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a b s t r a c t

Metabolomics provides an unbiased assessment of a wide range of metabolites and is an emerging ‘omics
technique in the marine sciences. We use ‘non-targeted’ community metabolomics to determine patterns
in metabolite profiles associated with particulate organic matter (POM) at four locations from two
long-term monitoring stations (L4 and E1) in the western English Channel. The polar metabolite fractions
were measured using ultra-high performance liquid chromatography Fourier transform ion cyclotron
resonance mass spectrometry (UHPLC-FT-ICR-MS), and the lipid fractions by direct infusion Fourier
transform ion cyclotron resonance mass spectrometry (DI-FT-ICR-MS); these were then analysed to sta-
tistically compare the metabolite distributions. Results show significantly different profiles of metabo-
lites across the four locations with the largest differences for both the polar and lipid fractions found
between the two stations relative to the smaller differences associated with depth. We putatively anno-
tate the most discriminant metabolites revealing a range of amino-acid derivatives, diacylglyceryltrime
thylhomoserine (DGTS) lipids, oxidised fatty acids (oxylipins), glycosylated compounds, oligohexoses,
phospholipids, triacylglycerides (TAGs) and oxidised TAGs. The majority of the polar metabolites were
most abundant in the surface waters at L4 and least abundant in the deep waters at E1 (E1-70m). In con-
trast, the oxidised TAGs were more abundant at E1 and most abundant at E1-70m. The differentiated
metabolites are discussed in relation to the health of the phytoplankton as indicated by nutrients, carbon
and chlorophyll, and to the dominance (determined from metatranscript data) of the picoeukaryote
Ostreococcus. Our results show proof of concept for community metabolomics in discriminating and char-
acterising polar and lipid metabolite patterns associated with marine POM.

Crown Copyright � 2015 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Particulate organic matter (POM) in the ocean plays a crucial
role in global carbon cycling in terms of the turnover of organic
metabolites, driving the biological pump and the generation of
climatically active gases. The composition of marine POM is largely
determined by microbes, principally the carbon fixing phytoplank-
ton. Fixed phytoplankton carbon and other elements are incorpo-
rated into a wide range of organic compounds or metabolites
which are then acted on by biotic factors including interactions
between bacteria, viruses and zooplankton, resulting in recycling
and remineralisation of POM. In addition to biotic factors, a diverse
range of abiotic interactions such as light, temperature and salinity
also affect POM composition.

Lipids, carbohydrates and amino acids are the primary groups of
metabolites that make up the fundamental building blocks of

http://dx.doi.org/10.1016/j.pocean.2015.04.022
0079-6611/Crown Copyright � 2015 Published by Elsevier Ltd. All rights reserved.

Abbreviations: ANOVA, analysis of variance; Chl-a, chlorophyll-a; CID,
collision-induced dissociation; DAG, diacylglyceride; DGTS, diacylglyceryltrimethyl
homoserine; DI, direct infusion; FT-ICR, Fourier transform ion cyclotron resonance;
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microbes in the oceans. These primary metabolites and other
groups of secondary metabolites, especially pigments, have often
been used as organic biomarkers to investigate the source, compo-
sition and degradation of marine POM especially its alteration
down through the water column and into the sediment (e.g.
Handa and Tominaga, 1969; Wakeham and Lee, 1989; Lee et al.,
2004; Rontani et al., 2011). As a sub-set of the lipids, the
fatty-acids are key nutrients affecting physiological performance,
and have been used as organic biomarkers to assess trophic trans-
fer and food quality (e.g. Kainz et al., 2004). Pigments, central to
light harvesting in photosynthesis, have been used widely to pro-
vide chemotaxonomic characterisation of phytoplankton in a wide
range of contrasting oceans (see review by Jeffrey et al., 1997).
Pigments together with pigment degradation products and partic-
ulate carbon have also been used to track the fate of POM down the
water column (Bidigare et al., 1986; Llewellyn and Mantoura,
1996). Overall though, a lack of biochemical techniques has hin-
dered the full chemical identification of POM and a significant pro-
portion remains uncharacterised (Lee et al., 2004). Recent
advancements in analytical and computational tools are now
enabling a revolution in the investigation of microbial communi-
ties and their interactions with the environment (Larsen et al.,
2012).

Advancements in mass spectrometry (MS), hyphenated tech-
nologies and associated software have enabled the development
of the newest of the ‘omic techniques, metabolomics.
Metabolomics involves the non-targeted unbiased analysis of
large suites of low molecular weight organic molecules or
metabolites (typically 50–1500 Da) and combined with statistical
analysis enables the discovery of relationships between metabo-
lites, organism physiology and the environment. Metabolomics
complements genomics, transcriptomics and proteomics and rep-
resents an important addition to the ‘omics toolkit especially
because it provides the closest molecular link to phenotype
(Vemuri et al., 2005). This unbiased analysis of organic matter
contrasts to the more traditional targeted analysis of predefined
compound groups, the latter remaining important for the testing
of specific hypotheses. As the polarity of molecules within organic
material is highly diverse, the extraction and analysis of all
metabolites using one method cannot be achieved. Therefore
extraction and analysis in metabolomics is generally divided into
that required for the polar or hydrophilic metabolite fraction and
that required for non-polar or lipophilic metabolite fraction, often
termed lipidomics.

Metabolomics has already demonstrated its important role in
several research fields, including bioenergy, environmental inter-
actions, functional genomics and gene discovery, secondary meta-
bolism, genome-wide association mapping, and metabolic
modelling in higher organisms and microbial systems (Tang,
2011). It has also been used to study environmental stress
responses in plants (reviewed in Arbona et al., 2013).
Metabolomics has also been applied in studies of individual strains
of microalgae, e.g., on the model algae Chlamydomonas (Lee and
Fiehn, 2008; May et al., 2008), the cyanobactera Synechococcus
and Synechocystis (Baran et al., 2010; Schwarz et al., 2013) and
on the diatom Skeletonema marinoi (Vidoudez and Pohnert,
2011). Notably non-targeted metabolomics has revealed a number
of unexpected metabolites in Synechococcus sp. PCC 7002, such as
histidine betaine (hercynine), its derivatives and several unusual
oligosaccharides including a range of oligohexoses (Baran et al.,
2010). The potential of combining metabolomics and genomics
for the identification of novel biosynthetic genes was recently
highlighted in a study on a diverse range of cyanobacteria (Baran
et al., 2013). Metabolomics has also revealed that shifts from high
to low CO2 levels induce a coordinated change in the central
C/N-metabolism in Synechocystis 68034 (Schwarz et al., 2011).

Metabolomics, when applied to whole systems or communities
direct from the environment, is termed community or
meta-metabolomics, akin to metagenomics. An example of where
community metabolomics is being used widely is in determining
the effects of gut microflora on human health (Nicholson et al.,
2012; Turnbaugh and Gordon, 2008). It was also used recently in
a soil ecology study to assess the entire microbial community of
a soil sample to determine how it responds to factors such as
pollution and climate change (Jones et al., 2014). There have been
few community metabolomics studies in aquatic or terrestrial
environments to date and it has not yet been used to study natural
populations of marine microbes.

