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1 Introduction

Recently there has been stimulating progress in attempts to solve the numerical sign prob-

lem in QCD and related theories at nonzero baryon density, by allowing the field variables

to take value in the complexification of the original configuration space, see e.g. refs. [1–3]

for reviews. The idea here is obvious: while the sign problem may be severe in the original

formulation, due to a complex and highly oscillatory integrand in the path integral, an ex-

tension into the complexified field space may ameliorate or even eliminate the sign problem

altogether, a possibility well known from examples of simple integrals with complex saddle

points.

The main approaches which have been pursued are complex Langevin dynamics [4–

25] and integration along Lefschetz thimbles [26–35]. In the latter, the original path of

integration is deformed in order to pass through the fixed (or critical) points of the complex

action, which typically reside in the complexified space. The contour then follows paths

of steepest descent, along which the imaginary part of the action is constant, the so-called

thimbles. In this approach the sign problem is not eliminated, but is in fact replaced by two

sign problems with a different origin. First of all, there is a so-called residual sign problem

along each thimble, due to the curvature of the integration contour in the complexified

space, i.e. the complex Jacobian present when an explicit parametrisation of the thimble

is introduced. A second sign problem appears in the case that more than one thimble

contributes, and the thimbles, with differing imaginary parts of the action associated with

the different critical points, have to be combined including their respective phases. This

is typically referred to as a global sign problem. The numerical implementation of this

approach [28] has been tested in a number of models, including the interacting Bose gas at

nonzero chemical potential in four dimensions [29, 31], which has a severe sign problem [10],
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and current advances have focussed on better control over the residual sign factor in the

case of a single thimble [31, 32].1

In complex Langevin dynamics, or stochastic quantisation, the complexified field space

is explored stochastically, such that a real and nonnegative distribution is effectively sam-

pled during the Langevin process. While this method was proposed some time ago [4–7],

only recently it has been shown convincingly that it can handle severe sign problems [10, 14]

and that numerical problems of the past, such as runaways, can be eliminated [11]. More-

over, the theoretical foundation has been clarified [12, 13]. The control over nonabelian

gauge theories has been drastically improved with the implementation of gauge cooling [15],

possibly adaptively [2], and first results for QCD at nonzero baryon chemical potential have

appeared [16]. Another recent application is to SU(3) gauge theory in the presence of a

nonzero theta-term [17].

Both methods are not without open questions, though. In the thimble approach, both

the residual and the global sign problems require further study, as does the implementation

for gauge theories. In complex Langevin dynamics, the applicability of the method is

determined by the localisation of the distribution in the complexified space [12, 13] (see

e.g. ref. [20] for a recent explicit study) and by the holomorphicity of the original action,

which is in principle violated in the presence of a determinant in the Boltzmann weight

and might lead to problems [24] (see also ref. [25]).

Since both methods explore the complexified field space, it is worth investigating the

relation between the two. First steps in this direction were taken in ref. [35]. Here we

extend that analysis by studying additional models with features ultimately relevant for

QCD, namely U(1) and SU(2) models in the presence of a determinant. We find that those

are also of interest for the thimble approach, since thimbles can end at the zeroes of the

determinant, a situation not encountered before. This paper is organised as follows. In the

following section we make some general remarks, using the quartic model as an example.

The U(1) model, previously discussed in refs. [9, 24], is considered in section 3, while the

SU(2) model of refs. [2, 18, 40] is further analysed in section 4, also in combination with

gauge cooling. The final section concludes.

2 Thimbles and Langevin dynamics

In ref. [35] a first comparison between Lefschetz thimbles and complex Langevin dynamics

was made for the quartic model in zero dimensions. Here we provide some more general

remarks. We consider a holomorphic complex action S(z), with the partition function

defined by integration along the real axis,2

Z =

∫ ∞
−∞

dx e−S(x). (2.1)

Since the action is complex, there is a numerical sign problem. For illustration purposes, we

use again the quartic model, but now with a linear term, to explicitly break the symmety

1For related studies on the analytic continuation of path integrals, see e.g. refs. [36–39].
2For sake of simplicity, we use the notation of one degree of freedom, but all equations can be readily

extended to higher dimensions.
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z → −z,
S(z) =

σ

2
z2 +

1

4
z4 + hz, h ∈ C. (2.2)

The complexity is in this case introduced by the linear term, while the coefficient of the

quadratic term σ is taken as unity (for a detailed study with h = 0 but a complex σ, see

ref. [20]).

