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Chapter 1

Coalgebras as Types determined by their
Elimination Rules

Anton Setzer

Abstract We develop rules for coalgebras in type theory, and give ingaex-
planations for them. We show that elements of coalgebradetermined by their
elimination rules, whereas the introduction rules can besittered as derived. This
is in contrast with algebraic data types, for which the ojiieds true: elements are
determined by their introduction rules, and the eliminatioles can be considered
as derived. In this sense, the function type from the lodieahework is more like
a coalgebraic data type, the elements of which are detediipehe elimination
rule. We illustrate why the simplest form of guarded recumsis nothing but the
introduction rule originating from the formulation of cgabras in category theory.
We discuss restrictions needed in order to preserve ddligald equality.

Dedicated to Per Martin-bf on the occasion of his retirement.

1.1 Introduction

Most programs in computing are interactive programs. Théams that they are
not batch programs, which, once started, are guaranteedtinate after a certain
amount of time and deliver their result. They are programislwkeep running and
interacting with user input, until they are terminated bg thser. Such programs
correspond to non-well-founded trees: Nodes are labefeddmmmands and the
branching degree of a node labelled by a command is the sespbnses to this
command. A computation which goes on for ever correspondas iofinite path in
this tree. More details of this can be found in a series otlagiby the author and
Peter Hancock [22, 23, 24, 25, 26]. Colists are simple tradslwanching degrees
0 or 1, and for ease of presentation, we restrict ourselvéssrarticle to colists.
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Dept. of Computer Science, Swansea University, Singletok, iSwansea SA2 8PP, UK, e-mail:
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2 Anton Setzer

Martin-Lof type theory is supposed to be a language in wiicgrams can be
written and in which we can prove correctness propertieacti programs. In order
to be able to write interactive programs and reason aboumt,the need to represent
non-well-founded structures. Coalgebras originatingrficategory theory provide
a theory of non-well-founded structures. They allow to esgnt the elements of
such structures in a finitary way. Elements are not per setafyn- in fact we will
represent them in type theory as finitary objects. As partadalgebra we have a
case distinction operation. In case of colists, the redudtpplying it to a colist is
the information whether the element represents the engitgidia list formed from
a given head and a given tail. By iteratively applying castimiction, a colist then
unfolds to a potentially infinite list.

The goal of this article is to introduce a notion of coalgshirgo type theory
and provide meaning explanations for them. We want coadgetar be first class
citizens, i.e. they are not encoded in terms of other datastyphis seems to be the
general way of moving forward in type theory. In most othetimeanatical theories
the goal is to define a minimal closed theory, which allowsrtoogle all structures
needed in mathematics. In type theory it is usual practicettinuously extend the
theory in such a way that new structures needed are repeesainéctly.

In this article we develop the theory of coalgebras in typotl, while closely
following the categorical notions. One main focus is to depeneaning explana-
tions for coalgebras, in order to fully integrate them irtte theoretical setting of
type theory. Whereas coalgebras only extend the expressigenot the proof theo-
retic strength, of type theory, we hope that this projecteélp to develop the basis
for future proof theoretic strong extensions of type theory

We start by exploring the notion of inductive data types, alihiorrespond to
initial algebras. We will as well review meaning explanagdor them. Then we
develop the notion of a final coalgebra. We will see that a Bnfigrm of guarded
recursion is nothing but the introduction rule of final cagas, which represent
the existence of morphisms in the defining diagrams for adalgs. We will de-
velop a slight extension of guarded recursion as well. We gxlore limitations of
coalgebras needed in order to maintain decidable equBbtythis reason we will
switch to weakly final coalgebras with an extended versiogusrded recursion.
We will see that in a decidable type theory we cannot assuateettery element is
introduced by a coconstructor. This is the underlying raedso the failure of sub-
ject reduction in implementations of type theory and protdevith dependent case
distinction. Next, we develop type theoretic rules for gadiras based on extended
guarded recursion.

