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Abstract: The properties of the ground state of two-color QCD at non-zero baryon
chemical potential µ present an interesting problem in strongly-interacting gauge theory;
in particular the nature of the physically-relevant degrees of freedom in the superfluid
phase in the post-onset regime µ > mπ/2 still needs clarification. In this study we present
evidence for in-medium effects at high µ by studying the wavefunctions of mesonic
and diquark states using orthodox lattice simulation techniques, made possible by the
absence of a Sign Problem for the model with Nf = 2. Our results show that beyond
onset the spatial extent of hadrons decreases as µ grows, and that the wavefunction
profiles are consistent with the existence of a dynamically-gapped Fermi surface in this
regime.
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1 Introduction

QC2D, the QCD-like gauge theory with gauge group SU(2), offers the simplest oppor-
tunity for the controlled non-perturbative study of non-zero baryon charge density via
Monte Carlo lattice simulation, unhindered by a Sign Problem. The reality of the quark
determinant even with quark chemical potential µ 6= 0 (and the consequent positivity of
the path integral measure for number of flavors Nf even) arises from the pseudoreality
of the fundamental representation of SU(2) [1].

Several studies, both analytical and numerical, have helped elucidate the phase struc-
ture and highlighted the differences with the physical case of SU(3). At low temperature
T ≈ 0, the ground state density nq of quarks rises from zero at a second-order onset
transition at µ = µo = 1

2
mπ, permitting the existence of arbitrarily dilute baryonic mat-

ter. For current quark masses sufficiently light to permit a separation of scales between
mπ and the next lightest hadron (either a 1− ρ meson or 1+ diquark baryon), the regime
µ & µo is described by chiral perturbation theory (χPT) [2], and consists of a dilute gas
of weakly-repelling Bose diquarks, which condense to form a superfluid ground state via
the spontaneous breaking of the global U(1)B of baryon number. This regime has been
identified in simulations with staggered lattice fermions [1, 3, 4, 5]. Higher densities
have been probed in simulations with Wilson lattice fermions further from the chiral
limit [6, 7]. Over a wide range of µ > µo thermodynamic quantities such as nq, pressure
p and energy density ε [8] are all found to scale approximately with µ as expected of
a degenerate system of quarks, ie. one in which the available phase space is uniformly
populated up to some characteristic momentum scale kF ' µ, so that, eg.

nq = 2NfNc

∫
|~k|≤kF

d3~k

(2π)3
' 2Nf

3π2
µ3. (1)

in complete contrast to the behaviour predicted by χPT [2]. However, the system
remains in the same confined state observed at µ = 0, as indicated by the near-vanishing
of the Polyakov line expectation 〈L〉. This state has some similarities with a confined
chirally-symmetric ground state originally predicted in the context of large-Nc QCD [9];
for this reason we have called it a quarkyonic regime. At the lowest temperatures
studied, only for µa ∼ O(1) has color deconfinement signalled by 〈L〉 > 0 been observed;
while the quark density nq is still much smaller than its saturation value 2NfNc/a

3 at
this point, without simulations on a finer lattice we cannot yet be confident this high
density deconfined phase persists in the continuum limit. Finally we note that the
simulations suggest that the ground state is superfluid, as signalled by a non-vanishing
diquark condensate, for all µ > µo; however in the quarkyonic regime the scaling of the
condensate 〈qq(µ)〉 is that expected from Cooper-pairing at a Fermi surface [7], rather
than the characteristic BEC form found in χPT [2, 1]. Further details on how the various
scenarios are realised in the current numerical study are given at the beginning of Sec. 4.

Beyond the fundamental requirements of determining the thermodynamic and sym-
metry properties of the ground state, it is interesting to examine the nature of excitations.
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As well as offering continuity with the traditional concerns of lattice QCD at T = µ = 0,
such questions bear on transport in the baryonic medium; answers to these questions
in QCD would have the potential to inform, say, descriptions of neutron star spin down
(via quantitative information on shear and bulk viscosities) and cooling (via a knowledge
of which if any excitations remain gapless and hence capable of carrying energy away).
There has been exploratory work in several directions. In [10] the hadron spectrum of
QC2D was calculated as a function of µ; beyond µo in the meson sector the usual ordering
mπ < mρ is reversed, confirming earlier studies [11]. Above onset the lightest states are
found in the 0+ and 1+ channels, with approximate degeneracy found between mesons
and diquarks, as might be expected in a superfluid phase in which baryon number is
no longer a good quantum number. The spectrum of heavy QQ quarkonium states also
shows a non-trivial µ-dependence [12], possibly as a result of the formation of Qq states
in the quarkyonic regime. In a recent study binding energies of multi-baryon “nuclei”
formed from 0+ and 1+ bound states have been estimated [13].

On a different tack, quark and gluon propagators have been calculated as func-
tions of T and µ in gauge-fixed configurations [6, 14]. The electric (longitudinal) gluon
propagator in Landau gauge becomes strongly Debye-screened with increasing T and
µ, whereas the magnetic (transverse) gluon shows little sensitivity to T , and exhibits
a mild enhancement in the quarkyonic regime before becoming suppressed at large µ.
Finally, the properties of topological excitations have been studied using a cooling pro-
cedure to identify instantons [15]. An enhancement of topological susceptibility χT is
seen on entering the quarkyonic regime, which can be accommodated within the stan-
dard perturbative description of Debye screening with the accompanying observation of
a decrease in instanton scale size ρ(µ) ∝ µ−2. χT does fall very steeply, however, once
〈L〉 > 0.