In complex Langevin dynamics, the sign problem is tackled by solving the Langevin

equation in the complex plane,

ż = −∂zS(z) + η, (2.3)

or, writing z = x+ iy,

ẋ = −Re ∂zS(z) + η, ẏ = −Im ∂zS(z). (2.4)

Here η is (real) noise with variance 2, 〈η2〉 = 2. The partition function is then represented as

Z =

∫
dxdy P (x, y), (2.5)

where P (x, y) is formally given as the solution of the associated Fokker-Planck equation and

in practice constructed during the Langevin evolution. The justification of this approach,

together with criteria for correctness, is discussed in detail in refs. [12, 13]. We refer to the

equations without noise as the classical Langevin equations.

Thimbles, on the other hand, are given by a deformation of the original integration

contour, determined by first finding the critical or fixed points zk, where ∂zS = 0, and then

constructing the submanifolds passing through a fixed point for which ImS(z) = constant.

Using the Cauchy-Riemann equations and parameterising the thimble with a parameter t,

leads to an evolution equation for the (stable) thimble Jk, the curve of steepest descent,

ż = −∂zS(z), (2.6)

or

ẋ = −Re ∂zS(z), ẏ = +Im ∂zS(z). (2.7)

where z → zk as t→∞. Unstable thimbles Kk, the curves of steepest ascent, are obtained

by reversing the sign of t. In this case the partition function is written as a sum over the

stable thimbles,

Z =
∑
k

mke
−iImS(zk)

∫
Jk
dz e−ReS(z). (2.8)

Here mk are the intersection numbers (see below). Integrating along these stable thimbles

leaves both a residual sign problem, due to the curvature of the thimble, and a global sign

problem, in the case that more than one thimble contributes.

The thimble equations are the complex conjugate of the classical Langevin equations,

with an opposite sign for the drift in the imaginary direction. This has various conse-

quences. First of all, in the case of classical Langevin dynamics, fixed points are either

attractive or repulsive (we always assume the nondegenerate case, ∂2zS|z=zk 6= 0, except in

– 3 –
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Figure 1. Thimbles and Langevin flow in the quartic model with σ = 1 and h = 1 + i: the

blue circles denote the fixed points, the (normalised) arrows the classical Langevin drift, and full

(dashed) lines the stable (unstable) thimbles. The two blue thimbles contribute. The third fixed

point does not contribute.

section 4.3). Instead, under the thimble evolution fixed points have a stable and unstable

direction, which can be seen by linearising around zk = xk + iyk to find(
ẋ

ẏ

)
= −

(
hk1 hk2
hk2 −hk1

)(
x− xk
y − yk

)
, (2.9)

with

hk1 = ∂2xReS
∣∣
z=zk

, hk2 = ∂x∂yReS
∣∣
z=zk

, (2.10)

where the Cauchy-Riemann equations have been used. The eigenvalues of the Hessian

are indeed real and opposite. The eigenvectors in the complex plane correspond to the

directions of the stable and the unstable thimble.

This is illustrated in figure 1 for the quartic model (2.2), where the fixed points are

indicated with blue circles and the classical Langevin drift with (normalised) arrows, for a

specific choice of parameters, σ = 1, h = 1 + i. The fixed points are determined by

z3 + σz + h = 0, (2.11)

and given by the three roots

zk = e2πik/3D − e−2πik/3 σ

3D
, k = 0, 1, 2, (2.12)

where

D =

(
−h

2
+
h

2

√
1 +

4σ3

27h2

)1/3

. (2.13)
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For σ = 1 and h = 1 + i this gives, under Langevin evolution, the stable fixed point z0 =

−0.799− i0.359 and the unstable fixed points z1 = 0.219 + i1.369 and z2 = 0.580− i1.010.

