that PC3 > -0.482. Further, an average 

rougher mill temperature below about 1100oC is need to ensure that PC1 <=  -0.098. Thus to 

achieve a consistently low scale count, the average rougher mill temperature must be kept 

below 1100oC when the hot mill is running at the average values for all the other process 

variables.  

 

In the Fig.10b, the three principal components are again plotted against the average 

rougher mill temperature but this time when the incoming slab had the chemistry shown in 

the last row of Table 5 and when all the other temperatures are set at their average values.  It 

is clear from this figure that all the average rougher mill temperatures lead to a PC2 value 

below 0.8058. However, an average rougher mill temperature below about 1095oC is needed 

to ensure that PC1 <=  -0.098. Further, an average rougher mill temperature below about 

1030oC is need to ensure that PC3 >  -0.482. Thus to achieve a consistently low scale count 

the average rougher mill temperature must be kept below 1030oC when the hot mill is 

running at the average values for all the other temperatures and when the slab chemistry is as 

shown above. 
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7.                Conclusions 

 

The scale count data from the hot mill contained a number of complexities that required 

the novel amalgamation of a number of well know data mining techniques. This was 

achieved in this paper by combining the analytical techniques of principal components, 

regression trees, fuzzy logic and neural networks into a single framework for estimation 

purposes. The resulting generalisation of the ANFIS has the potential to further improve past 

studies undertaken on count data. The practical implications of this addition to the state of the 

art in data mining techniques was the ability to accurately identify for the first time the 

operating conditions leading to consistently low scale counts at the Port Talbot hot mill.  

 

More precisely, it was found that the variability present in the twenty two hot mill 

variables could be captured adequately using just six principal components and that an 

accurate ANFISPC could be obtained using just the first three of these. This model identified 

eight unique hot mill operating conditions, with the condition PC1 ≤ -0.098 and PC2 ≤ -0.098 

and PC3 >-0.4828 leading to the smallest mean scale count (133), the smallest variability in 

scale count about this mean (a standard deviation of 51) and the greatest proportion of coils 

with scale counts below 100 (83%). A few scenarios were looked at to give a feel for the hot 

mill temperatures required to achieve these range of PC values. For example, the average 

rougher mill temperature must be kept below 1030oC when the hot mill is running at the 

average values for all the other temperatures and when the slab chemistry is as shown in the 

last row of Table 5. 

 

One of the short comings of this paper, is the search rule used for introducing each principal 

component to the ANFISPC. It may be the case that the first split in the data that best predicts the 

scale count may not be the one with the highest Eigen value. So one area for future research would be 

to develop a more comprehensive algorithm for choosing how the create each sub division of the data. 

Another fruitful area for future research  would be to used components from partial least squares as 

inputs to the ANFIS. This might actually simplify the search algorithm, because the first component 

from partial least squares is the one that picks up the most variation in the scale count. 
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Fig. 1 The scale count data collected at the Port Talbot hot mill over 3 months under different 

processing conditions. 

 

 

 
Fig. 2  Port Talbot hot mill layout. 
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Fig. 3a  A cross plot of PC1 and PC2 as calculated using. Eqs. (2c,d). 

 

 

 
Fig. 3b    A best fit line interpretation of principal components. 
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Fig. 4 A typical binary regression tree with two principal components (PC1 and PC2) and one 

output y.  
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Fig. 5.  ANFIS architecture corresponding to the representation shown in Fig. 4. 
 
 

 
Fig. 6  Membership function for PC1≤ a = -0.098. 
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Figs. 7  The actual and negative binomial distribution for coils produced when a. PC1 ≤ -

0.098 and b.  PC1 > -0.098. 

 

 
Figs. 8  The actual and negative binomial distribution for coils produced when a. PC1 ≤ -

0.098 with PC2 ≤ -0.098,  b.  PC1 ≤ -0.098 with PC2 > -0.098, c. PC1 > -0.098 with PC2 ≤ -

0.098,  d.  PC1 > -0.098 with PC2 > -0.098. 
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Figs. 9  The actual and negative binomial distribution for coils produced when a. PC1 ≤ -

0.098 with PC2 ≤ -0.098 and PC3 ≤ -0.4828  ,  b.  PC1 ≤ -0.098 with PC2 ≤ -0.098 and PC3 >-

0.4828, c. PC1 ≤ -0.098 with PC2 > -0.098 and PC3 ≤ -0.4828,  d.  PC1 ≤ -0.098 with PC2 > -

0.098 and PC3 > -0.4828, e. PC1 > -0.098 with PC2 ≤ -0.098 and PC3 ≤ -0.4828  ,  f.  PC1 > -

0.098 with PC2 ≤ -0.098 and PC3 >-0.4828, g. PC1 > -0.098 with PC2 > -0.098 and PC3 ≤ -

0.4828,  h.  PC1 >-0.098 with PC2 > -0.098 and PC3 > -0.4828. 
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Figs. 10  Variation in the three principal components with the average rougher mill 

temperature. 
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Table 1  Process variables and their sample means and standard deviations 