In this work we attempt to probe the interaction between quarks, and extract infor-
mation on the spatial extent of hadrons, by calculating hadron correlation functions in
which the qq̄ or qq pair at the sink are spatially separated by a vector ~r [16]. For a bound
state H whose temporal decay in Euclidean space is governed by a simple exponential
e−EHx0 , the spatial profile, determined numerically as a function of ~r, is proportional to
the equal-time Bethe-Salpeter wavefunction

Ψ(~r, τ) =

∫
d3~x〈0|ψ̄(~x, τ)ψ(~x+ ~r, τ)|H〉. (2)

The typical wavefunction profile for a bound state is gaussian, the width giving basic
information about the size of the hadron. However, the correlators also yield interesting
information even in the absence of a bound state, as explored in a study of the Z2

Gross-Neveu model with µ 6= 0 in 2+1d [17]. Above onset, the wavefunction is no longer
positive definite, but rather has an oscillatory structure with spatial frequency of order
kF ∼ µ. These oscillations have a similar origin to the Friedel oscillations observed in
the density-density correlations of electrons in metals (and thought to be responsible
for the spin-glass behaviour of certain alloys), characteristic of a sharp, well-defined
Fermi surface; the more primitive nature of the point-split hadron correlator makes
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it easier to measure in a numerical simulation, however. The observation of oscillatory
wavefunctions in [17], with wavelength decreasing systematically with µ, is one of several
calculations leading to the identification of the Z2 GN model as a Fermi liquid.

A wavefunction study in QC2D has the potential to shed light on several outstand-
ing issues in gauge theories at non-zero chemical potential, the most fundamental being
whether it is indeed possible to identify a well-defined Fermi surface, since Fermi mo-
mentum kF is not a gauge-invariant quantity. It may also help clarify the nature of
the quarkyonic state, which roughly speaking may be thought of as a degenerate quark
system in which only gauge-invariant excitations are permitted. Since two-quark interac-
tions are the most relevant at a Fermi surface in the renormalisation group sense [18, 19],
to what extent lessons learned with Nc = 2 can be generalised to QCD remains to be
seen. Nonetheless in principle the wavefunction should be a useful tool to chart the pas-
sage from BEC to BCS realisations of superfluidity as µ increases, which theoretically
should take place for QC2D near enough the chiral limit. All these reasons motivate the
current, exploratory study.

2 Formulation

In this section we explore the theoretical expectations for the wavefunction as a function
of interquark separation r. We begin, following [17], with the expression for the meson
correlator Cm(x0;~r) with a local point source at the origin, and q and q̄ separated by
~r at the sink. In anticipation of our later numerical results we choose the a priori
arbitrary sign of µ to yield the slowest decaying result in the positive x0 direction in
diquark channels with non-zero baryon charge. Initially we assume free fields with
quark mass m, and work at strictly zero temperature; the chemical potential µ can then
be understood as a Fermi energy for a system of degenerate quarks with Fermi energy
EF (µ) ≡ µ =

√
k2
F +m2. The onset value at which the ground state contains a non-zero

matter density is thus µo = m:

Cm(x0, ~r) =
∑
~x

tr

∫
d4p

(2π)4

∫
d4q

(2π)4
Γ

eipx

ip/ − µγ0 +m
Γ

e−iqxe−i~q.~r

iq/ − µγ0 +m
. (3)

The Dirac matrix Γ = 11, γ5 for channels JP = 0+, 0−.
Performing

∑
~x and the trace over Dirac indices, we obtain

C±m(x0;~r) =
4

(2π)5

∫
dq0

∫
dp0

∫
d3~p

[±(p0 + iµ)(q0 + iµ)± ~p 2 +m2]ei(p0−q0)x0e−i~p.~r

[(p0 + iµ)2 + ~p 2 +m2][(q0 + iµ)2 + ~p 2 +m2]
,

(4)
where the ± sign denotes parity. First consider the case 0−. The denominator of (4)
has poles at p0, q0 = −iµ ± i

√
~p 2 +m2. Below onset, ie. for µ < m, the integrals over

p0 and q0 only yield a non-vanishing result if the + root is chosen for p0 and the − root
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for q0. We then use Cauchy’s theorem to obtain

C−m(x0;~r) =
2

(2π)3

∫
d3~pe−2x0

√
~p2+m2

e−i~p.~r

=
2

(2π)2

∫ ∞
0

dpp2e−2x0
√
p2+m2

∫ π

0

dθ sin θeipr cos θ, (5)

where in the last step ~r is taken to point towards the south pole. The angular integral
then yields

C−m(x0;~r) =
2

(2π)
3
2

r−
1
2

∫ ∞
0

dpp
3
2 e−2x0

√
p2+m2

J 1
2
(pr), (6)

where J 1
2
(z) ≡ (2/πz)

1
2 sin z is a Bessel function. Now expand (p2 + m2) in powers of

p/m and use Laplace’s method of asymptotic expansion:

C−m(x0;~r) ≈ 2

(2π)
3
2

r−
1
2 e−2x0m

∫ ∞
0

dpp
3
2 e−

p2x0
m J 1

2
(pr)

=

√
π

(2π)2

(
m

x0

) 3
2

e−2mx0 exp

(
−mr

2

4x0

)
. (7)

The corresponding expression for C+
m has an extra factor −p2/(p2 +m2) under the final

p-integral, so that |C−m| > |C+
m|. The result (7) has engineering dimension 3 consistent

with (3), is independent of µ as expected below onset, and decays in euclidean time with
mass 2m, also as expected. The wavefunction profile is a Gaussian whose width increases
as
√
x0, as appropriate for two free particles gradually drifting apart. Of course, for an

interacting theory containing bound states, we expect the r-dependence of Cm to be
independent of x0 as x0 becomes large.