Every fixed point has an associated stable thimble, indicated with a full line, and an

unstable thimble, indicated with a dashed line.3 We note that the stable thimbles end

asymptotically in the region where the original integral converges (i.e. where z4 > 0),

while the unstable thimbles end in the region of nonconvergence (z4 < 0). The oriented

intersection numbers mk are defined from the crossing of the unstable thimble with the

original domain of integration. These numbers make sure that the integration along the

thimbles connects the convergence region on the negative real axis to the convergence region

on the positive real axis (with possibly visiting other convergence regions first). Hence for

the two lower thimbles, m0,2 = 1, while for the upper thimble m1 = 0. The contributing

thimbles are then given by the blue full lines and are seen to be a deformation of the

original contour of integration.4 We have verified that integration along the two thimbles

yields the correct results, provided that the complex Jacobian z′(t) is included.5 We note

that in this case there is both a global sign problem, since ImS(z0) 6= ImS(z2), as well as

a residual sign problem for each thimble.

The first observation is therefore that both an attractive and a repulsive fixed point

under Langevin dynamics contribute to the thimble contour. We come back to this below.

A comparison between the classical Langevin drift and the stable thimbles reveals another

relation. In Langevin dynamics one frequently encounters runaways trajectories, along

which the classical evolution diverges to infinity in a finite time. These trajectories are

associated with a repulsive fixed point. In this case this occurs at x = 0, where for large

|y| the classical Langevin equation simplifies to ẏ = y3. In the stochastic evolution, these

instabilities are regulated by the noise, although in some cases a careful adaptive numerical

integration is required [11]. Since the y component of the drift in the thimble evolution

has the opposite sign, we observe that for large |y| the stable thimble in fact coincides

with a runaway trajectory in the Langevin evolution.6 This should be contrasted with the

situation at large |x| and y ∼ 0, where the flow along the stable thimble and the Langevin

drift point in the same direction, namely towards the stable fixed point.

3We construct these thimbles using numerical integration of eq. (2.7), starting very close to the fixed

point.
4We note here that the fact that two thimbles contribute is a consequence of the Stokes phenomenon [41].

When h is real, there is one thimble (the real axis) and one contributing fixed point, which is on the real

axis. Making h = |h|eiθ slightly complex by increasing θ from 0, deforms the contour into the complex

plane. For certain values of h the deformation will be such that the first thimble passes through a second

critical point as well. The values of h where this occurs form the Stokes lines in the complex h plane and

are determined by ImS(zi) = ImS(zj). For larger θ two thimble contribute, as in figure 1. For |h| =
√

2,

the angle on the Stokes line is θ = 0.7323, just below π/4 = 0.7854, which is used in figure 1.
5The partition function is given by the sum of the two thimble contributions associated with z0 and z2,

which are Z0 = 1.744 + i0.461 and Z2 = 0.021 + i0.426. The sum, Z = Z0 + Z2 = 1.765 + i0.887, is the

correct answer. We note that for the real part the first thimble is dominant, while for the imaginary part

both thimbles contribute equally.
6Here it should be noted that the weight on the thimble for large |y| is exponentially small and hence

this region hardly contributes. Moreover, the contributions from both thimbles effectively cancel, due to

the opposite orientation.
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Figure 2. Quartic model, with σ = 1 and h = 1 + i. Histogram collected during a complex

Langevin simulation (left) and a comparison with the thimbles (right).

In order to compare the Langevin distribution with the thimbles, we have collected

the histogram P (x, y) during a Langevin simulation. The result for σ = 1 and h = 1 + i

is given in figure 2 (left). Although the distribution appears to be localised, there is a

power decay at large distances, which leads to incorrect convergence for higher moments

〈zn〉. This situation has been discussed in great detail in ref. [20] for the model with h = 0

and complex σ, and in fact that analysis carries over immediately to the case discussed

here, with complex h. Hence we will not discuss it further. A comparison between the

Langevin distribution and the thimbles is shown in figure 2 (right). We note that the

Langevin distribution is stretching along the thimble associated with the attractive fixed

point under Langevin evolution. However, since the second thimble is associated with a

repulsive fixed point under Langevin evolution, it is avoided, making the regions explored

in the complex plane manifestly distinct. We conclude therefore that there is less overlap

between the Langevin distribution and the contributing thimbles than previously found in

ref. [35], where only a single thimble contributed.