In the last part, we will develop meaning explanations foalgebras. We will
need to change the setting of meaning explanations in oodee &ble to explain
coalgebras. As in the original meaning explanations by Mdrdf, inductive data
types are given given by explaining how to introduce its eleta and when two
elements introduced are equal. So the elements are detatioyrtheir introduction
rules. The elimination rules are justified by verifying thiay operate correctly for
every elementintroduced. Meaning explanations of coalgetre given differently.
Elements of coalgebras are given by defining how to compuiter @lements from
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them. Elements are equal if the computed results are eqghetefore elements are
given by their elimination rules. The introduction rules arstified by verifying that
they introduce elements which allow to apply the eliminajpinciple.
Related Work. The use of coalgebras in non-dependent functional progiagim
was to the author’s knowledge first introduced 1987 in the BleiBis of Hagino [20]
(see as well [21]). He used the terminology codatatype fatgebras defined by
their elimination rules. Aczel introduced 1988 in his botkrfon-well-founded set
theory. Non-well-founded sets are necessarily infiniteeotsj, which can be intro-
duced by the anti-foundation axiom, a form of guarded réonr8ased on Hagino’s
work, Cockett, Fukushima and Spencer developed 1992 thedlapandent func-
tional programming language Charity with a very clean cattiegl syntax. Leclerc
and Paulin-Mohring in [32] 1994 used the impredicative type Coq in order to
represent streams and define the sieve of Eratosthenesa@b#894 introduced in
[10] the concept of guarded recursion. Giménez [19, 18plimed 1994 an exten-
sion of the calculus of constructions by inductive and cattve types. He showed
how to reduce general forms of guarded recursion to coadgeBiready in his PhD
thesis [18], he discovered problems with subject reductignich will discussed
later in this paper. Paulson implemented 1994 axioms fanchgition in Isabelle
[43]. Telford and Turner [47, 49, 48] starting 1995 promotieel use of codata as
truly infinite data types introduced by their introductianes, and implemented
them in the functional programming language Miranda. Thin@uhas together
with Hancock since 1999 developed in [22, 23, 24, 25, 26]attve programs in
dependent type theory. This included in [25, 26] a definitbthe rules for guarded
recursion and weakly final coalgebras in Martin-Lof Typee®ty (2004). Coalge-
bras have been introduced in the interactive theorem pi©@ugr The “Cog-book”
[6] by Bertot and Castéran contains an extensive chaptemlthe development
of coinductive data types and proofs of their propertiee &g well the note [5]
by Bertot. Coinductive data types have as well been impleéeteim Agda [41] by
Norell, Danielsson, Abel and other members of the Agda agraent team — see
intense discussions on the Agda email list [2]. The latetiva, which is currently
implemented in Agda using a notion for coalgebraic argusiamas presented in
[4]. McBride has written a short paper [38] on the problemufject reduction in
coalgebras, and how to develop coalgebras in observatippaltheory. We will
discuss this paper later in detail.
General setting and notations.This paper is heavily based on Martin-Lof Type
Theory [34], mainly on the version presented in the secomtlgid40], with the
restriction to the small logical framework outlined belofs usual we have the
basic judgementa: Set,A=B: Set,a: Aanda=b: A. Hypothetical judgements
will be written asl” = 6, wheref is a basic judgement arfld a context. Contexts
I have the fornx: Aq,.... Xy : An, Wherexq : Aq,... . Xi—1: A1 = A :Set. If D is
the empty context, we write instead o 6 simply 6.

We will develop type theory based on the small logical fraroeuysee for in-
stance [44]. IfA: Set andx: A= B : Set, we can form the dependent function set
(x: A) — B: Set. (This type is often written d3x : A.B. However, in Martin-Lof
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Type Theoryllx: A.B is reserved for the inductive data type having constructor
A:((x:A) —B) —Ix:AB).

The canonical elements 0f: A) — B are termgx)t wherex: A=-t: B, which is
sometimes written adx.t. Following the conventions in Martin-Lof Type Theory,
we reservel for the constructor of 1x : A.B. Application is written in functional
style in the form(s t). We use usual abbreviations such as writingt) for ((r s) t)
(the outermost brackets are only for better readabilityytiermore(x: Ay : B, z:

C) — D denotegx: A) — ((y:B) — ((z: C) — D)).

Note that large types such &s: A) — Set are only allowed in the full logical
framework. The reason for restricting ourselves to the klogical framework is
that we have a satisfactory understanding of how to develegning explanations
for it. One central part of this article is the discussion afaning explanation for
coinductive types.