If instead we consider the corresponding diquark correlator

Cb(x0, ~r) =
∑
~x

tr

∫
d4p

(2π)4

∫
d4q

(2π)4
(CΓ)

eipx

ip/ − µγ0 +m
(CΓ)−1

(
eiqxei~q.~r

iq/ − µγ0 +m

)tr
, (8)

where the charge conjugation matrix satisfies C = −C−1 and Cγtrµ C−1 = −γµ, the result
which emerges is

C±b (x0, ~r) = e2µx0C∓m(x0, ~r). (9)

Next consider the more interesting case above onset µ > m (the value of µo is
governed by the mass per quark of the lightest baryon in the theory), where quark
density nq = 〈q̄γ0q〉 > 0. For simplicity we set m = 0 so the only physical scale is µ (for
a sufficiently large Fermi surface this is always justified), and implying equality of + and
− channels up to a sign. Now the p0 integral in (4) can only receive a contribution from
the pole at −i(µ− |~p|) for |~p| > µ, to yield

Cm(x0;~r) =
2

(2π)
3
2

r−
1
2

∫ ∞
µ

dpp
3
2 e−2px0J 1

2
(pr). (10)
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The only difference with (6) is the lower limit of the p-integral. On changing integration
variable q = p − µ and expressing the integrand as e−2x0(q+µ)A(qµ) where A can be
expanded in powers of q using J ′ν(z) = Jν−1(z)− (ν/z)Jν(z), we find

Cm(x0;~r) ≈ 2

(2π)
3
2

e−2x0µµ
3
2

r
1
2

∫ ∞
0

dqe−2x0q

(
1 +

3

2

q

µ

)[
J 1

2
(rµ) + qrJ ′1

2
(rµ)

]
. (11)

In fact, the leading behaviour as x0 →∞ is given by the term of O(q0):

lim
x0→∞

Cm(x0;~r) =
1

(2π)
3
2

µ
3
2 e−2µx0

x0r
1
2

J 1
2
(rµ)

(
1 +O(x−1

0 )
)

=
2

(2π)2

µ

x0r
e−2µx0 sin(rµ)

(
1 +O(x−1

0 )
)
. (12)

The expression (12) also has the correct engineering dimension. This time the state
decays with energy 2µ, and arises from the promotion of a fermion from a negative
energy state to the Fermi surface by injection of ∆E = 2µ, ∆p = 0 (see Fig. 1),
leaving a negative energy hole which is re-interpreted as an anti-quark. The wavefunction
envelope now decays algebraically (ie. ∝ r−1) rather than exponentially as in (7), and is
modulated by oscillations of spatial frequency µ. Remarkably, the wavefunction can take
negative values in this post-onset regime. The relation (9) continues to be respected;
diquarks can be interpreted as gapless excitations (ie. ∆E = 0) formed from bound
quarks with momenta ±p at the Fermi surface, as indicated in Fig. 1(c).

This is qualitatively similar to the phenomenon known in many-body theory as
Friedel Oscillations, seen in the density-density correlation function in degenerate sys-
tems. However, there are important differences; strictly Friedel oscillations have spatial
frequency 2µ, and decay with a different power [17]. Both phenomena can be traced
to the existence of a well-defined Fermi surface in the ground state above onset, lead-
ing to a sharp lower limit on the integral in (10); the function C(x0, ~r) is much easier
to measure using lattice techniques. The oscillations were observed in simulations of
a 2+1d Nf -flavor four-fermion model in [17]; here the applicability of free field theory
could be justified by a calculation of the quantum corrections to the q - q̄ interaction in
the large-Nf limit. In the static (ie. q0 = 0) limit this interaction is totally screened, ie.
the effective Debye mass M(µ)→∞.

Since interactions between quarks clearly can’t be ignored in QC2D, a more am-
bitious goal is to calculate C(x0;~r) in the presence of gauge interactions. As a first
step, we consider one-gluon exchange between massless fermions using the Feynman-
gauge propagator δµνF (q2) (color factors are ignored). A simple possibility for F is
the Debye-screened form (q2 +M(µ)2)−1 where in a gauge theory the expected relation
is M/µ ∼ O(g) where g is the Yang-Mills coupling. The expression for Cm is now a
two-loop integral:

Cm = g2
∑
~x

tr

∫
p

∫
p̃

∫
q

F (q2)

{
Γ

1

i(p/ + q/ )− µγ0

γν
eipx

ip/ − µγ0

Γ
e−ip̃(x+~r)

ip̃/ − µγ0

γν
1

i(p̃/ + q/ )− µγ0

}
.

(13)
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meson

leading order

excitations

E

p

µ

µ

excitation
diquark

2∆ dominant correction

Figure 1: Figure showing excitations of a system of massless degenerate fermions in the zero total
momentum sector: (a) with meson quantum numbers requiring energy E = 2µ at leading order (red);
(b) with E � µ following one-gluon exchange (green); and (c) with diquark quantum numbers requiring
zero energy (blue). Also shown in magenta is the modifying effect of a gap ∆ > 0 opening at the Fermi

surface.