The temperate marine ecosystem of the western English
Channel (WEC) provides an excellent platform to assess the
metabolite compositions of the POM in an un-biased manner and
to provide proof of concept for marine community metabolomics.
Monitoring in the WEC has been occurring for over forty years
making it one of the best studied marine regions in the world.
The two main monitoring stations, L4 and E1, are seasonally strat-
ified from late April until September and both have a spring and
autumn phytoplankton bloom. Long-term monitoring of phyto-
plankton using microscopy counts at L4 over a period of 15 years
has revealed a consistent pattern of bloom formation with diatoms
reaching maximum abundance in mid-April followed by peaks in
abundance of Phaeocystis and coccolithorphorids (Widdicombe
et al., 2010). Phyto-flagellates numerically dominate throughout
the year gradually increasing in spring with maximum abundance
towards late May (Widdicombe et al., 2010). Overall the biological
community in the WEC is variable, shifting over the annual cycle in
response to abiotic factors such as seasonal fluctuations in light
and nutrients, turbulence, temperature and other meteorology fac-
tors such as wind and cloud (Widdicombe et al., 2010; Smyth et al.,
2010).

As part of the monitoring at these stations an extensive data-
base has been compiled providing information on the phytoplank-
ton and zooplankton community populations. Additional routine
measurements at these stations include irradiance, salinity,
temperature, chlorophyll, nutrients, carbon and nitrogen, phyto-
plankton and zooplankton counts, and photosynthetic pigments
(www.weco.uk). In terms of metabolite analysis, targeted analysis
of pigments using HPLC has been undertaken in the WEC for over
ten years although correlating pigments with phytoplankton
carbon and particulate carbon remains a challenge (Llewellyn
et al., 2005). Short term, targeted metabolite studies at L4 have
focussed on fatty acids to determine zooplankton fecundity
(Pond et al., 1996). Additionally a group of UV sunscreen metabo-
lites, mycosporine-like amino acids, have been studied at L4 show-
ing temporal variation according to phytoplankton composition
and solar irradiance (Llewellyn and Harbour, 2003). Recently, pre-
liminary metagenome and metatranscriptome analyses have been
used to characterise the microbial populations at L4 revealing a
robust seasonal structure for the bacterial community (Gilbert
et al., 2010a,b).

Here we build on our long term understanding of the western
English Channel describing the first preliminary community meta-
bolomics study to chemically characterise the POM in the WEC.
Our study is focused on the >0.7 lm to <200 lm fraction of POM
primarily composed of phytoplankton. Our investigation was
enhanced by collecting samples in collaboration with JCVI
(J. Craig Venter Institute) in May 2009, whose aim was to molecu-
larly and genetically characterize the microbes in the WEC. There
were four main aims to our study; 1. To evaluate community
metabolomics as a new state-of-the- art approach to statistically
discriminate different microbial populations in the WEC; 2. To
putatively annotate abundant lipid and polar metabolites to deter-
mine trends across the sampling locations; 3. To compare
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metabolite profiles with the physico-chemical, carbon and
chlorophyll measurements across the sampling locations and 4.
To compare metabolite profiles with phytoplankton community
transcriptional activity across the sampling locations.

2. Methods

2.1. Sample collection

Samples were collected from the WEC at the coastal station L4
(50�150N, 4�130W) on 21st May 2009 at a surface depth of 2 m and
below the thermocline at a depth of 17 m (L4-2m, L4-17m) and at
the open shelf station E1 (50�020N, 4�220W) on 28th May 2009 at a
surface depth of 1 m and below the thermocline at a depth of 70 m
(E1-1m, E1-70m; Table 1). At each sampling location, 1L of
<200 lm mesh pre-filtered seawater (n = 12) was filtered under
vacuum on-board ship onto a 25 mm glass fibre GF/F filter paper
(Whatman; nominal cut-off at 0.7 lm).

2.2. Metabolite extraction

Samples were lysed and extracted from the filters with 1 mL
methanol for 20 min at 4 �C and the supernatant was removed
with a glass pipette. The extraction was repeated with 1 mL of
methanol: water (1:1), the extracts combined, and dried in vacuo
(Thermo Savant, Holbrook, NY) for ca. 3 h. The dried extracts were
dissolved in water: methanol: chloroform (300 lL:270 lL:300 lL),
vortexed for 30 s, and then centrifuged for 10 min at 1800 rcf and
4 �C (Wu et al., 2008). The polar extract (upper phase) was dried in
vacuo while the non-polar (lipid) extract (lower phase) was dried
under a stream of nitrogen to minimise oxidation. Samples were
stored at �80 �C until analysis.

2.3. Mass spectrometry based metabolomics and lipidomics

Direct infusion Fourier transform ion cyclotron resonance mass
spectrometry (DI-FT-ICR-MS) based lipidomics was performed on a
LTQ-FT Ultra (Thermo Fisher Scientific, Bremen, Germany) with a
chip-based Triversa direct infusion nanoelectrospray source
(Advion Biosciences, Ithaca, NY). Non-polar (lipid) samples were
taken up in the original volume of methanol:chloroform (3:1) con-
taining 5% ammonium acetate. Samples were centrifuged (10 min,
4 �C) to remove any particular matter. They were then analysed in
positive ion mode in a controlled-randomized sequence different
from the extraction sequence, with each sample analysed as three
technical replicates. A quality control (QC) sample was pooled from
all samples and analysed repeatedly at the start, end, and equidis-
tantly throughout the sequence. Data was acquired at a nominal
resolution of 100,000 (at m/z 400) in eight increasing SIM (selected
ion monitoring) windows of 200 Da width, from m/z 120 to 1440
(Weber et al., 2011).

Reversed-phase ultra-high performance liquid chromatography
Fourier transform ion cyclotron resonance mass spectrometry (RP
UHPLC-FT-ICR-MS) based metabolomics of the polar samples was
carried out on a Thermo Scientific Dionex Ultimate RSLC 3000 sys-
tem on the same FT-ICR mass spectrometer. Samples were each
taken up in 40 lL methanol and 360 lL water and centrifuged
for 10 min at 4 �C and 22000 rcf. Five lL of each sample was
injected onto a Hypersil Gold column (Thermo Scientific,
2.1 � 100 mm, 1.9 lm particles) and separated at 40 �C with a flow
rate of 400 lL/min and a gradient from 0.1% formic acid in water
(solvent A) to 0.1% formic acid in methanol (solvent B). The flow
was held at A for 1 min, followed by a 3 min gradient to B, held
there for 4 min before reverting over 1 min back to A and
re-equilibrating for another 3 min before the next injection. For

the first 0.5 min, flow was diverted to waste. One
UHPLC-FT-ICR-MS analysis was performed per sample. Data was
acquired in positive ion mode from m/z 100–1000 at a nominal
resolution of 50,000 in centroid mode. A QC sample was pooled from
all biological samples and analysed repeatedly at the start, end, and
equidistantly throughout the sequence. After statistical analysis (see
below), peaks of interest were subjected to further MS analysis using
the same instrumentation, using wide SIM windows and spiked
polyethylene glycol (PEG) standards (Sigma–Aldrich, UK) for
additional internal calibration, narrow SIM windows for the deter-
mination of isotope patterns, and MS2/MSn fragmentation using
collision-induced dissociation (CID) and infrared multiphoton
dissociation (IRMPD).