3 U(1) model with a determinant

We now extend the study of thimbles to models with a determinant in the weight and

hence the logarithm of the determinant in the effective action. Both in Langevin dynamics

and thimble dynamics this leads to a qualitatively new feature, namely a singular drift

where the determinant vanishes in the complexified configuration space. Formally this will

lead to a breakdown of the justification of Langevin dynamics [12, 13], due to the lack of

holomorphicity, and it can lead to a wrong convergence in practice [24], whereas in thimble

dynamics this situation has not been studied before, as far as we know.

We start with a U(1) model with one link, written as U = eix. The partition function

we consider is motivated by QCD at nonzero chemical potential and was introduced in

ref. [9]. It takes the form

Z =

∫
U(1)

dU e−SB detM =

∫ π

−π

dx

2π
eβ cosx [1 + κ cos(x− iµ)] . (3.1)
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We take β and κ real and positive, such that the complex weight is introduced via the

chemical potential µ. The determinant satisfies [detM(µ)]∗ = detM(−µ∗). When κ < 1,

the weight is real and positive when µ = 0, while for κ > 1 there is already a real sign

problem at µ = 0. For κ < 1 this model was studied in detail in ref. [9], while for κ > 1

possible issues with the determinant were noted in ref. [24]. An analytical evaluation yields

Z = I0(β) + κI1(β) coshµ, (3.2)

where In(β) are the modified Bessel functions of the first kind.

We hence consider the (effective) action

S(z) = −β cos z − ln [1 + κ cos(z − iµ)] , (3.3)

where the principle branch of the logarithm is understood, with the drift

− ∂zS(z) = −β sin z − κ sin(z − iµ)

1 + κ cos(z − iµ)
. (3.4)

Fixed points are determined by ∂zS(z) = 0 and singular points by 1 + κ cos(z − iµ) = 0.

We have to make a distinction between κ greater or less than 1. Consider first κ < 1.

Then it is easy to see that under Langevin flow there is one attractive fixed point at x = 0,

while the repulsive fixed points are at x = ±π. The drift is singular at z = ±π + iys, with

cosh(ys − µ) = 1/κ. On the other hand, when κ > 1, some of the repulsive fixed points

move away from x = ±π, while also the singular drift is no longer at x = ±π, but instead

at z = xs + iµ, with cosxs = −1/κ.

Similarly, some of the thimbles can be found analytically. Consider the complex weight

w(z) = e−S(z) = [1 + κ cos(z − iµ)] eβ cos z. (3.5)

For x = 0 the corresponding action is real for all y, hence the x = 0 axis corresponds to the

unstable thimble associated with the fixed point on the x = 0 axis (the instability follows

from the Hessian, but also from the fact that z → ±i∞ is not in the region of convergence

of the original integral). At x = ±π the weight equals

w(±π + iy) = [1− κ cosh(y − µ)] e−β cosh y, (3.6)

and hence the nature of the thimble depends again on κ. For κ > 1 the determinant is

always negative and the action has a constant imaginary part, ImS = ±π, for all y. When

κ < 1, the thimble’s properties depend on µ. When κ cosh(y − µ) < 1, the determinant

is real and positive and hence ImS = 0. On the other hand, when κ cosh(y − µ) > 1, the

determinant is real and negative and ImS = ±π. These two cases are separated by the

singularity in the drift at κ cosh(y−µ) = 1. Hence the imaginary part of the action changes

by a constant at this singularity. Finally, there are also thimbles not at x = 0,±π, but

these cannot be given in analytical form. However, here it should be noted that around

the singular points, the imaginary part of the action varies by 2π, and hence it is expected

that thimbles may end at those singular points.