Because of the restriction to the small logical frameworguanents referring to
elements of type Set are presented as premises in rulesraeiicpl applications,
the use of the full logical framework, as it is implementedifestance in Agda, is
preferred. Then these arguments can easily be abstracted.

Apart from the standard structural rules and the rules ferdiggpendent function
sets, we add rules for the intensional equality tgpe=a b (whereA: Set,a: A
andb: A), the one element sétwith only element : 1, the binary productA x B)
(whereA B : Set), the disjoint unioffA+ B) (againA, B : Set), and the set of natural
numbersN. The use ofN is not crucial for the development of type theory in this
article, we just use it as a convenient example set.

We will use expressions such @¢x), step,.,4dn,!) for terms depending on free
variablesx or n,1. After usingC(x), the expressiof(t) is the result of substitut-
ing the termt for x (where we identifyor-equivalent terms and resolve substitution
problems as usual). After a premise of a naleA = C(x) : Set we write simplyC
rather thanx)C(x) for the argumen€. The same applies to similar expressions as
well.

Acknowledgements.We want to thank the anonymous referee for valuable com-
ments on earlier version of this articles. We want to thanwel$ our PhD student
Fredrik Nordvall Forsberg for diligent proof reading anduable remarks.

1.2 Initial Algebras defined by their Introduction Rules

The set of lists in Martin-L 6f Type Theory. In Martin-Lof type theory, types are
usually introduced by their introduction rules. Let us ddes the type of lists of
natural numbers. It has formation rule

Listy : Set

and introduction rules
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nil : Listy cons :N — Listy — Listy

The elimination rules express that Lyigt the least set closed under these operations,
as expressed by the principle of higher type primitive reicur over lists:

X: Listy = C(x) : Set
Re¢s! : (step,; : C(nil))
— (SteRens: (N: N, I : Listy) — C(lI) — C(consn|))
— (I : Listy)
—C(l)

The equality rules, where we omit the obvious assumptionypes of the param-
eters, are as follows:

Re@" stefy; steRonshil — stepy _
ReE® step, SteRons(COnsn 1) = stepynsn | (ReES! stepy steRons!)

By the type theoretic rules for Listwe mean the rules above.

Meaning explanationswere introduced by Per Martin-Lof [34, 35, 36, 37]. They
are part of a program to develop a theory in such a way that we ddirect insight
that everything proved in it is correct. By Godel's incomginess theorem we know
that there is no proof of the consistency of any reasonabtbenaatical theory by
weaker methods. Therefore, there is no mathematical anguwtgch guarantees
that the mathematical theories used for proving theoremsetually consistent,
and which wouldn't be prone to the danger of using an incomscy of the theory
in question. So any justification for the consistency of asosable mathematical
theory needs ultimately be based on a philosophical argurBeich an argument
can never be fully formal — otherwise we would obtain a mathiéeal proof of the
consistency of the theory in question. What meaning expilans by Martin-Lof
provide is the to the author's knowledge at this time bessibbs way of getting a
direct insight into the validity of the judgements derivalsl Martin-Lof type theory.
They are a way of making as precise as possible the reasonsalijuglgements
derivable in this theory are valid.

In meaning explanations one gives a meaning to each judgemdinvestigates
for each rule that we obtain valid judgements in the conolu$iom valid judge-
ments in the premise. The meaning of a set is given by explgimhat the elements
are and when two elements are equal. Two sets are equal iéareet of one set is
an element of the other, and if two elements are equal in anteg are so in the
other.

One should note that meaning explanations, as the autherstadd them, jus-
tify extensional equality. For colists, as defined lategythvill even justify bisim-
ilarity as equality (which will be introduced below). We dotrsee any inherent
problem in it. The reason for having intensional equalitthist we want to decide
for every proposition whether a terpis a proof of this proposition. Hence we need
decidable type checking.
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Meaning explanations for Listy. In these explanations, elements are determined
by their introduction rules. Listis a set. We have nil is a canonical element of{jst
and forn a natural number, anidan element of List we have thafconsn|) is a
canonical element of Ligt Non-canonical elements of Listare programs which
evaluate to canonical elements of kisfThe element nil is equal to itself. The ele-
ments(consn |) and(consn',1) are equal, ifh andn’ are equal elements &f and

| andl’ are equal elements of List The elements nil an¢tonsn |) are not equal.
Non-canonical elements are equal, if the results of evialgahem to canonical
elements are equal.