2.4. Data processing and peak annotation

DI-FT-ICR-MS lipidomics data were processed using the
SIM-stitching algorithm (Southam et al., 2007; Payne et al., 2009;
Weber et al., 2011), using an in-house Matlab script
(SIMStitch_2_10, freely available upon request) and a series of
internal mass calibrants derived from known lipid identities.
High quality reproducible data was achieved by implementing a
series of peak filtering algorithms (Payne et al., 2009): peaks were
picked with a signal-to-noise ratio of greater than 3.5:1, a ‘replicate
filter’ was applied such that only peaks in two (or more) of the
three analytical replicates (per sample) were retained, then a ‘sam-
ple filter’ was applied to retain only those peaks in >30% of all sam-
ples. At the same time a ‘blank filter’ was applied to discard peaks
that occurred in an extraction blank sample (i.e. a sample prepared
as indicated above but with no biological material present) with
peaks retained if they exceed a minimum sample-to-blank inten-
sity ratio of 2, creating a peaklist and an intensity matrix.
Missing values were imputed using a KNN algorithm
(Hrydziuszko and Viant, 2012) in an in-house R script, and the
intensity matrix was normalized using the PQN algorithm
(Dieterle et al., 2006). This matrix was subject to univariate statis-
tical analysis. The same matrix was transformed using the gener-
alised logarithm (Parsons et al., 2007) to stabilise the technical
variance across the measured peaks prior to analysis using multi-
variate statistics. This DI-FT-ICR-MS processing algorithm has been
described in detail elsewhere (Kirwan et al., 2014).

UHPLC-FT-ICR-MS metabolomics data were initially converted
into netcdf (.cdf) format using Xcalibur 2.1 and processed using
XCMS online (https://xcmsonline.scripps.edu/; Tautenhahn et al.,
2012) to generate an intensity matrix, list of peak retention times
and metabolite annotation from Metlin. The intensity matrix was
imported into our SIMStitch pipeline immediately after the repli-
cate filter, and hence included sample filtering, blank filtering,

Table 1
Physico-chemical properties of the water at the time of sampling the two stations.

L4-2m L4-17m E1-1m E1-70m

Date 21st May
2009

21st May
2009

28th May
2009

28th May
2009

Number of samples 12 12 12 12
Time 12:00 pm 12:00 pm 10:30 am 10:30 am
Latitude 50.25 50.25 50.03 50.03
Longitude �4.22 �4.22 �4.34 �4.34
Total Water

Column (m)
55 55 73.2 73.2

Thermocline (m) 13 13 20 20
Sample Depth (m) 2 17 1 70
Temperature (�C) 12 11 12.44 10.77
Salinity (PSU) 35.00 35.00 35.18 35.28
Oxygen (lmol/kg) 6.10 6.10 5.98 6.20
pH (log of [H+]) 8.4 8.4 8.4 8.3
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PQN normalization, KNN missing value imputation and the gener-
alised logarithm transformation, as for DI-FT-ICR-MS processing
above. The sample filter was set to 75% as no technical replicate fil-
tering could be applied. For both the polar and lipid datasets, peaks
were annotated and putative empirical formulae calculated using
the MI-Pack software (Weber and Viant, 2010), and by searching
the KEGG and LipidMaps databases (http://www.genome.jp/kegg/;
http://www.lipidmaps.org/). Polar data was also annotated with
retention times and the identification output from Metlin. Those
peaks that were found to differ significantly between the four sam-
pling locations (see below) were reviewed in the original spectra in
Xcalibur 2.1 (Thermo Scientific) taking into account isotopic infor-
mation, and databases such as Chemspider and the Dictionary of
Natural Compounds were used to infer compositions, especially
in cases where only one molecular formula was predicted but no
annotation was available. The identification of selected metabo-
lites, using MS fragmentation, was performed as described above.
The list was subject to manual filtering to remove implausible
results, e.g. 41K adducted peaks were removed if the corresponding,
higher abundance 39K adduct was not detected. Also annotated
manually were chlorine isotope clusters, inorganic ions, and an
oligoglycan series, which were not recognized by the automated
searches.

2.5. Statistical analyses of metabolomics and lipidomics measurements

Initially, principal components analysis (PCA) was used to
assess the overall metabolic similarities and differences between
the four sampling locations in an unbiased manner, using the
PLS_Toolbox (version 6.5, Eigenvector Research, Manson, WA,
USA) within Matlab (version 7.8; The MathsWorks, Natick, MA,
USA). All resulting PC scores data were tested using ANOVA and
a Tukey-test to determine whether there were significant differ-
ences in the metabolic and lipid profiles between the sampling
stations and depths, using an in-house Matlab script. Supervised
multivariate analyses were performed using partial least squares
discriminant analysis (PLS-DA), again using the PLS_Toolbox, with
internal cross-validation and permutation testing to determine the
quality of the models (Venetian blinds, 1000 permutations each)
using in-house Matlab scripts (Westerhuis et al., 2008).
Univariate statistical analyses were used to investigate whether
individual MS peaks differed significantly between sampling sta-
tion and depth. Specifically, ANOVAs were conducted using an
in-house Matlab script (with a false discovery rate (FDR) of 5% to
correct for multiple hypothesis testing; Benjamini and Hochberg,
1995).

2.6. Supporting biological, physical and chemical measurements

The protocols used for physical, chemical and biological mea-
surements including zooplankton counts are as described on the
WEC website at www.westernchannelobservatory.org.uk and by
Smyth et al., 2010. As the purpose of this study was to assess com-
munity metabolomics, the metatranscript data was used here only
to provide taxonomic characterisation.

For metatranscriptomic sampling, 200 lm filtered seawater
was passed through a 0.2 lm sterivex filter for 30 min (typically
1.5–2L), after which the sterivex was capped, flash frozen in liquid
nitrogen, and frozen at �80 �C. RNA was purified from filters using
the Trizol reagent (Life Technologies; Carlsbad, CA) and, treated
with DNase (Qiagen, Valencia, CA, USA) and cleaned with the
RNeasy MinElute Kit (Qiagen, Valencia, CA, USA). For polyA primed
cDNA, 200 ng of DNase treated total community RNA was ampli-
fied using the MessageAmpII aRNA Amplification kit (Life
Technologies, Carlsbad, CA, USA) with two rounds of in vitro tran-
scription at 37 �C for 14 h with T7 Oligo(dT) priming. Amplified

RNA was then converted to double stranded cDNA using the
SuperScript III First-Strand Synthesis System (Life Technologies,
Carlsbad, CA, USA) with random hexamers for first strand synthe-
sis, and the SuperScript Double-Stranded cDNA synthesis kit (Life
Technologies, Carlsbad, CA, USA) for second-strand synthesis.
cDNA in the 0.3–3.0 kb size range was purified from agarose gels
using QIAquick Gel Extraction Kit reagents and protocols (Qiagen,
Valencia, CA, USA), further purified with Ampure XP beads
(Beckman Coulter, Brea, CA, USA) and used directly for
pyrosequencing.

For sequence annotation, all metatranscriptomic sequence
libraries were filtered to remove near identical reads using
CD-hit-454 (Niu et al., 2010). Metatranscriptomic sequences were
compared against SILVA to remove rRNA (Pruesse et al., 2007).
We also aligned reads against an in-house database of rRNA
sequences and whole rRNA operons, including ITS sequences. All
hits with E-value < 10e�10 were considered to be ribosomal RNA
and were removed from further analysis. The remaining reads
were compared to PhyloDB 1.02 in two separate BLAST searches
to establish phylogenetic annotation. PhyloDB is a combination
of many public protein sequence databases including KEGG
(Kanehisa et al., 2011), IMG (Markowitz et al., 2010), GenBank
(Benson et al., 2010), Ensembl (Flicek et al., 2011), several
in-house assemblies of algal uniculture transcriptomic sequences,
the metagenomic assemblies of SAR86 (Dupont et al., 2012) and
HNLC Prochlorococcus (Rusch et al., 2010), and the single cell gen-
omes of SAR324 (Chitsaz et al., 2011) and SAR86 (Dupont et al.,
2012). PhyloDB protein sequences (n = 14 million) come from a
wide array of sources, but only proteins directly annotated in
KEGG serve as the source of annotations such as EC and KO. All
phylogenetic annotations are generated from the best hit to any
protein in PhyloDB. The cutoff used for BLASTing phylodb was
1e�5.