For simplicity’s sake, consider the static limit q0 = 0 and Γ = γ5:

Cm(x0;~r) = − 16g2

(2π)9

∫
dp0

∫
dp̃0

∫
d3~p

∫
d3~qei(p0−p̃0)x0e−i~p.~rF (~q 2)×

[(p0 + iµ)(p̃0 + iµ) + ~p2][(p0 + iµ)(p̃0 + iµ) + (~p+ ~q)2]

[(p0 + iµ)2 + (~p+ ~q)2][(p0 + iµ)2 + ~p2][(p̃0 + iµ)2 + ~p2][(p̃0 + iµ)2 + (~p+ ~q)2]
.(14)

The integrand of (14) has 4 poles p0 = −iµ ± i|~p + ~q|, p0 = −iµ ± i|~p|, and 4
similar poles for p̃0, yielding in principle 16 cases to examine. However, the requirement
for the p̃0 and p0 poles to be in opposite half-planes restricts us to only 6 non-vanishing
possibilities. For either p0 = −iµ+ i|~p| or p0 = −iµ+ i|~p+~q| we can have p̃0 = −iµ− i|~p|
or p̃0 = −iµ − i|~p + ~q|; there will also be a contribution in a restricted corner of phase
space from p̃0 = −iµ+i|~p+~q|. It turns out that the contributions from the first two of the
p̃0 poles listed decay in Euclidean time at least as fast as e−2µx0 and e−µx0 respectively,
so we focus on the case p0 = −iµ + i|~p|, p̃0 = −iµ + i|~p + ~q|. With this pole condition
the integral becomes

Cm(x0;~r) =
4g2

(2π)7

∫
d3~p

∫
d3~qe−(|~p|−|~p+~q|)x0e−i~p.~r

F (q2)

(|~p|+ |~p+ ~q|)2
, (15)

with the range of integration restricted to |~p| > µ, |~p+~q| < µ, implying |~p|− |~p+~q| > 0.
There are regions of phase space, with |~q|/|~p| ≈ O(1), where the integrand falls away
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much more slowly than e−µx0 . These regions are due to the excitation of a quark to a
state lying above the Fermi surface leaving a hole in a positive energy state, with energy
∆E � µ in general, which is now permitted by the kinematics with ∆p = q 6= 0 (see
Fig. 1(b)).

Our tactic will be to perform
∫
d3~q first. The pole conditions dictate that the angle

between ~q and −~p is constrained to θq < Θ(p) = sin−1 µ
p
, and that the magnitude q is

restricted to lie between p cos θq(1 ±
√

1− cos2 Θ/ cos2 θq) (for θq = 0 this reduces to
q ∈ (p− µ, p+ µ)). We arrive at

4g2

(2π)5

∫ ∞
µ

p2dp

∫ π

0

dθp sin θpe
ipr cos θp

∫ Θ(p)

0

dθq sin θq

×
∫ qmax(p,θq)

qmin(p,θq)

dq
q2e−(p−

√
p2+q2−2pq cos θq)x0

(q2 +M2)(2p2 + q2 − 2pq cos θq + 2p
√
p2 + q2 − 2pq cos θq)

≡ 4g2

(2π)
9
2

r−
1
2

∫ ∞
µ

dpp
3
2J 1

2
(pr)I(p, x0), (16)

where the Debye-screened form of F (q2) has been inserted.
To examine things more closely, consider the limit θq = 0 so that ~p + ~q is either

parallel or anti-parallel to ~p. The integral over q in (16) then becomes∫ p

p−µ
dq

q2e−qx0

(q2 +M2)(2p− q)2
+

∫ p+µ

p

dq
e−qx0

q2 +M2
. (17)

After some rearrangement the integrals may be performed to yield

1

x0

(
− e−(p+µ)x0

(p+ µ)2 +M2
+ e−px0 × 0 +

e−(p−µ)x0(p− µ)2

(p+ µ)2[(p− µ)2 +M2]

)
(1 +O(x−1

0 ). (18)

Reassuringly the factor multiplying e−px0 cancels at this order in x−1
0 ; this dependence

could only have arisen via incomplete cancellation between the inner limits on the in-
tegrals in (17), but the behaviour of the integrand at the origin of p-space should be
smooth. Leaving aside for now the slightly ill-defined integral over θq, we arrive at an
approximate expression of the form

Cm(x0, ~r) ∼
4g2

x0(2π)5

∫ ∞
µ

p2dp

∫ π

0

dθp sin θpe
ipr cos θp

e−(p−µ)x0(p− µ)2

(p+ µ)2[(p− µ)2 +M2]

=
4g2

(2π)
9
2x0r

1
2

∫ ∞
µ

dpp
3
2J 1

2
(pr)

(p− µ)2

(p+ µ)2

e−(p−µ)x0

(p− µ)2 +M2
, (19)

where terms decaying faster than e−2µx0 and/or x−2
0 are neglected, and in the second

line the integral over θp has been completed.
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Finally, as in the one-loop case we substitute q = p − µ and Taylor-expand the
integrand in powers of q. The identity

∫∞
0
qne−qx0dq = n!/xn+1

0 is exploited to yield

Cm(x0, ~r) ∼
2g2

(2π)
9
2

J 1
2
(µr)

(µr)
1
2

1

x4
0M

2
(1 +O(x−1

0 )) ∼ x−2
0

(x0µ)2

J 1
2
(rµ)

(rµ)
1
2

. (20)

The engineering dimension is wrong due to the approximation that has been carried out
preceding eqn. (17). There is no exponential decay in x0, resulting from the presence in
the integrand of poles costing zero excitation energy, whose precise contribution depends
on complicated geometrical factors which we have simplified. However the oscillatory
r-dependence, the main focus of this work, remains unchanged from the free field result
(12). This form is dictated by the final momentum integral always having a sharp lower
limit p = µ, arising from the physical situation of gapless excitations at a Fermi surface.
Note also that the first correction (20) can potentially exceed the free-field result (12) for
large µx0, highlighting for the need for caution when interpreting perturbative estimates.