The elimination and equality rules are explained by showiog to compute
from elements of List elements of other sets. Their explanation uses that we have
determined what the canonical elements of {.iate, so it makes use of the intro-
duction rules for List. The explanation of R&E! is as follows: Assume€(x) is a
set, depending on an elemenobf Listy. So for every elemeritof Listy we have
thatC(l) is a set. Assume stgpis an element o€(nil) and step,,sis a function,
which maps elements of N, | of Listy and p of C(l) to elements o€(consn I).
Assumd is an element of List. Then(Re¢'! stepy; steRgns! ) is @ program which
computes an element 6f1). This element is computed as follows: Fifss com-
puted which evaluates to a canonical element ofyLi#ft this element is nil, then
(Re! step,; stepons!) evaluates to the result of computing stemvhich is an
element ofC(nil) and therefore as well @&(1). Otherwisd evaluates tgconsn 1’),
wheren is an element oN andl’ is an element of List. Before we introducé we
have introduced and therefore’ := Re@'™ step;; steRqns!’ is an element oE(l").
Now (Re¢™! step,; steRons!) is evaluated by computingtep,nsn I ¢’) which has
as result an element @fconsn I) and therefore o€(1). The equality rules follow
since the left hand side is evaluated by evaluating the highd side.

Listy as an initial algebra. Assume a category having finite products (including
an initial objectl which is the empty product), and a binary coproduct- B) for
objectsA,B. Assume as well a natural numbers objgctwe will not need any
specific properties about it). Elemer®f objectsA are arrowsa: 1 — A, and we
write a : A for such elements. Let 5 be the functor with object part gt X =
nil +-tongN, X). Herenil +tongN, X) is a notation forl + (N x X), where we
write nil := inl * for the element : 1 (corresponding to id1 — 1) and (Tonsn )
for the elementinr (n,x)) wheren: N andx : X. The namenil signifies a nil-
shape an@ons a cons-shape. Fér. A — B we obtain an obvious morphism part
Fuist T : FList A — Fuist B. An Fisi-algebra is a paifA, f) whereA is an object and

f : FList A— A. A morphism between i-algebragA, f) and(B,g) is a function
h: A— Bs.t. the following diagram commutes:

f

Frist A A

FList h h

FlistB——— B
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An initial Fjsi-algebra(Listy, intro) is an initial object in the category with objects
FList-algebras and morphism beingd~morphisms. So we have a morphism intro :
FList(Listy) — Listy, and if we have any other f-algebra(A, f), i.e. if we have

f i FList A— A then there exists a uniqug Listy — A s.t. the following diagram
commutes:

. intro .
Frist(Listy) — Listy

Flist 0 dlg

f

Flist A A

Consider now the specific category, in which objects are efgésof Set (where def-
initionally equal sets are identified) derivable in Martitf type theory. Let mor-
phismf : A— B be functions of this type derivable in type theory. lief’ : A— B.
Considerf equal tof’ as morphisms in category theoretic diagrams, if and only if
f, f’ are equal extensionally, i.€a: A.f a==g f’ a, where==g is the intensional
equality type. Assume the type theoretic rules for jidtet intro : Fjst(Listy) —
Listy, intro nil = nil and intro(consn |) = consn |. Then(Listy, intro) is an ini-
tial Fiist-algebra: It is obviously an ki-algebra. Furthermore, assuit#g f) is an-
other R js-algebra. Then we can define using the elimination rule f@f & function
g: Listy — Asuch thagnil = f nil, g (consn 1) = f (consn (g1)). It follows in type
theory thatg is the unique Fsi-algebra morphisng : (Listy, intro) — (A, f): That
it is a Fjst-algebra morphism is obvious. Further, if there is any ofhgg-algebra
morphismg’ : (Listy, intro) — (A, ), one can show by induction dn Listy (which
corresponds to the elimination rule for Ligtv! : Listy.g(l) ==List, 9'(1), sog and
g are equal morphisms.