3. Results

3.1. Distinguishing sampling locations using metabolomics

UHPLC-FT-ICR-MS of the polar metabolite extracts, coupled
with rigorous data processing, yielded a final data matrix of 47 bio-
logical and 9 QC samples and 173 unique m/z values (one E1-1m
sample was lost before extraction); the QC samples were later
removed from the dataset. This relatively low number of peaks
detected reflects the relatively low concentrations of metabolites
in these filtered seawater samples compared to biofluids and tissue
extracts that are more routinely investigated in a metabolomics
study. PCA was used initially to visualize the metabolic differences
between the four sampling locations, with the scores plots reveal-
ing that the largest metabolic differences (along PC1 axis) occurred
spatially, between L4 and E1, relative to smaller metabolic differ-
ences (along PC4 axis) between the near-surface and deeper sam-
ples (Supplementary Information, Fig. SI1).

The clustering of the QC samples within the PCA scores plot
indicates high technical quality of this polar metabolomics dataset.
The apparent metabolic differences between sampling locations
were evaluated statistically by testing the significance of the sepa-
ration between the groups along the PC axes (Supplementary
Information, Table SI1): The effect of both stations and depth on
the metabolic profiles was significant, with each of the four loca-
tions being significantly different from all other locations along
PC1 (p(PC1)<1E�8), by both depth and site.

Having confirmed that the metabolic profiles differ between
stations and as a function of depth, we re-analysed the
UHPLC-FT-ICR-MS metabolomics dataset using supervised multi-
variate analyses (PLS-DA), a more powerful approach for
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discovering which peaks in the mass spectra are primarily respon-
sible for these differences. The optimal PLS model comprised of 4
latent variables (LVs) and 36 forward-selected variables (m/z
values), derived by minimising the group classification errors
obtained through internal cross-validation. The resulting PLS-DA
scores plots confirm that the largest metabolic differences occur
between stations E1 and L4 (Fig. 1A), relative to the smaller meta-
bolic differences associated with sampling depths (Figs. 1B and C).

Specifically, the LV1 axis describes mostly sampling station dif-
ferences in the metabolic profiles, LV2 describes depth differences
at E1, and LV3 describes depth differences at L4; low classification
error rates were obtained for all four groups, and permutation test-
ing was used to confirm the statistical significance of these results
(Table SI2; Westerhuis et al., 2008).

The m/z values that are responsible for the separation of these
groups (derived from the LV1, LV2 and LV3 weightings) were then
putatively annotated and are presented in Table SI3a for L4 vs. E1,
in Table SI3b for E1-1m vs. E1-70m, and Table SI3c for L4-2m vs.
L4-17m, all with extensive metadata.

A summary of these findings showing which putatively anno-
tated polar metabolites differ the most between stations (L4 and
E1) and depths is shown in Table 2. As an additional assessment
for the robustness of these findings, ANOVA was conducted on
each of the 173 peaks in the polar metabolite dataset, revealing
that 35 of the 36 forward-selected m/z values were significantly
different between groups (at FDR < 5%; Tables SI3).

Several groups of annotated polar metabolites were found to
differ between the sampling locations; these included aromatic
amino acids and derivatives, glycosylated compounds, oligohex-
oses and a range of fatty acids and oxylipins (Table 2 and SI3).
Overall polar metabolites were considerably more abundant at
L4-2m, L4-17m and E1-1m than at E1-70m. Notably glycosylated
compounds and oligoglycans were a lot more abundant at
L4-2m. For the amino-acids and derivatives, the related metabo-
lites phenylalanine and tyrosine showed similar distributions with
slightly higher abundance at L4-2m. In contrast, another aromatic
amino acid, mycosporine-glycine with UV sunscreen and antioxi-
dant properties, was most abundant at E1-1m. Its MS2 & MS3 spec-
tra correspond well to those of an authentic compound. Pyloricidin
C, an antibiotic, showed a different distribution again with much
higher abundance at L4-17m. Another unusual metabolite that
was differentially discriminated was annotated as a betaine lipid
matching ulvaline, constituted of the headgroup plus glycerol of
homoserine betaine with a diacylglyceryltrimethylhomoserine
(DGTS) backbone, (Dictionary of Natural Compounds; Abe and
Kaneda, 1975). IRMPD fragmentation shows the expected head-
group ion at m/z 144.10171 (calc. 144.10191). Ulvaline was found
to be most abundant in the surface samples, and in particular at
L4-2m.

3.2. Distinguishing sampling locations using lipidomics

DI-FT-ICR-MS of the lipid extracts coupled with rigorous data
processing resulted in lipid profiles comprising of 1896 peaks
and a final data matrix without QC samples comprising of 47
biological samples. PCA was used initially to visualize the similari-
ties or differences between the lipid profiles from the four sampling
locations. One L4-2m sample, an outlier in the PCA, was excluded
from subsequent modeling. Consistent with the polar metabolite
measurements, the PCA scores plot revealed that the largest lipid
differences occurred spatially, between L4 and E1, relative to smal-
ler or no apparent differences between the near-surface and deeper
samples (Fig. SI2); these observations are supported by statistical
analyses of the group separations along the PC axes (Table SI4).
Specifically, the effect of sampling station on the lipid profiles
was significant, with the near-surface locations L4-2m vs. E1-1m

samplings differing significantly, and the deeper L4-17m vs.
E1-70m also differing significantly (p = 1.67 � 10�15). While the
effect of depth at L4 was significant (p = 3.98 � 10�3), the lipid pro-
files were not significantly different between E1-1m and E1-70m.

Using the same strategy as for the polar metabolites, the lipido-
mics dataset was re-analysed using PLS-DA to discover which
peaks were primarily responsible for the differences between the
sampling locations. The optimal PLS model comprised of 4 LVs
and 134 forward-selected variables (m/z values), and the resulting
scores plots confirm that the largest lipid differences occur
between stations (Fig. 2A) relative to the more subtle differences
between sampling depths (Figs. 2B and C). Specifically, the LV1 axis

Fig. 1. PLS-DA scores plots from analysis of the polar metabolite extracts of marine
POM showing the effects of site location and sampling depth. A sample number
sorted according to sampling location plotted against latent variable (LV)1,
highlighting the differences between stations E1 and L4; B sample number plotted
against LV2, highlighting the influence of the 1 m vs. 70 m sampling depth at station
E1; C sample number plotted against LV3, highlighting the influence of the 2 m vs.
17 m sampling depths at station L4. The classification error rates and significance of
the differences in the metabolic profiles are listed in Table SI2.
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again describes sampling station differences, while LV2 describes
the depth differences at L4, and LV3 the depth differences at E1.
Relatively low classification error rates were obtained for all four
groups, and permutation testing was used to confirm the statistical
significance of these results (Table SI5).

The m/z values of the lipids that are responsible for these group
separations, along with their putative annotation and associated
metadata, are listed in Table SI6A for L4 vs. E1, in Table SI6B for
L4-2m vs. L4-17m, and Table SI6C for E1-1m vs. E1-70m. A sum-
mary of these findings, showing which putatively annotated lipid
metabolites differed the most between stations and depths, is
shown in Table 2. As an additional assessment for the robustness

of these findings, ANOVA was conducted on each of the 1896 peaks
in the lipidomics dataset, revealing that 76 of the 134
forward-selected m/z values were significantly different between
groups (at FDR < 5%; Table SI6).