In the next section the dependence of the wavefunction on a diquark source strength
j will be investigated numerically using free lattice fermions. The term proportional
to j in the action explicitly breaks baryon-number symmetry, and encourages diquark
pairing which has the effect of opening up a gap at the Fermi surface; we will see that
the impact on the oscillations is profound.

3 Lattice Formulation

The lattice results in this study employ two flavors of Wilson fermion, with action for
the quarks given by [6]

S =
∑
x,y

∑
i=1,2

ψ̄ixMxy(µ)ψiy − κjδxy[−ψ̄1x(Cγ5)τ2ψ̄
T
2y + ψT2x(Cγ5)τ2ψ1y], (21)

with (in units where lattice spacing a = 1)

Mxy(µ) = δxy − κ
∑
ν

[
(1− γν)eµδν0Uν(x)δy,x+ν̂ + (1 + γν)e

−µδν0U †ν(y)δy,x−ν̂
]
. (22)

The subscripts on the quark fields denote flavor, and the Pauli matrix τ2 acts on color
indices. The usual action is supplemented by the addition of gauge invariant scalar
isoscalar diquark source terms with strengths j, here chosen real (gauge invariance fol-
lows from the SU(2) identity τ2Uτ2 = U∗). These terms serve a dual role; they enable the
extraction of diquark condensates and anomalous quark propagators of the generic form
〈ψ(x)ψT (y)〉, 〈ψ̄T (x)ψ̄(y)〉, and their inclusion also mitigates the long-wavelength fluc-
tuations due to Goldstone modes in the superfluid phase which forms for µ ≥ µo = 1

2
mπ

in which baryon number symmetry is spontaneously broken. As a direct consequence
the number of iterations required to invert the matrix M is reduced by the opening of
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Table 1: A summary of the diquark and meson operators used in the analysis, with K = Cγ5τ2.

a gap in the Dirac spectrum of O(j). In order to make contact with a theory where
baryon number is a conserved charge we need ultimately to examine the limit j → 0.

The action (21) may be rewritten

S = (ψ̄, φ̄)

(
M(µ) κjγ5

−κjγ5 M(−µ)

)(
ψ
φ

)
≡ Ψ̄M(µ, j)Ψ, (23)

using the relabellings ψ = ψ1, ψ̄ = ψ̄1, φ = −Cτ2ψ̄
T
2 , φ̄ = −ψT2 Cτ2. The enhanced matrix

M obeys an important identity

Γ5M(µ, j)Γ5 =M†(−µ,−j), (24)

where Γ5 ≡ diag(γ5, γ5). We can now outline hadron interpolation operators, following
the treatment in [10]. In this study we will consider isovector meson excitations of the
form

M1
Γ = ψ̄1Γψ2 = ψ̄Γ(Cτ2)φ̄T (25)

and baryonic diquarks in the isoscalar channel:

D0
Γ = ψT1 (Cγ5τ2)Γψ2 = ψTγ5ΓT φ̄T = −φ̄Γγ5ψ. (26)

The Dirac matrices Γ and corresponding spacetime quantum numbers JP are listed in
Table 1.

The general quark propagator is

〈ΨΨ̄〉 =M−1(µ, j) ≡
(
Sψψ̄ Sψφ̄
Sφψ̄ Sφφ̄

)
. (27)
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The relations (23,24) imply two distinct components:

Normal: Sψψ̄(µ, j) = M−1(µ, j) = Sφφ̄(−µ,−j); (28)

Anomalous: Sψφ̄(µ, j) = Sφψ̄(−µ,−j). (29)

In the limit j → 0 and on a finite lattice the anomalous components vanish. We
can now write expressions for the hadron correlators required for the wavefunctions
corresponding to spatial separation ~r between the (anti)quarks at the sink. First define
eg. M1

Γ(x,~r) = ψ̄1(x)Γψ2(x+~r), and M1†
Γ = −ψ̄2(x+~r)Γ̄ψ1(x) (with Γ̄ ≡ γ0Γ†γ0). Then

C1
mΓ(x, y;~r) = 〈M1

Γ(y,~0)M1†
Γ (x,~r)〉 = − tr

{
Sψψ̄(x, y)Γγ5S

†
φφ̄

(x+ ~r, y)γ5Γ̄
}

+ tr
{
Sφψ̄(x+ ~r, y)Γγ5S

†
ψφ̄

(y, x)γ5Γ̄
}
. (30)

There are two terms, one involving a connected contraction of normal propagators, and
one a connected contraction of anomalous propagators.