Process Variable xj Mean Standard  Deviation 

% Carbon x1 0.069 0.0042 

% Manganese x2 0.485 0.0226 

% Phosphorus x3 0.014 0.0031 

% Sulphur x4 0.014 0.0030 

% Silicon x5 0.005 0.0032 

% Copper x6 0.016 0.0059 

% Nickel x7 0.010 0.0030 

%Chrome x8 0.018 0.0040 

% Aluminium x9 0.034 0.0047 

%Tin x10 0.003 0.0018 

% Nitrogen x11 0.012 0.0009 

% solAl x12 0.031 0.0043 

Maximum RM Temperature, 0C x13 1121.75 17.87 

Minimum RM Temperature, 0C x14 918.34 11.97 

Average RM Temperature, 0C x15 1099.43 16.18 

Maximum CS Temperature, 0C x16 1099.88 19.89 

Minimum CS Temperature, 0C x17 951.69 48.59 

Average CS Temperature, 0C x18 1069.55 20.80 

Maximum FM Temperature, 0C x19 907.16 7.18 

Minimum FM Temperature, 0C x20 829.87 28.96 

Average FM Temperature, 0C x21 881.05 5.75 

ROT Temperature, 0C x22 731.35 25.13 

Scale Count y 203.72 286.78 

RM = Rougher Mill, CS = Crop Sheer, FM = Finishing Mill and ROT = Run out Table.  
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Table 2  Principal component analysis for the hotmill process variables 

Components Eigenvalues Variation, % Cumulative Variation, % 

PC1 4.141 18.82 18.82 

PC2 2.445 11.11 29.93 

PC3 1.896 8.62 38.55 

PC4 1.366 6.21 44.76 

PC5 1.287 5.85 50.61 

PC6 1.259 5.72 56.33 

PC7 1.032 4.69 61.02 

PC8 1.029 4.68 65.7 

PC9 0.981 4.46 70.16 

PC10 0.926 4.21 74.37 

PC11 0.874 3.97 78.34 

PC12 0.853 3.88 82.22 

PC13 0.716 3.25 85.47 

PC14 0.671 3.05 88.52 

PC14 0.65 2.95 91.47 

PC16 0.444 2.02 93.49 

PC17 0.444 2.02 95.51 

PC18 0.355 1.61 97.12 

PC19 0.294 1.34 98.46 

PC20 0.24 1.09 99.55 

PC21 0.094 0.43 99.98 

PC22 0.005 0.02 100 
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Table 3  Loadings associated with the principal components having the six largest Eigen 

values 

Loadings Variable PC1 PC2 PC3 PC4 PC5 PC6 

a1 x1 0.0069 0.0827 -0.0446 0.035 -0.0001 -0.7143 

a2 x2 -0.035 0.2776 0.2336 -0.0691 0.4536 0.0242 

a3 x3 -0.0379 0.2736 -0.1254 0.5209 0.2891 -0.0835 

a4 x4 -0.0073 0.0807 0.3311 -0.0376 0.5229 0.0281 

a5 x5 -0.0379 0.2736 -0.0263 0.3677 -0.321 0.0793 

a6 x6 0.0162 0.1703 0.4816 0.1202 -0.3054 0.1402 

a7 x7 -0.0399 0.1703 0.4816 0.1202 -0.3045 -0.2007 

a8 x8 -0.0279 0.2023 -0.0385 0.4672 0.012 0.0434 

a9 x9 -0.0768 0.5539 -0.1678 -0.3388 -0.0323 -0.002 

a10 x10 -0.0072 -0.0458 0.3278 -0.3285 -0.1857 -0.0157 

a11 x11 -0.0427 0.0869 -0.2851 -0.0095 -0.3335 -0.0063 

a12 x12 -0.0768 0.5539 -0.1678 -0.3388 -0.0323 -0.002 

a13 x13 0.4223 0.0029 -0.1659 -0.0036 0.0027 -0.0121 

a14 x14 0.4223 0.0029 -0.1659 -0.0036 0.0027 -0.0121 

a14 x15 0 0 0 0 0 0 

a16 x16 0.4487 0.0485 0.0214 -0.0033 -0.0172 0.0033 

a17 x17 0.3593 0.1263 0.0755 -0.0029 -0.003 -0.0092 

a18 x18 0.2107 0.0274 -0.01 -0.0017 -0.0018 0 

a19 x19 0.349 0.0778 0.0499 -0.0028 -0.0029 0.0193 

a20 x20 0.3299 0.0738 0.1513 -0.0027 -0.0028 0.0184 

a21 x21 0.1315 0.0171 0.1352 -0.0011 -0.0011 -0.0017 

a22 x22 -0.0069 0.0827 -0.0446 0.035 0.0001 0.6418 

 

 

 

 

 

 

Table 4   Maximum temperatures required to ensure PC1≤ -0.098 under different scenarios 

 x13 x14 x16 x17 x18 x19 x20 x21 x22 

Scenario 1 1117 1096 1095 1064 929 905 880 808 1090 

Scenario 2 1111 1090 1088 1055 892 902 830 773 1670 

All shown temperatures are in degrees Celsius. Scenario 1: All process variables are set at their 

average values except the one temperature corresponding to each column above. Scenario 2: A slab 

enters the hot mill with the following chemistry: 

%C:0.074, %Mn 0.492,  %P:0.014, %S:0.014, %Si:0.005, %Cu:0.015,  %Ni:0.008, %Cr:0.019, 

%Al : 0.029, %Sn:0.003, %N :0.013, and %solAl:0.027. Also the temperature variables 

are set at their average values except the one temperature corresponding to each column above. 

 

 

Table 5.   Illustrative slab chemistries - % 

C Mn P S Si Cu N Cr Al Sn N solAl 

0.074 0.492 0.014 0.014 0.005 0.015 0.008 0.019 0.029 0.003 0.013 0.027 

0.073 0.483 0.013 0.014 0.004 0.013 0.007 0.017 0.035 0.001 0.012 0.033 
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