The lipid fraction contained suites of fatty acids, TAGs and DAGs
as well as their oxidised products. The membrane lipids, DGTS and
some phospholipids were also prominent (Tables 2 and SI6). In
relation to abundance patterns there were some distinct differ-
ences across classes (Table 2 and SI7). Overall most of the lipid
classes, as with the polar metabolites, were least abundant in the
E1-70m. The exception to this was for a range of oxidised TAGs,
docosanedioic acid and TAG 48:4 which were in contrast the most

Table 2
Summary of polar and lipid metabolites differentiating the four sampling locations: Column titles are as follows: M/Z: m/z values of the peaks; Extr: polar (P) or lipid (L) extract;
rank: ranking of metabolites by latent variables from PLS-DA (E1–L4 differentiates the two stations, L4 distinguishes L4-2m and L4-17m, and E1 differentiates E1-1m and E1-
70m); Adj.P: adjusted p-value from t-test with FDR <5%; L4-2m, L4-17m, E1-1m: fold change of average intensity relative to E1-70m; Ion form: adduct form detected: Final
annotation: selected from KEGG or LipidMap hits, spectral interpretation and literature searches (note that the three compounds annotated as dioic acids (m/z 357.20370,
393.18047, and 393.29785) are also isobaric with oxylipins); compound group: by chemical similarity. A more detailed version of this table containing more compounds and
descriptions can be found as Table SI7.

Observed Statistics Annotation

rank E1-L4 rank L4 rank E1 Ratio

M/Z Extr Adj.P L4_2m L4_17m E1_1m Ion form Final Annotation Compound group

166.08614 P 39 18 89 4.5E�03 2.99 1.12 1.24 [M + H]+ Phenylalanine Amino acids and derivatives
182.08107 P 62 12 41 4.7E�02 2.22 1.05 1.44 [M + H]+ Tyrosine Amino acids and derivatives
246.09711 P 42 35 3 1.0E�06 4.40 4.14 7.98 [M + H]+ Mycosporine–glycine Amino acids and derivatives
343.14985 P 78 1 10 0.0E+00 3.49 34.12 14.21 [M + H]+ Pyloricidin C Amino acids and derivatives
236.14915 P 21 6 11 0.0E+00 10.88 2.27 4.57 [M + H]+ Ulvaline Amino acids and derivatives,

DGTS backbone
682.56203 L 58 724 4 1.6E�04 4.65 5.73 4.51 [M + H]+ DGTS 30:1 DGTS lipid
704.54636 L 115 1149 3 1.7E�04 3.30 2.83 3.51 [M + H]+ DGTS 32:4 DGTS lipid
730.56191 L 69 516 5 1.1E�04 4.16 5.62 4.21 [M + H]+ DGTS 34:5 DGTS lipid
732.57806 L 36 174 1 1.3E�04 5.43 8.86 6.30 [M + H]+ DGTS 34:4 DGTS lipid
736.60936 L 1751 1632 37 7.0E�02 1.56 1.31 2.07 [M + H]+ DGTS 34:2 DGTS lipid
758.59355 L 132 285 11 1.7E�04 2.83 4.47 3.51 [M + H]+ DGTS 36:5 DGTS lipid
804.57769 L 119 978 16 2.0E�05 3.73 3.06 2.89 [M + H]+ DGTS 40:10 DGTS lipid
856.60868 L 49 1378 13 1.1E�04 4.80 4.44 3.13 [M + H]+ DGTS 44:12 DGTS lipid
289.17741 P 11 19 13 0.0E+00 6.30 4.56 0.73 [M + Na]+ Hexadecanoid Fatty acids and oxylipins
291.19309 P 6 4 24 0.0E+00 10.47 1.49 0.78 [M + Na]+ Hexadecanoid Fatty acids and oxylipins
301.21638 P 36 44 117 2.0E�06 4.71 3.58 2.18 [M + H]+ Eicosahexaenoic acid (20:6) Fatty acids and oxylipins
313.17772 L 165 24 814 0.0E+00 4.10 1.42 0.93 [M + Na]+ Octadecanoid Fatty acids and oxylipins
315.19312 P 5 100 14 0.0E+00 9.47 3.78 0.82 [M + Na]+ Octadecanoid Fatty acids and oxylipins
319.16451 P 44 7 110 0.0E+00 3.63 5.61 2.41 [M + 2Na-H]+ Octadecapentaenoic acid Fatty acids and oxylipins
341.20876 P 30 26 81 0.0E+00 3.84 3.04 1.74 [M + Na]+ Eicosanoid Fatty acids and oxylipins
357.20370 P 32 86 151 1.0E�06 3.73 2.10 1.37 [M + Na]+ Eicosatetraenedioic acid Fatty acids and oxylipins
393.18047 P 16 85 19 0.0E+00 5.87 3.24 0.78 [M + 2Na-H]+ Tetracosadecaenoic acid Fatty acids and oxylipins
393.29785 L 11 141 712 1.6E�05 0.21 0.24 0.92 [M + Na]+ Docosanedioic acid Fatty acids and oxylipins
252.14406 P 28 72 22 0.0E+00 5.52 2.65 2.70 [M + H]+ Gluconamide or

hexapyranoside
Glycosylated compound

277.08928 P 7 11 104 0.0E+00 9.34 7.02 2.22 [M + Na]+ Hexosyl-glycerol Glycosylated compound
329.13419 P 31 36 1 0.0E+00 28.62 10.47 41.10 [M + H]+ Cyanogenic glycoside Glycosylated compound
347.14476 P 12 2 2 0.0E+00 27.67 2.58 11.61 [M + H]+ poss. glycoside Glycosylated compound
573.23173 P 146 39 9 0.0E+00 1.71 1.26 3.85 [M + K]+ Glycoside Glycosylated compound
434.11807 P 17 78 44 1.0E�06 18.99 10.09 5.49 [M + K+H]2+ Hex5 (2+) Oligoglycan
527.15814 P 23 38 42 0.0E+00 16.68 10.75 6.00 [M + Na]+ Hex3 Oligoglycan
649.21804 P 4 5 12 0.0E+00 21.11 16.31 6.63 [M + H]+ Hex4-H2O Oligoglycan
671.20000 P 15 14 38 0.0E+00 19.45 14.47 7.04 [M + Na]+ Hex4-H2O Oligoglycan
811.27102 P 8 8 17 0.0E+00 17.72 14.02 6.65 [M + H]+ Hex5-H2O Oligoglycan
851.26387 P 13 50 35 1.0E�06 22.38 11.02 5.97 [M + Na]+ Hex5 Oligoglycan
457.25669 L 399 23 1204 2.6E�02 1.43 3.91 1.01 [M + H]+ lysoPG 14:0 Phospholipids
730.47734 L 838 35 1520 1.3E�02 0.50 1.34 1.14 [M + K]+ PC 29:0 or PE 32:0 Phospholipids
828.55313 L 1853 31 1542 1.5E�01 0.84 1.95 1.17 [M + H]+ PC 40:9 or PE 43:9 Phospholipids
908.70797 L 14 998 1131 4.7E�04 0.27 0.33 0.87 [M + Na]+ PC 43:1 or PE 46:1 Phospholipids
914.66069 L 50 353 1398 0.0E+00 0.33 0.24 0.82 [M + Na]+ PC 44:5 or PE 47:5 Phospholipids
450.35838 L 122 1711 144 6.4E�04 0.25 0.30 0.45 [M + H]+ TAG 48:4 Tri- or diacylglycerides
739.52620 L 498 22 24 3.5E�01 0.69 2.66 2.63 [M + Na]+ DAG 44:10 Tri- or diacylglycerides
893.69890 L 202 358 191 2.2E�02 2.63 1.50 0.85 [M + K]+ TAG 42:4 Tri- or diacylglycerides
921.72974 L 99 19 157 1.2E�01 4.90 2.18 2.14 [M + K]+ TAG 44:4 Tri- or diacylglycerides
803.54429 L 2 1 606 4.0E�04 0.22 0.04 0.68 [M + Na]+ 2x oxidized TAG 45:8 Triacylglyceride-oxidized
907.70356 L 15 672 190 2.0E�06 0.19 0.18 0.59 [M + H]+ Oxidized TAG 54:8 Triacylglyceride-oxidized
913.65717 L 28 139 1071 2.0E�06 0.31 0.20 0.75 [M + Na]+ 2x oxidized TAG 55:12 Triacylglyceride-oxidized
927.67120 L 6 27 10 3.0E�06 0.27 0.14 0.53 [M + H]+ 2x oxidized TAG 56:12 Triacylglyceride-oxidized
929.68055 L 150 228 1450 4.1E�04 0.59 0.43 0.93 [M + Na]+ 2x oxidized TAG 54:8 Triacylglyceride-oxidized
983.73598 L 1 338 746 2.0E�05 0.08 0.04 0.62 [M + H]+ 2x oxidized TAG 60:12 Triacylglyceride-oxidized
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abundant at E1-70m. The oxidised TAGs were on average five times
higher in abundance in the E1-70m compared to at both the L4
sample locations. The DGTS lipids were typically 3 to 4 times
higher at L4-2m, L4-17m and at E1-1m compared to at E1-70m.
Phospholipids were more evenly distributed with on average high-
est abundance in the L4-17m and lowest abundance in the L4-2m
sample (Table 2 and SI6).