Similarly in the isoscalar diquark channel (with D = ψT1 (Cγ5τ2)Γψ2 and D† =
ψ̄2Γ̄(Cγ5τ2)ψ̄T1 ):

C0
bΓ(x, y;~r) = 〈D0

Γ(y,~0))D0†
Γ (x,~r)〉 = + tr

{
Sψφ̄(y, y)Γγ5

}
tr
{
Sφψ̄(x, x+ ~r)Γ̄γ5

}
− tr

{
Sφφ̄(x, y)ΓS†

φφ̄
(x+ ~r, y)Γ̄

}
. (31)

Here the anomalous propagators only contribute to disconnected pieces, which we hence-
forth ignore. A judicious use of (24) means the required normal contributions can be
evaluated with a single inversion of M using a local source at y, just as in (30). It is
shown in [10] that the connected contribution to C0

bΓ is non-vanishing for Γ ∈ {11, γ5, γi}.
Comparison of (30) and (31) also reveals the origin, in the limit µ = j = 0, of the
degeneracy between mesons with spin-parity JP and diquarks with J−P , noted in [10].
Once the system enters a superfluid phase for µ ≥ µo baryon number is no longer a good
quantum number, and we therefore expect degeneracy between meson and diquark chan-
nels sharing the same JP . This prediction was approximately observed for the lightest
states in [10], and must arise via non-trivial contributions from anomalous propagators.
Finally, we note that a similar analysis for the isovector diquark correlator C1

bΓ yields
the same connected contribution as in (31), but this time with Γ restricted to iγ5γi.

Next we examine wavefunctions evaluated for non-interacting quarks. Fig. 2 plots
the wavefunction ΨΓ(~r, τ) defined by the ratio

Ψ(~r, τ) =

∑
~xC(~x, τ ; 0;~r)∑
~xC(~x, τ ; 0;~0)

, (32)

where as usual the sum over the sink location ~x projects onto the zero momentum
sector. The calculation is performed by invertingM on a 244 lattice, with κ = 1

8
chosen

to yield massless quarks. For consistency’s sake all curves shown correspond to temporal
separation τ = 8 between source and sink, and only points evaluated along a lattice axis
are plotted to minimise the impact of discretisation artifacts.
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Figure 2: Meson and diquark wavefunctions Ψ(~r, τ = 8) for free massless quarks and various µ and j.

Two trends are discernible. First, as chemical potential increases from 0 to µa = 0.75
the width of the main central feature of the free wavefunction decreases, and it develops
an oscillatory structure whose spatial frequency is in qualitative agreement (but slightly
smaller) than the prediction of (12). The amplitude of the oscillations dies away more
quickly than for those observed in the 2+1d Gross-Neveu model [17], since in 3+1d the
profile is given by J 1

2
(rµ) rather than J0(rµ). Second, as diquark source j is increased

at fixed µ, both the width of the central feature (especially for µ = 0) and, for µ > 0 the
amplitude of the oscillations are diminished. This can be understood as a consequence
of the opening of a gap at the Fermi surface over a momentum range ∆ ∼ O(j), as
shown in Fig. 1, with the consequence that there is mixing between particle and hole
states so that both higher momentum states contribute to the correlators, and the sharp
momentum cutoff in the integral leading to (12) is smeared out.

4 Numerical Results

Hadron wavefunctions formed from interacting quarks were calculated using QC2D en-
sembles generated using the quark action (21,22) together with an unimproved Wilson
gauge action for the gluons. The simulation parameters were β = 1.9, κ = 0.168,
corresponding to lattice spacing a = 0.178(5)fm with scale set by assuming the string
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tension is (440MeV)2, and mass ratio mπ/mρ = 0.807(5) [7]. Most results are obtained
on a 123× 24 lattice, corresponding to a physical temperature T = 44(2)MeV, although
for µa = 0.25 we also have results from 163 × 24 for comparison. This temperature is
sufficiently low to support the existence of an extended range of µ in which the the-
ory is simultaneously confining (as indicated by a near-vanishing Polyakov loop) and
superfluid (as indicated by a non-vanishing condensate 〈ψT2 (Cγ5)τ2ψ1〉 6= 0 as j → 0).
With these parameters values of µa in the range [0.0,1.1] were explored; the onset value
µo = 1

2
mπ = 0.323(3)a−1. The large quark mass implies that the window in µ where

BEC-like behaviour occurs is at best very narrow, and so far has not been observed. The
so-called “quarkyonic” regime where baryon density, pressure and superfluid condensate
all scale with µ according to the expectations of a system of degenerate quarks, lies
approximately in the range µa ∈ (0.4, 0.8) [7, 8].

For |~r| > 0 the point-split correlators (30,31) are not gauge invariant without an
insertion of path-ordered link variables along some selection of paths joining the two
halves of the sink. To mitigate the effects of the signal fluctuations introduced by this
non-unique procedure, we instead choose to gauge-fix the configuration and use unit
links to complete the loop. We fix a discretised Coulomb gauge defined by

∆G(x) ≡
3∑
i=1

[
AGi (x)− AGi (x− ı̂)

]
= 0 , (33)

where the gauge transformation G(x) extremises the functional

F [UG] = −Re Tr
∑
x

3∑
i=1

UG
i (x), (34)

with UG
µ (x) = G(x)Uµ(x)G−1(x + µ). To achieve this, the simplest algorithm [20] one

can adopt is a local procedure which visits one lattice site at a time and attempts to
minimize its contribution to the functional (34), which can be written as:

Floc(x̄) ∝ −Re Tr
∑
µ

[Uµ(x̄) + Uµ(x̄− µ̂)] . (35)

Two observables are usually monitored during this procedure. One is the functional (34)
itself, which decreases monotonically and eventually reaches a plateau. The other one
is a measure of the first derivative of F [U ] during the gauge-fixing process defined as

θG ≡ 1

V

∑
x

Tr [∆G(x)(∆G)†(x)] , (36)

where V is the lattice volume. This quantity eventually approaches zero when F [U ]
reaches its minimum and can be used as a stopping parameter for the procedure. Here
we chose θ ≤ 10−30.