Therefore the rules of type theory for Listmply the principle that List is an
initial algebra. One can show as well that the principlgldgty, intro) being an
initial algebra implies the type theoretic rules for kistHowever, this direction
requires extensional equality. This result is in fact a slemase of [16]. The type
theoretic rules for List and the principle of Listy, intro) being an initial algebra
are therefore extensionally equivalent, but are interaipifferent (although we
have no formal proof for this). In this sense we can regardytpe theoretic rules
without extensional equality as one possible represemtati the rules of an initial
algebra.

1.3 Weakly Final Coalgebras

Colist. We will introduce the type of colists, which are elementsathtan be un-
folded to potentially infinite lists of natural numbers. Gtd will be defined as
weakly final coalgebras. Coalgebras are the dual of algebrakare obtained by
inverting the direction of the arrows in the category théorrmulation of alge-
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bras. An kjsi-coalgebra is a paifA, f) wheref : A — F st A, and as for algebras
we sometimes omif when it is obvious from the context. An j&-coalgebra mor-
phism between coalgebréa, f) and(B,g) is a functiorh: A— B s.t. the following

diagram commutes:
f

A Frist A
h Flisth
B FList B

A final Fijs--coalgebra/coList case is a terminal object in the category of i&-
coalgebras. Therefore, it is api§-coalgebra. Furthermore, for any other coalgebra
(A, f), i.e. f : A— Fuist A there exists a unique coalgebra morphigm(A, f) —
(coList case, i.e. a uniquey : A — colist s.t. the following diagram commutes:

f

A Fuist A

E”g l:List g
coList —— Fjst(coList)
case

Weakly final Fjs-coalgebras are weakly terminal objects in the category gf-F
coalgebras, which means that we omit the condition ¢gret above is unique. As-
sume in the following coList case is a weakly final [5is;-coalgebra.

The function case : coList; (nil 4+ CongN, coList)) determines for an element
of coList whether it is of the fornmil or (Tonsn I). Note that we can apply case to
| again. So an element of coList is an element which can, bgtitely applying
case to it, be unfolded to a potentially infinite list. Fortarsce an elemerst: coList
s.t. case = cons Oa represents what would in a framework of infinite terms be the
infinite list (cons O(cons 0(cons 0---))).

Codata types and guarded recursionIn functional programming, codata types
([49]) are often considered as variants of algebraic dgiagyvhich allow the for-
mation of infinitely many applications of constructors. imtance one could define
the codata type of colists, which has constructors nil antsc®hen it is possible
to have infinite nesting of cons and define a colstns 0(cons 0(cons 0--+)))
directly. One sees immediately that this destroys norratdisa. We will see below
that decidable type checking is not possible, if we assuraedhch element of a
coalgebra is introduced by a constructor. Coalgebras aegsion of codata types,
where elements are not per se infinitary, but unfold to irdiotbjects.

Relationship to guarded recursion.Guarded recursion was introduced by T. Co-
qguand in [10] in a setting of infinitary terms. Bertot and @aah use in Chapter 13
of the “Coqg-book” [6] guarded recursion and codata typesresitely for the devel-
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opment of infinite objects and proofs for these objects. Gedrecursion allows to
define elements of codata types recursively, by allowingradursion, as long as
recursive calls are guarded by at least one (possibly marmtauctors of the co-
data type in question, and no other functions are appliedeadsult of a recursive
call. A simple form of guarded recursion is where we alwaygetane recursive call
guarded by exactly one constructor.
We can see now that in the coalgebraic setting the existdte B js--coalgebra

morphismg : A — coList for any kjs;-coalgebrg A, f) corresponds to this simple
form of guarded recursion: We have

case(ga) = {m i.f fa
consn (g d) if fa=consnd.

By choosing suitablé we can therefore defirge: A— coList by guarded recursion,
s.t. fora: Awe have caség a) = nil or case(g a) = consn (g &). Which of the two
cases holds and the choicednda’ can be decided dependingarNote that there
are no conditions og’ to be smaller thaa. This principle is the simple form of the
principle of guarded recursion. The difference to the sgttising codata types is
that(g a) is not equal to nil ofconsn (g &)), but unfolds when applying case to it
to an element having the shapiéor (consn (g &)).