3.3. Nutrients, carbon and chlorophyll

There were also distinct differences between the stations and
depths for nutrient, total particulate carbon (C) and chlorophyll-a

(Chl-a) concentrations. Nutrient concentrations, consistent with
stratification in the water column typical for May, were generally
higher in the deeper samples at both stations, with a degree of
depletion in the surface samples (Fig. 3). Most striking was the
depleted level for all nutrients at E1-1m.

Chl-a concentrations were overall higher in deep samples com-
pared to the surface at both stations although the Chl-a concentra-
tions at E1-70m (0.70 lg/L) were only slightly higher than at the E1
surface (0.46 lg/L; Fig. 3). The highest concentrations of Chl-a
(1.5 lg/L) were found at L4-17m where they were at least double
those in the other samples. Surface Chl-a concentrations were sim-
ilar for both stations (0.46 and 0.50 lg/L at E1-1m and L4-2m
respectively).

Notably, the pattern in Chl-a concentration did not reflect the
pattern for C (Fig. 3). The C in both the surface and deep sample
at station E1 was over double (>100 lg/L) that compared to both
depths at L4. This resulted in variable C:Chl-a ratios at L4 (63
and 28 at L4-2m and L4-17m, respectively) and high C:Chl-a ratios
at E1 (225 and 148 at E1-1m and E1-70m, respectively; Fig. 3).

3.4. Microbial community structure

The phylum Viridiplantae dominated the phytoplankton com-
munity population based on transcript abundance at all sampling
locations (Fig. 4). This phylum was most active at L4-2m with tran-
scriptional activity almost double that at L4-17m and E1-1m and
almost five times that at E1-70m. All other phyla/classes were
insignificant in terms of transcription activity compared to the
Viridiplantae at L4-2m. In contrast, at the other stations the activ-
ity of most other classes increased relative to the Viridiplantae
(Fig. 4). At E1-70m, in particular, there were increased relative
activities of all groups with highest activities for the
Dinophyceae and Phaeocystales (Fig. 4B). The Bacillariophyta were
active in all samples, with slightly more activity overall at E1, with
most activity at E1-1m and least activity at L4-17m. The
Dinophyceae were also active in all the samples with highest activ-
ity in both of the deep sample locations.

The Viridiplantae were dominated by the picoeukaryote flagel-
lates of the Ostreococcus genus (Division Chlorophyte, Class
Prasinophyte: Fig. 4). In particular, Ostreococcus lucimarinus domi-
nated transcript activity at all stations except at E1-70m (where it
was second highest in activity) with transcript activity at L4-2m at
least five times higher compared to other species, and at L4-17m
and E1-1m approximately three times higher (Fig. 5).
Ostreococcus tauri was the second most active species at L4-2m
and third active species at the other sites. An unidentified
Viridplantae, Streptophyta species (with a genome match to
Physcomitrella patens) was also highly active at all four stations
and dominated the E1-1m signature.

Given the proportion of transcripts attributed to O. lucimarinus,
they potentially comprise a large portion of the total community,
contributing to the observed metabolites (Fig. 5). Thus these reads
were examined in more detail in similarity to the reference gen-
ome. A fragment recruitment analysis of these O. lucimarinus reads
revealed that greater than 60% had greater than 95% nucleotide
identity to the type strain, CCE9901, which was isolated from
coastal California waters (Palenik et al., 2007). E1-70m was the
exception with less than 10% of the reads showing greater than
95% similarity. Essentially, at E1-70m, not only were O. lucimarinus
transcripts less abundant, they likely originated from a different
strain, while those from the other samples are highly similar to
the reference genome. The relative number of transcripts recruited
to each chromosome were similar between stations, but not
between chromosomes. Specifically, chromosome 18 was consis-
tently underrepresented in each metatranscriptome, while

Fig. 2. PLS-DA scores plots from analysis of the lipid metabolite extracts of marine
POM showing the effects of site location and sampling depth. A sample number
sorted according to sampling location plotted against latent variable (LV)1,
highlighting the differences between stations E1 and L4; B sample number plotted
against LV2, highlighting the influence of the 2 m vs. 17 m sampling depth at station
L4; C sample number plotted against LV3, highlighting the influence of the 1 m vs.
70 m sampling depths at station E1. The classification error rates and significance of
the differences in the metabolic profiles are listed in Table SI5.
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Fig. 3. Nutrients, carbon and chlorophyll-a concentrations and the carbon:chlorophyll-a ratio for the four sample locations in the western English Channel.

Fig. 4. Relative transcriptional activity abundance of the phytoplankton classes. A. Relative abundance for each class at each sampling location. B. Relative abundance
compared to E1-70m.
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chromosomes 8 and 12, while recruiting more reads than other
chromosomes, recruited the least at high identity (Fig. SI4).

The most abundantly active diatom closely matched
Thalassiosira pseudonama, this centric diatom was notably
transcriptionally active in the L4-2m sample compared to the other
samples (Fig. 5). Another picoeukaryotic prasinophyte Micromonas
sp., was also prominent at L4-2m, with lesser activity in L4-17m
and E1-1m and least activity at E1-70m. Phaeocystis globosa
dominated the Phaeophyceae.

4. Discussion

4.1. Linking metabolite profiles with the environment

The profiles of metabolites in the POM for both the polar and
lipid fractions across the four locations in the English Channel were
significantly different with the largest differences found between
the two stations relative to the smaller differences associated with
depth. There were in addition some noteworthy observations,
beyond proving the technological proof of concept, on the types
of metabolites that were discriminated at the different stations
and on how these related to differences in nutrients, C, Chl-a and
the phytoplankton community populations.