– 7 –
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Figure 3. Thimbles and Langevin flow in the U(1) one-link model with β = 1, µ = 2 and κ = 1/2

(left) and κ = 2 (right): the blue circles indicate the fixed points, the (normalised) arrows the

classical Langevin drift, and full (dashed) lines the stable (unstable) thimbles. Note that the blue

line on the left is the stable (unstable) thimble for the fixed point at x = 0 (x = ±π). The squares

indicate where the flow diverges, ImS jumps, and the direction of the flow along the thimble changes

sign. Only the blue thimble(s) contribute.

This is best illustrated in a plot, see figure 3. For definiteness, we take β = 1, µ = 2

and κ = 1/2 (left) and 2 (right). Starting from the fixed point at x = 0, the vertical red line

is the unstable thimble and the blue line is the stable thimble. The stability of the other

thimbles can be understood by following the flow along the thimbles (or from the Hessian

of course). Note that for κ = 1/2, the blue line is the stable thimble for the fixed point

at x = 0, but the unstable thimble for the fixed points at x = ±π. The stable thimbles

at x = ±π, going to y = ±∞, correspond again to runaway trajectories under Langevin

dynamics. We note that the original integral converges when z → ±π± i∞, but not when

z → ±i∞. At the red squares, the drift diverges, the imaginary part of the action jumps

and the direction of the flow along the thimble changes sign. Note that there are two

singular points at x = ±π for κ < 1. Those singular points merge at κ = 1 and then move

away from x = ±π as κ > 1. In this process the central fixed point at x = ±π is absorbed

and only one fixed point at x = ±π remains. Instead of one contributing thimble, there are

now two additional contributing thimbles (related by symmetry) going out to z = ±π+i∞,

as in the example in the preceding section. For κ > 1, the imaginary part of the action

jumps at the singular point, but not by π as is the case when κ < 1. This can also be seen

by observing that the thimbles do not reach the singular point in opposite directions.7

We denote the critical points as zk and the corresponding stable thimbles as Jk. For

each contributing thimble we then have the partition function

Zk =

∫
Jk
dz e−S(z) = e−iImS(zk)

∫
Jk
dz e−ReS(z), (3.7)

7For the parameter values used in figure 3 (right), we find that at the fixed point z1 = i0.654, ImS = 0,

while at the other fixed points (z2,3 = ±2.28 + i2.13), ImS = ∓2.59.

– 8 –
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Figure 4. As in the previous plot, with scatter data from a complex Langevin simulation added.

and the full partition functions is the sum,

Z =
∑
k

mkZk, (3.8)

with mk the intersection number. In the case of figure 3 (left) there is only one contribut-

ing thimble; we have verified that integrating over this thimble yields the correct result,

provided that the residual sign problem is taken into account. In the case of figure 3

(right), the three fixed points z1,2,3 all contribute (with intersection number 1) and we

find, including the global and residual phases, the following contributions to the partition

function,

Z1 = 34.6686, Z2 = Z∗3 = 0.0027− i0.0115. (3.9)

The complete partition function is given by the sum, Z = Z1 + Z2 + Z3 = 34.6740, which

is indeed the correct answer. We observe that the first thimble is dominant.

It is now of interest to compare the thimble structure with the results from a complex

Langevin simulation. In ref. [9], the dynamics under Langevin evolution was studied with

scatter plots (for κ = 1/2 < 1). Here we take the data from that reference and compare

it with the thimbles in figure 4 (left). We note that the Langevin data stays close to the

thimble, with the occasional excursion to larger y values. Since there is noise in the x

direction (real noise), the distribution is spread horizontally and hence does not follow the

curvature of the thimble. Expectation values for the lowest moments 〈einz〉, with small n,

are correctly reproduced [9]. We have generated new Langevin data for κ = 2, see figure 4

(right). Here we observe a similar pattern as at κ < 1, however with much larger excursions

in the y direction. In this case, the correct results for the lowest negative moments are

not reproduced. It is tempting to associate the failure of Langevin in this case with the

appearance of the thimbles stretching out z = ±π + i∞, as well as with the presence

of the determinant. However, at this stage a complete understanding along the lines of

refs. [12, 13] is still lacking and hence we defer further discussion to a future publication.