13



0 5 10 15 20 25

τ

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2
C
O

(τ
)

Mγ5γi [1
+]µ

0.0

0.25

0.5

0.75

1.0

0 5 10 15 20 25

D0
γi

[1−]

τ

Figure 3: Meson (left) and diquark (right) Euclidean correlators evaluated for various µ at ja = 0.02.

As shown in [20], the gauge-fixing procedure is affected by long-range correlations
when the size of the lattice increases, which eventually leads to a critical slowing down.
There are a number of strategies available to improve this and here we adopt the so-called
overrelaxation procedure [21]. This method replaces the gauge fixing transformation
G(x) with its power Gω(x) at each iteration, where ω ∈ (1, 2) is a parameter which is
tuned empirically at an optimal value, depending on the volume of the lattice and the
coupling β. The exponentiation is obtained by a truncated binomial expansion

Gω =
N∑
n=0

γn(ω)

n!
(G− I)n , γn(ω) =

Γ(ω + 1)

Γ(ω + 1− n)
, (37)

with 2 ≤ N ≤ 4. Here we chose ω = 1.75 and N = 4. Before Gω(x) is applied to the
link, it has to be reunitarised in order to belong to the gauge group.

Fig. 3 shows typical meson and diquark timeslice correlators
∑

~xCm,b(0, x;~r = ~0)
evaluated for µa ∈ [0, 1.0). By construction mesons yield a signal which is symmetric
about the temporal midpoint of the lattice, whereas diquarks carrying baryon charge
are time-asymmetric once µ > 0. We interpret the forwards-moving lighter states as
diquarks and the backwards-moving heavier states as anti-diquarks (in contradistinction
to the nomenclature adopted in [10]). Inspection of the plots reveals that while the
1+ meson is more massive than the 1− diquark at µ = 0 (recall they should only be
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degenerate in the limit j → 0), both become lighter as µ increases beyond onset.
This is in accordance with the spectrum results found in [10] using all-to-all propa-

gators evaluated using source dilution. In brief, in mesonic channels, the 0− pion and 1−

rho are the lightest states at µ = 0, but beyond onset there is a level crossing, the rho
becoming lighter while the pion mass increases almost linearly with µ. The two lightest
states for µ > µo are, however, the isoscalar 0+ and the slightly heavier isovector 1+.
In the diquark channel, the isoscalar 0+ and isovector 1+ are approximately degenerate
with the pion and rho states at µ = 0 but, again, beyond onset become much lighter and
approximately degenerate with the mesonic states sharing the same quantum numbers,
as expected in a superfluid ground state. In the same post-onset regime isoscalar 0− and
1− states are observed at roughly the same mass scales as their π/ρ counterparts.

Fig. 4 shows the wavefunction Ψ(r, τ) of eqn. (32) in the pre-onset regime and com-
pares data from 123 × 24 and 163 × 24 lattices for the same four channels of Fig 2. In
this case, we show data evaluated at τ = 8 and for all available separations ~r up to half
the lattice extent. There is some evidence for discretisation artifacts, eg. around r ' 2a,
but overall the trend with r is smooth within errors; moreover finite volume effects are
absent for spin-0 states, and larger (but still consistent with zero) for spin-1, where data
from the smaller volume are considerably noisier. The absence of spatial volume effects
is consistent with excitations being confined states, with little or no contamination from
image charges which might be anticipated from the algebraic fall off (12) of the free-field
wavefunctions.

The main focus of this paper is the post-onset regime µ > µo, where we expect
degeneracy between meson and baryon states due to the superfluid nature of the ground
state, so that physical states are labeled solely by their JP quantum numbers. However,
meson and baryon operators need not have the same overlap with the actual bound
states; Table 2 of Ref. [10] shows the quality of the signal for each operator. We will
mainly concentrate on the channels yielding a “good” signal for µ > µo: the 0+, 0−

and 1− diquarks and the 1+ meson. Whilst comparison of both mesonic and baryonic
contributions to a particular JP would yield information on the relative magnitude of
their Fock space components, in practice noise in the less-favoured channel has precluded
such an analysis in this exploratory study.

By τ = 8 the temporal decay in both cases is well-approximated over a wide range
of τ by a single exponential, indicative of a bound state. In this regime the ratio (32)
can be written eg.

Ψ(~r, τ) =

∑
i

∑
~x〈0|ψ̄(0)Γψ(0)|i〉〈i|ψ̄(x)Γψ(x+ ~r)|0〉e−Eix0∑

i

∑
~x〈0|ψ̄(0)Γψ(0)|i〉〈i|ψ̄(x)Γψ(x)|0〉e−Eix0 ≈

∑
~x〈H|ψ̄(~x)Γψ(~x+ ~r)|0〉∑
~x〈H|ψ̄(~x)Γψ(~x)|0〉 ,

(38)
where |H〉 is understood as the lightest hadron state in the particular channel, and can
be seen to be proportional to the wavefunction defined in eqn. (2) but normalised to
unity at the origin ~r = ~0. Unless otherwise stated, we will show results for wavefunctions
Ψ evaluated at this temporal separation.