In our study the majority of the polar metabolites were most
abundant at L4-2m. Within the polar fraction, the oligoglycan
and glycoside metabolite groups were most notably abundant at
L4 compared to at E1 (Table 2). At L4-2m the levels of nutrients
and a C:Chl-a ratio of 63 indicated the phytoplankton were in a
healthy state (Fig. 3). This coincided with the high levels of tran-
scriptional activity for Ostreococcus observed at this station. This
suggests that the abundance of polar metabolites at L4-2m were

associated with higher levels of nutrients and healthy
Ostreococcus dominated phytoplankton communities.

Polar metabolites were least abundant at E1-70m. In compar-
ison to L4, the depleted nutrients at E1-1m together with relatively
low Chl-a (0.4 lg/L), relatively high carbon (>100 lg/L) and high
C:Chl-a (225) are indicative of a phytoplankton post-bloom situa-
tion, typical for May (Widdicombe et al., 2010). It is likely that
during this post-bloom situation that the POM was composed of
phytoplankton that are no longer viable and/or in the process of
being grazed or degraded. Consistent with this was the transcrip-
tome data which indicated that there were far fewer active cells
at E1-70m (Figs. 4 and 5). This suggests that the lower abundance
of polar metabolites particularly at E1-70m, was associated with
POM likely to have contained compromised phytoplankton cells.

In contrast, within the lipid fraction, the oxidised TAGs were
most abundant at E1-70m and generally more abundant at E1 than
at L4 (Table 2). Zooplankton abundance, as measured in the surface
waters, was considerably higher at E1 than at L4 (Table SI8). Indeed
zooplankton grazing activity has been linked to the production of
oxidised TAGs (Ianora et al., 2011) indicating a possible link
between our observations and zooplankton abundance (also see
Section 4.2).

The metatranscriptomes of each site were dominated by
Ostreococcus, with Ostreococcus lucimarinus being particularly
prevalent, though all three reference genomes (O. lucimarinus,
tauri, RCC809) were detected. The WEC Ostreococcus population
contain a distinct, but highly similar strain of Ostreococcus lucimar-
inus CCE9901, based on the high nucleotide identity, and general
evenness of the majority of reads mapped to the chromosomes.
Chromosome 18 recruited substantially fewer reads, which is con-
sistent with it being the most divergent between species (Palenik
et al., 2007). Alternatively, this chromosome is enriched in cell
surface modification proteins thought to be involved in predator
defence, thus the low expression might indicate a lack in predation
pressure at the time of sampling. Chromosome 8 and 12 have the
most reads recruited to them, but at the lowest sequence similarity
relative to other chromosomes. Interestingly, in O. lucimarinus,
these chromosomes share small internal duplications, which can
act as chromosome recombination sites. Potentially the WEC pop-
ulation contains larger scale duplications, which result in sequence
divergence. A metabolomics study of Ostreococcus cultures has not
been performed to our knowledge, but provides an ideal follow-up
experiment.

4.2. Characterisation of the metabolites and their possible roles

The lipid fraction was composed of a wide range of fatty acids
and oxidised fatty acids (oxylipins), including compounds ranging
from C15 fatty acids to oxidised triacylglycerides with up to C60
total fatty acid content. A variety of oxylipin metabolites were
putatively annotated (Table 2). Because of the involvement of free
radicals and other reactive oxygen species in the production of
oxylipins it is possible that they could be useful markers of oxida-
tive stress in the marine environment. There are, however, other
potential implications of oxylipins including mediation of physio-
logical and ecological processes in the plankton. Oxylipins have
been found to impact food webs by interfering with the reproduc-
tive success of herbivores therefore introducing a new perspective
on phytoplankton-zooplankton interactions (Ianora et al., 2011).
Such metabolites are suggested to have multiple simultaneous
functions: They not only deter herbivore feeding but some also
act as allelopathic agents against other phytoplankton cells,
thereby affecting the growth of competitors, and signalling
population-level cell death and termination of blooms, with possi-
ble consequences for food web structure and community composi-
tion. Some oxylipins also play a role in driving marine bacterial

Fig. 5. Relative abundance of dominant phytoplankton species based on metatran-
script activity. A. Relative abundance of each species compared to total number of
species present. B. Abundance of each species relative to abundance at E1-70m. For
further species abundance refer to Fig. SI3.
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community diversity, with neutral, positive or negative interac-
tions depending on the species, thereby shaping the structure of
bacterial communities during diatom blooms (Ianora and Miralto,
2010).

Oxylipins may play another important role acting as precursors
to the production of volatile compounds in the ocean. Currently
there is poor understanding of the sources of volatiles important
in cloud condensation affecting climate (Dixon et al., 2013).
Oxylipins could act as important precursors to oxygenated volatile
organic carbons (OVOCs). Polyunsaturated fatty acids (PUFAs) form
free lipid radicals in the presence of preformed radicals, light or
iron ions amongst other things. The highly reactive free lipid radi-
cal is oxidised to form lipid peroxyl radicals (LOO�) which in turn
react with a new lipid molecule to form lipid hydroperoxides
(Laguerre et al., 2007) which can decompose to form OVOCs. The
production of OVOCs from the ocean, whilst recognised as being
important in climate change, is poorly understood (Dixon et al.,
2013). The importance of oxidised fatty acids has recently been
highlighted in a paper studying the heterogeneous oxidation of
PUFAs at the air-sea interface (Zhou et al., 2014). It is clear that a
better understanding on the types and distributions of oxylipins
is required to determine the potential important roles that these
compounds play in the marine environment.

Polar metabolites were also assigned putative annotations. One
of the most striking features in the differentially abundant metabo-
lites was a suite of oligoglycans (Table 2). Oligoglycans or oligosac-
charides, like the oxylipin compounds, are components of cell wall
membranes. More unusual was the detection of the glycerolipid
ulvaline (glycerol homoserine betaine) a betaine lipid with a diac
ylglyceryl-N-trimethylhomoserine (DGTS) backbone structure.
Whilst betaine lipids are known to be widely distributed in cell
membranes of photosynthetic bacteria and eukaryotes, less is
known about the distribution of betaine lipids in microalgae, and
DGTS betaine lipids are more unusual (Kato et al., 1996; Armada
et al., 2013). Interestingly, whilst the low abundance of these
DGTS related metabolites clearly distinguished the E1-70m loca-
tion, phospholipids remained relatively evenly distributed in all
sample locations (Table 2). DGTS betaine lipids are poorly under-
stood: They are increasingly being recognized as important to
the composition and metabolism of marine algae, especially with
respect to the relationship between nutrients such as phosphate
and phytoplankton (Van Mooy et al., 2009; Armada et al.2013).
More specifically, betaine lipids have been shown to substitute
phospholipids in phytoplankton where phosphate is scarce (Van
Mooy et al., 2009). However, in our study, there was no obvious
relationship between the levels of nutrients and the observed dif-
ferences in these two classes of lipids. Indeed correlating intact
polar lipid composition to species abundance is non-trivial
(Brandsma et al., 2012) and a wider number of samples and multi-
variate statistics would be required to study this intriguing rela-
tionship in more detail.

Another abundant polar metabolite in the L4-2m sample was
putatively annotated as a terpenoid, 30-hydroxy-geranylhydroqui
none (Table SI3). 30-hydroxy-geranylhydroquinone has been iden-
tified as a precursor to shikonin found in the Chinese herbal plant
Lithospermum. and is known to have potent cancer efficacy (Duan
et al., 2014). Definitive annotation is therefore required on this
unusual terpenoid. Similar geranyl compounds or isoprenoids are
precursors to both the phytol side chain of chlorophyll and to the
backbone of carotenoids so further in depth investigation would
be required to confirm the role of 30-hydroxy-geranylhydroqui
none in biosynthetic or biodegradation pathways.