To summarise, we find that in the presence of a determinant the flow has singular

points. For Langevin dynamics, this leads to a breakdown of the formal justification and

– 9 –
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possible wrong results in practice. For the Lefschetz approach, we find that thimbles may

end at singular points and the imaginary part of the action jumps by a constant. Hence,

if there is more than one contributing thimble, they connect either at |z| → ∞ or at a

singularity.

4 SU(2) model

We now extend the analysis to the simple nonabelian one-link model,

Z =

∫
SU(2)

dU exp

[
β

2
TrU

]
, (4.1)

with complex β and a gauge symmetry, U → ΩUΩ−1, where U,Ω ∈ SU(2). The exact

result is Z = I1(β)/β. For Langevin dynamics we can follow (at least) two approaches [18]:

a complete ‘gauge fixing’, which will lead to a logarithm in the effective action due to the

reduced Haar measure, and matrix updates combined with gauge cooling [15], which can

readily be extended to full nonabelian gauge theories in four dimensions with dynamical

fermions [16]. It is therefore interesting to compare both approaches with the Lefschetz

thimbles.

4.1 Complete gauge fixing

In this approach the partition function is written as

Z =

∫ π

−π

dx

2π
sin2 x eβ cosx =

∫ π

−π

dx

2π
e−S(x), (4.2)

with

S(z) = −β cos z − 2 ln sin z. (4.3)

We note that the reduced Haar measure leads to a logarithm in the action. The drift is

given by

− ∂zS(z) = −β sin z + 2
cos z

sin z
, (4.4)

and hence the fixed points are at

cos z± = − 1

β

(
1±

√
1 + β2

)
. (4.5)

Due to the logarithm, the drift has singular points at cos z = ±1. The second derivative

at the fixed points equals

∂2zS(z)
∣∣
z=z±

= ±2
√

1 + β2, (4.6)

hence there is a degeneracy at β2 = −1, which we discuss below. Finally, the action at the

fixed points is given by

S(z±) = 1±
√

1 + β2 − ln
(

1±
√

1 + β2
)

+ ln(−β2/2). (4.7)

The thimbles can be found by numerical integration, as above. In figure 5 (left) the

thimbles are shown for β = (1+i
√

3)/2. As above, the blue circles (red squares) denote the
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Figure 5. SU(2) one-link model, with β = (1 + i
√

3)/2: thimbles in the xy plane (left) and

the TrU plane (right). Blue circles indicate fixed points, full (dashed) lines the stable (unstable)

thimbles, and red squares the singular points. The blue thimble contributes.

Figure 6. Histograms collected during a complex Langevin simulation in the gauge fixed formu-

lation of the SU(2) one-link model, with β = (1 + i
√

3)/2, in the xy plane (left) and the TrU plane

(right).

fixed (singular) points. The full blue line is the contributing thimble. Note the symmetry

z → −z. The thimble through the upper (and lower) fixed point does not contribute, since

the intersection number vanishes. As in the U(1) case, thimbles end at the singular points

in the drift. In order to compare with the gauge invariant approach below, we also show

the thimbles in the TrU = 2 cos z plane, see figure 5 (right).

We now compare the thimbles with the results from a complex Langevin simulation.

Figure 6 shows the histograms collected during a simulation in the xy plane (left) and the

TrU plane (right). We note that the distributions are localised; this model and its complex

Langevin dynamics was discussed in detail in ref. [2]. A comparison between the thimbles

and the histograms is shown in figure 7. As in previous cases, we note that the Langevin

distribution is close to the contributing thimble, but two rather than one-dimensional, to

be able to evade the residual phase problem. From a comparison with the exact results,

we conclude that correct results are obtained both with Langevin dynamics and with the

single contributing thimble, provided the residual phase is included.