Fig. 5 shows wavefunctions calculated with varying τ values. For clarity’s sake only
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Figure 4: A comparison between hadron timeslice correlators obtained from 123 × 24 and 163 × 24
lattices, for ja = 0.02 in the pre-onset regime at µa = 0.25 for various channels.

data from separations ~r on-axis are plotted. The 1− diquark and the 1+ meson show
similar behaviour; the approximate consistency of data from different τ is good evidence
for the existence of a discrete bound state and the applicability of the approximation
(38), although for µa . 0.5 the data is much nosier for the meson than the diquark.
For µ < µo the wavefunction has a large width and has not yet vanished by the lattice
midpoint, which is consistent with the volume dependence of the spin-1 data seen in
Fig. 4.

In Fig. 6 we show the consequences for the scalar diquark wavefunction of varying
the diquark source j; the data have been generated in a partially-quenched approach
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Figure 6: Diquark wavefunctions relative to D0
1 showing the j-dependence for various values of the

chemical potential µ.

using an ensemble generated with ja = 0.02. It can be seen that for µ > 0 increasing
j has the effect of very slightly shrinking the wavefunction. In contrast to the data for
free fermions in Fig 2, there is no sign of oscillatory behaviour developing in the j → 0
limit.

Figs. 7 show τ = 8 wavefunctions for the four channels of interest as µ is varied.
Comparison of the plots enables us to order the states by spatial size at µ = 0: 0+ < 1− <
1+. The 0− data are considerably noisier. The main common trend is the systematic
decrease in the size of all states as µ increases, so that by µa ∼ O(1) the maximum extent
ra ∼ 3. With the exception of the noisy 0−, there is no sign of any of the wavefunctions
changing sign or developing oscillatory behaviour as µ increases.

To crudely quantify the evolving spatial size, we extracted from the data the full
width at half the maximum of Ψ(r, τ), which was obtained by fitting the wavefunction
to a spline. In Fig. 8 we then plot the resulting width σ(µ) in each channel. The
results are plotted both as a function of µ and of 1/µ, and confirm the trends reported
above, and also highlights that post-onset σ(0−) is larger than both 0+ and 1+ states.
We note that σ(0+) > σ(1−) for µa & 0.6, which is confirmed by close inspection
of Fig. 7. For µa & 0.6, or 1/µa . 1.5, the widths approach one another making the
various channels difficult to distinguish, but the right panel of Fig. 8 suggests that bound
states are increasingly dominated by a single length scale σ ∝ µ−1, with the hierarchy
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Figure 7: Diquark and meson wavefunctions for various values of the chemical potential µ at ja = 0.02.
Below onset, some operators are very noisy and are excluded from the plots for clarity.
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σ(1−) < σ(0+) < σ(1+) < σ(0−).

5 Discussion

We have presented results from the first attempt, using orthodox lattice techniques,
to examine the spatial structure of gauge-invariant excitations in a baryonic medium.
The results complement a previous study [10] of the excitation spectrum. We have
focused on the post-onset regime µ > µo in which baryon charge density is non-zero
in the T → 0 limit, and the ground state is a superfluid. Our results are consistent
with the indistinguishability of mesons and diquarks in a superfluid, and suggest a scale
hierarchy σ(0+) ∼ σ(1−) < σ(0−) < σ(1+), to be compared with the mass hierarchy
m(0+) < m(1+)� m(1−) < m(0−) found in [10]. As a general rule, signals obtained in
diquark channels were less noisy than those from mesons.

The scale hierarchy becomes less well-defined as µ increases and the wavefunctions
shrink; from µa ∼ 0.6 onwards all the channels yield wavefunctions of approximately
equal extent. For orientation, if the string tension is used to set the scale this corresponds
to µ ' 670MeV, at which point the quark density nq ' nSB ∼ 5fm−3 (using (1)), or
roughly 10× nuclear density [7]. Spline fits to the profiles then yield the approximate
behaviour σ ∝ µ−1 with a different hierarchy σ(1−) < σ(0+) < σ(1+) < σ(0−). This is
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consistent with the expectation σ ∝ µ−1 which assumes that µ ∼ kF is the only relevant
scale at high density. Indeed, this is precisely the content of the free-field prediction (12).
The physical picture is that bound-state excitations are formed from quarks close to the
Fermi surface with a characteristic de Broglie wavelength λF ∼ µ−1. The absence of
appreciable finite volume effects suggests, however, that the influence of image charges is
negligible, and that confinement continues to hold. The conjunction of both properties
characterises the so-called quarkyonic regime.

Finally, the absence of oscillatory behaviour in Ψ(r, τ) at low temperature, in contrast
with the weak-coupling prediction (12) needs some consideration. One obvious departure
from weak-coupling behaviour is the formation of a superfluid condensate 〈qq〉 6= 0,
which for a degenerate system should, via the BCS mechanism, induce an energy gap
∆ ∼ ΛQC2D ∼ 〈qq〉/µ2 at the Fermi surface. The presence of a gap removes the sharp
momentum cutoff in the integrals leading to the expressions (12, 20), and therefore also
the oscillations. A gap can also be modelled in free-field theory by the introduction of a
diquark source j 6= 0, and the curves shown in Fig. 2 strongly suggest this explicit gap
does indeed dampen the oscillations. The fact that oscillations remain absent from the
wavefunctions of interacting quarks as j → 0, demonstrated in Fig. 6, is consistent with
the post-onset QC2D gap being generated dynamically. Of course, this speculation does
not exclude other explanations based on the persistence of hadronic bound states in the
confining quarkyonic medium.
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