A number of amino acid and related metabolites were differen-
tially abundant including the putatively annotated aromatic amino
acids phenylalanine and tyrosine (Table 2). Such amino-acids been
shown to provide an alternate and sole source of nitrogen to

diatoms and haptophytes especially when deprived of nitrate
(Landymore and Antia, 1977). The identity of the
mycosporine-like amino acid (MAA), mycosporine-glycine, which
has UV sunscreen and antioxidant properties, was also confirmed
using MS2, yielding a fragmentation pattern consistent with that
reported in MS targeted MAA analysis (Llewellyn and Airs, 2010).
The abundance of mycosporine-glycine in the WEC is consistent
with a previous study on MAAs where high levels (up to 8 lg/L)
of mycosporine-glycine were found in springtime and corre-
sponded to increases in Phaeocystis pouchetti (Llewellyn and
Harbour, 2003). The detection of this known metabolite using a
MS based community metabolomics approach provides a degree
of validation of the workflow presented here. Although it is well
understood that UV irradiation results in the up-regulation of path-
ways leading to the production of MAAs, little is known of the role
aromatic amino acids such as phenylalanine and tryosine play in
shunting nitrogen under environmental stress.

Another amino-acid metabolite identified was pyloricidin-C, a
natural novel antibiotic known to possess potent and highly selec-
tive activity against Helicobacter pylori (Hasuoka et al., 2002).
Further work would be required to determine if such a metabolite
is used in microbial population control. Further unambiguous iden-
tification of the large number of metabolites detected here would
require further extensive chemical characterisation.

4.3. Methods and limitations

Whilst there were clear differences in both the polar metabolite
and lipid profiles at the four locations, more detailed sampling and
metabolomics profiling under different environmental scenarios
would be required to confirm correlation between metabolite pro-
files and the physico-chemical and biological environment. Our
samples were taken from stations that have been well studied in
terms of the physico-chemical environment and community char-
acterisation; however, the logistics of our sampling specifically the
low number of samples being collected a week apart and small
number of sampling locations studied, limited a truly spatial com-
parison. Given our samples were set within the context of a
well-studied site within the WEC, we were able to generate sub-
stantial hypotheses regarding the discriminatory patterns of the
metabolite features and in terms of the possible role of annotated
suites of metabolites in contributing to the cycling of organic
carbon and nitrogen.

There were also limitations associated with the sampling proto-
col used: only metabolites associated with particulates retained on
GF/F filters were investigated. A substantial number of metabolites
associated with smaller heterotrophic bacteria and perhaps more
importantly large suites of metabolites associated with the
dissolved organic matter (DOM) will have been discarded in this
process. Recently a study has shown that the production of DOM
in a range of cultured phytoplankton is important is the main
source of organic substrates for heterotrophic bacteria and acts
as a link between autotrophic and heterotrophic microbial
community structure (Becker et al., 2014).

The use of the relatively undeveloped community metabolo-
mics on environmental samples provides significant analytical
challenges, in particular, absolute identification is inherently diffi-
cult without further in depth MS fragmentation and (if standards
are not available) NMR analysis (Viant and Sommer, 2013). While
there are compound databases for lipids and polar metabolites,
these are not focussed on microbial organisms sampled from the
environment. Indeed, one of the biggest challenges facing metabo-
lomics is that of standardisation and metabolic identification
(Tang, 2011). Level 1 metabolite identification (as opposed to level
2 putative metabolite annotation), as defined by the Metabolomics
Standards Initiative, requires two orthogonal measurements of a
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compound in the biological sample as well as the authentic chem-
ical standard (e.g., measurement of exact mass and MS2 character-
isation) (Sumner et al., 2007). In this regard metabolomics lags
behind other ‘omics techniques. Regardless of these limitations,
this study highlights the power of metabolomics to discriminate
marine particulate organic matter based on profiling rather than
compound specific analysis.

4.4. Broader key future challenges

A key challenge in understanding microbial communities is to
use a systems biology approach combining metagenome, meta-
transcriptome, metaproteome and metabolome results linking
the genotype with the phenotype to give a more complete picture.
With respect to the metagenomic and metatranscript data, there
are many challenges associated with the interpretation of micro-
bial gene expression patterns at the community level. These arise
again in part from the remarkable diversity and complexity of
microbial communities in the ocean environment, and the lack of
comprehensive representation in metagenomic databases
(Frias-Lopez et al., 2008). In addition, correlation of results may
not be straightforward, since a direct link between genes and
metabolites often does not exist, for example, microorganisms
have fewer metabolites than genes (Tang, 2011). At this stage, con-
sidering the pitfalls associated with each ‘omics method, and espe-
cially as outlined above with those associated with metabolomics,
it is currently premature to directly compare community metabo-
lomics data with metagenomic and metatranscript data. However,
looking forward, a community metabolomics approach united with
metagenomics, metatranscriptomics and metaproteomics should
provide a powerful approach to reconstruct microbial ecosystems
and understand their parts and network connectivity. Notably
metabolomics should enable better annotation of hypothetical
proteins by their association with known metabolites.

Another broad challenge is understanding the role that metabo-
lomics could play in contributing functional trait information and
providing a mechanistic foundation to better predict the function
of communities. Trait based approaches have been used widely
in terrestrial plant communities and have more recently been
applied to provide a mechanistic foundation for understanding
the structure and dynamics of phytoplankton in the English
Channel and in U.S. lakes (Edwards et al., 2013a,b). Combining such
a functional trait approach with community metabolomics could
be powerful in revealing the mechanisms underlying community
structure and in shaping marine ecosystem processes.

5. Conclusions

We have provided proof of concept in terms of using commu-
nity metabolomics as an approach to discriminate metabolite
patterns associated with marine POM and marine microbial com-
munities. Using community metabolomics we could discriminate
and characterise both the polar and lipid metabolite patterns.
Our study highlights the power of metabolomics to discriminate
marine POM without being restricted to focus on specific
compound classes. Specifically, we were able to statistically distin-
guish different metabolite distributions in the four sampling
locations revealing larger differences between the multiple sam-
ples taken from different sampling stations (and/or time points)
compared to the more subtle differences associated with depth.
Furthermore, using a ‘non-targeted’ metabolomics approach
revealed differences in several individual and classes of metabo-
lites present at these sites, reflecting and shaping the microbial
community structure. Such a non-targeted approach has the
advantage of highlighting compounds that have not yet been

recognised to play an important role in microbial interactions
and/or biogeochemical cycles. The majority of the metabolites that
we putatively annotated were associated with oxylipins, oxidised
TAGs and oligoglycans (simple carbohydrates). The preponderance
of oxylipins could be particularly important in informing on the
health of the community with a possible intriguing link to the
formation of oxygenated volatile organic compounds that are
important in atmospheric chemistry and in influencing climate.
Within this manuscript we have highlighted some of the metabo-
lites that showed differences in abundance at the sampled locations,
many further metabolites are reported in the Supplementary Tables
and this data will be further used in subsequent work linking with
metagenome and metatranscriptome data.

This preliminary study shows that community metabolomics
has the potential to be a powerful technique contributing to more
comprehensive and unbiased characterisation of marine microbial
populations. Combining metabolomics data with the massive and
recent acceleration in genome sequencing capacities and increased
resource of genetic information for marine phytoplankton will in
the future greatly enhance our understanding of the metabolic pro-
cesses by which microbes interact with their environment, as well
as the evolution of their underlying metabolic pathways. Although
such approaches are clearly still in their infancy, they should
ultimately allow a systems biology approach to better understand
how the microbes in the marine environment function and interact
to control and drive the production and the biogeochemical cycles
of our planet.
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