– 11 –



J
H
E
P
1
0
(
2
0
1
4
)
1
5
9

-3 -2 -1 0 1 2 3
x

-2

-1

0

1

2
y

β = (1+i sqrt(3))/2

SU(2)

-6 -4 -2 0 2 4 6

Re TrU

-2

0

2

4

Im
 T

rU

β = (1+i sqrt(3))/2

SU(2)

Figure 7. Comparison between the complex Langevin histograms and the thimbles, in the xy

plane (left) and the TrU plane (right).

4.2 Gauge dynamics with cooling

The logarithm in the gauge-fixed action and the resulting singular drift arise from the

reduced Haar measure after gauge fixing. It is therefore interesting to apply Langevin

dynamics without gauge fixing, using the matrix update

U(t+ ε) = R(t)U(t), R = exp
[
iσa
(
εKa +

√
εηa
)]
. (4.8)

Here t is the (discretised) Langevin time, Ka = −DaS is the drift and σa are the Pauli

matrices [9]. It is by now well established that a straightforward application of this approach

can lead to wrongly converging Langevin dynamics, due to an uncontrolled exploration

of SL(2,C), the complexification of SU(2). Hence it needs to be combined with gauge

cooling [15], so that the combined update reads

U(t+ ε) = Ω(t)R(t)U(t)Ω−1(t), (4.9)

where Ω(t) is a U(t) dependent SL(2,C) gauge transformation, which minimises the distance

from SU(2) [2, 15].

In a simulation, the number of cooling steps applied after each Langevin update can

be varied to achieve stability. In figure 8 we show the results of a Langevin simulation

using 0, 1, 2 or 4 gauge cooling steps between each Langevin update. Without cooling the

distribution is broad and wrong results are obtained. One gauge cooling step is insufficient

to cure this. Perhaps surprisingly, applying just 2 cooling steps results in a drastically

different distribution, which is now well localised in the TrU plane. According to the

justification of the approach [12, 13], correct results should now be obtained, which is

indeed the case. Moreover, subsequent cooling does not modify the distribution any further

(the bottom left plot is for 4 cooling steps), which is a sign of stability and convergence.

Finally, we have compared the distributions in the TrU plane obtained in the gauge fixed

formulation and the matrix formulation, and found agreement. We conclude therefore that

the dynamics is under complete control and that the singular drift in the first approach

and the need for gauge cooling in the second approach do not affect Langevin dynamics in
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Figure 8. Histograms collected during a complex Langevin simulation in the matrix formulation

of the SU(2) one-link model at β = (1 + i
√

3)/2, with gauge cooling, using 0, 1, 2, 4 (from top left

to bottom right) gauge cooling steps.

a detrimental manner. Moreover, the position of the distribution is related to the position

of the thimble. The distribution of the weight is, however, again quite distinct.

4.3 Degenerate fixed points

When β2 = −1 (and hence β is purely imaginary),8 the fixed point at zd, with cos zd =

−1/β = ±i, is degenerate. The standard reasoning to justify the Lefschetz approach and

construct the thimbles by numerical integration is then not well defined. Here we give a

brief analysis.

At the fixed point the action is real, with S(zd) = 1− ln 2. We take β = i and write

1

2
TrU = cos z = u+ iv. (4.10)

Equating the imaginary part of the action,

ImS = −u− φ, tanφ =
−2uv

1− u2 + v2
, (4.11)

to 0, then yields the thimbles, and we find

v±(u) =
1

tanu

(
u±

√
u2 − (1− u2) tan2 u

)
, (4.12)

8The choice of imaginary β is motivated by dynamics in real (Minkowskian) time, see e.g. refs. [40, 42, 43]

for complex Langevin studies.
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Figure 9. SU(2) one-link model at β = i. Histogram collected during a complex Langevin simu-

lation in the TrU plane (left) and a comparison with the thimbles associated with the degenerate

fixed point at TrU = 2i (right).

where 0 < u < 1 for v−(u) and −1 < u < 0 for v+(u). These two branches make up the

stable thimble. The unstable thimble is given by u = 0, for which the imaginary part of

the action vanishes as well.

The thimbles are shown in figure 9 (right), using the same colour coding as above.