An example of guarded recursion is that we can define a fumgioN —
colList s.t. caség n) =tonsn (g (n+ 1)). Then(g 0) represents the infinite list
(cons O(cons 1(cons 2---))).

Extended guarded recursionLet (nil’ +-cong(N, A) +cond(N, coList)) be the set
having elementsil’, (con$ n a) for n: N,a: Aand(cond nl) for n: N,I : coList.

We are going to show that, &: A — (nil’ +cons(N, A) + cond(N, coList)), then
we can define a functiofi: A— coList s.t.

nil if ga=nil’,
case(fa)= ¢ tonsn(gd) ifga=condnd,
consn | if ga=cond' nl

So(g a) decides whethe(f a) is of nil-shape (constructanil’); of cons-shape with
arecursive call tgg &) (therefore the nameons); or of non-recursive cons-shape
(therefore the nameond'). This principle adds to the principle of guarded recursion
the possibility of definingcase(f a)) by a non-recursive cons shape.

We show the existence dfjust given, provided that coList is a final coalgebra.

Here (nil’ + cong(N, A) + cond(N, coList)) will be a notation for the disjoint
union (14 ((N x A) + (N x coList))) wherenil’ := inl x, cong n a:= inr (inl (n, a))
andcond n | :=inr (inr (n,1}).

Assumeg as just given. Defind’ := A+ coList, andy : A’ — (nil +-TongN, A')),
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nil if fa=nil",
g (inla) = < consn (inl @) if fa=consnd |
consn (inrl) if fa=condnl .

L il if casel = nil ,
g (nrly =0 ! n,
onsn (inrl’) if casel =consn |’ .

ol S

Let f' : A — coList be the coalgebra morphism such that the followingydien

commutes: ,

A Fuist A

f/ FList f/

coList —— Fyjst(coList)
case

If coList is a final coalgebra, then one can see fat(inr |)) is equal tol. The
reason for definingf’ (inr 1)) was that it allows to replace the non-recursive call to
l'in f by arecursive call t¢f’ (inrl)). Let f := f’oinl: A— coList. We obtain that
f indeed fulfils the desired equations.

We call the principle that, for every: A— (nil’+cong(N, A) 4-cond(N, coList))
we can defind : A— coList such that the equations farase(f a)) just given hold
the principle of extended guarded recursion. Full detailsb& found in [45]. Note
that we chose in the third case not to escape directly to anegid : colList, but
only to an elemenitsuch that caske= consn I for givenn,|’. The reason for this is
that this allows to define cons as given before.

Giménez shows in [19] how to derive more general forms ofdea recursion
for coalgebras.

The coconstructors nilcons. In case of final coalgebras it follows (e.g. [30],
Lemma 2.3.3) that case : coList Fjst(coList) is an isomorphism. Let casebeits
inverse and define nik case® nil, consn | := case* (consn |). Then we have that
case nik= nil and caséconsn |) = tonsn |. cons ! is surjective, so everly. coList is
equal to nil or(consn I) for somen, I’. Especially, case= nil if and only if | = nil,
and casé = consn I if and only if | = consn I’. By iterating it we obtain that if

| : coList, then for everk we have that = consn; (consn; --- (consn; nil) - - - ) for
some < kandny,...,n; :Norl is equal to/consn; (consn; --- (consngl’)---)) for
someng,...,Nx:Nandl’: coList. Roughly speaking, an element of coList is a poten-
tially infinite list of natural numbers. Furthermore, théniple of extended guarded
recursion can be rewritten as follows: We can definé — coList s.t. depending
onawe can choosg a= nil, ga=consn (g &)) for somen,a orga= consn |
for somen, I.

Bisimilarity as equality. A weakly final F jsi-coalgebracoList casg is final if and
only if equality on coList is bisimilarity. Here bisimildsi on colists is the largest
relation~ s.t., if | ~ I’, then (casel) = nil = (casel’) or (casel) = (consn lp)
and (casel’) = (consn I)) for somelg ~ Ig. Bisimilarity can be introduced as an
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indexed coalgebra (as will e.g. be shown in the current conig45]). Bisimilarity
is equality on final Fisi-coalgebras (see e.g. [30], Theorem 3.4.1) and one cay easil
show as well that weakly final coalgebras are final coalgelfrasimilar elements
are equal. Full details will be presented in [45].