They are a deformation of the thimbles for general complex β, shown earlier, satisfying

reflection symmetry in the Re TrU = 0 axis. We have verified that integrating along the

thimble, with the inclusion of the residual phase, gives the correct answer. The Langevin

histogram is shown in figure 9 (left). A similar histogram was obtained earlier in ref. [40].

A comparison between the histogram and the thimbles is finally given in figure 9 (right).

For this case we note that the distribution does not overlap substantially with the thimble

and that again the distribution of the weight for both approaches is quite different.

5 Summary and outlook

We have studied and contrasted the distributions sampled by complex Langevin dynamics

and the Lefschetz thimbles in a number of models with a complex action, focussing on

examples with a determinant in the Boltzmann weight. Due to the determinant the drift is

non-holomorphic and has singular points, which leads to new features in both the Langevin

and the thimble approach. In particular, thimbles may end at the singularities and hence

do not necessarily extend to infinity. Moreover, it naturally leads to a situation where more

thimbles need to be taken into account.

In general, there is substantial overlap between the regions explored in the complexified

configuration space using Langevin and thimble dynamics. However, a closer look reveals

important differences. The weight on a (one-dimensional) thimble is peaked around the

fixed point and drops quickly to zero away from the fixed point. On the other hand, the two-

dimensional probability distribution sampled in complex Langevin dynamics is often peaked

away from fixed points. A further important difference is due to the presence of repulsive

fixed points in Langevin dynamics. In the thimble case these correspond to saddle points

and the thimbles passing through those may contribute. However, in Langevin dynamics
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the region around repulsive fixed points is avoided. It therefore follows that the thimble

and the Langevin distributions will be manifestly different around repulsive fixed points.

Finally, the justification of Langevin dynamics for holomorphic actions depends on the

decay of the distribution in the imaginary direction.9 Hence contributing thimbles going to

z → x±i∞ are potentially dangerous, since they open up a way to prevent the distribution

from being localised. In particular, they correspond to classical runaway trajectories.

However, here it should be noted that the weight on those thimbles will be exponentially

small far away from saddle points, making the relation between a possible breakdown of

Langevin dynamics and the relevant region in thimble dynamics less immediate.

The thimble approach has to face a residual and a global sign problem. For the

simple models we considered, the correct inclusion of the residual phase on the thimbles is

mandatory. In field theory, on the other hand, it appears that the residual sign problem can

in fact be quite mild. One possibility is that the weight on the thimble drops to zero away

from the saddle point in an exponential fashion, with a rate set by the volume. In that

case the thimble is nearly flat in the contributing region, which makes the residual phase

problem milder than perhaps expected from the simple models. It would be worthwhile

to investigate this further. A global sign problem appears when more than one thimble

contributes. This possibility is highlighted in the Stokes phenomenon, in which a transition

from, say, one to two contributing thimbles takes place, as the external parameters are

changed. It would be interesting to see how important it is to capture this transition

accurately in field theory, where there is typically less analytical control.

Finally, the most important outstanding question for complex Langevin dynamics is

the role of the determinant and the loss of holomorphicity, which may or may not lead to a

breakdown of the approach in practice. Finding a precise answer to this is currently under

investigation.
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9It is sometimes suggested that failure of Langevin dynamics is due to the existence of several proba-

bility distributions which may or may not be sampled simultaneously and that each of those corresponds

to a distinctive solution of the Schwinger-Dyson equations (SDEs), subject to particular boundary condi-

tions [44–46]. However, in the models and field theories we considered, this does not seem to occur. In fact,

we usually find a unique stationary distribution, robust against variation of initial conditions, stepsize and

other ingredients of the numerical algorithm (the exception is for non-abelian gauge theories, in the case

that gauge cooling is required to control the process). In our experience the origin of failure of complex

Langevin for holomorphic actions lies in a slowly decaying probability distribution P (x, y) and consequently

the breakdown of partial integration required for the formal justification [12]. The slow decay impacts the

SDEs as well, since higher-order moments are no longer well-defined. In ref. [20] this was demonstrated in

an explicit example, both numerically and analytically.
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