Coconstructors in case of weakly final coalgebradn case of weakly final coalge-
bras we can define nil by case silnil. We can definéconsn ) s.t. caséconsn |) =
consn I’ for somel which is bisimilar tol’. This can be done by defining =
(N x coList) + coList, f : A — (nil +-TongN, A)), f (inl (n,1)) = consn (inr 1),

f (inr 1) = nil if casel = nil, f (inrl) = consn (inr1’) if casel = consn I’. Then
one can easily see th&tfinrl) ~ |, and define therefore cond = f (inl (n,1)). We
obtain caséconsn |) = consn I’ for somel’ ~ 1.

Combining the above we obtain a version of cdsas well. The function caseé
is not surjective. In case @ons, the equality holds only up to bisimilarity. If we
add the principle of extended guarded recursion to weaksl inalgebras, we can
define case! in such a way that the equality holds definitionally (howevase *
will not be surjective): Define caseé : Fjs(coList) — coList, casgcase ! nil) =
nil, case(case! (consn 1)) = consn |. In order to allow this definition we defined
the non-recursive case in case of extended guarded rectingiovay we did it.
Undecidability results. Bisimilarity on F jsi-coalgebras is undecidable: Define
toColist : (N — N) — N — coList, casdtoColist f n) =cons(f n) (toColistf (n+
1)). Therefore, in case of final coalgebras we have toCblist cons( f n) (cons(f (n+
1)) (cons(f (n+2)) ---)). Now it follows immediately thaff,g are extensionally
equal if and only if(toColist f 0) ~ (toColistg 0). Since extensional equality on
N — N is undecidable, bisimilarity is undecidable as well. Tliere, if we want
decidable definitional equality, we cannot define final celtgs, only weakly final
coalgebras.

In [45] we will show that the assumption that cades surjective results in an
undecidable equality as well. So, if we want decidable etyuah a weakly final
coalgebra, we cannot assume that every element of it is dothenil or (consn 1)
for somen, |. This implies that pattern matching on coalgebras in thgngeof de-
cidable type checking is misleading, since it suggeststerty element of a coalge-
bra is introduced by a coconstructor, and therefore cosithia hidden assumption
that case? is surjective.

Problem of Subject Reduction.The problems of pattern matching have been dis-
cussed intensively on the Agda email list. Giménez [18}.S24d] discovered that
dependent case distinction results in a problem with stibgeluiction. Later Nico-
las Oury found a very short program in a previous version ad@gvhich exposes
this problem, and which he orally communicated to N. Dasi@fs who then posted
it in [11]. Oury then converted it to Coq and posted it in [42]detailed analysis
can be found in [38]. There were as well intensive discussionthe Agda and Coq
club mailing lists, to which the author contributed. Somaroyes have been made
to Agda which avoid this problem, see [4]. The author woulkef@ra more aesthet-
ically clear solution, based on what is presented in higlertirhe goal would be to
have a solution which presents algebras and coalgebraymraetric way. In Coq
the problem of subject reduction seems to persist.
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Type theoretic rules for weakly final coalgebrasBecause of the undecidability of
equality in final coalgebras, we can only introduce rulesifeakly final coalgebras,
if we want to preserve decidable type checking. For weaklgl favalgebras we
can still derive the principle of extended guarded recursbut the equations we
want to satisfy will only hold up to bisimilarity as equalityor initial algebras we
observed that the fact that the type theoretic rules forldse extensionally equal
but intensionally stronger than the rules for kidteing an initial algebra. In the
same way we are defining rules for coList which are up to bisirty equivalent
but without bisimilarity as equality stronger than the sier coList being a weakly
final coalgebra. The principle of a weakly final coalgebrasptioe principle that
bisimilarity is equality is equivalent to the principle ofiaal coalgebra. If we take
the rules for coiteration derived from the diagram, we gpéettheoretic rules which
are up to bisimilarity equivalent to the rules of a weakly fc@algebra. If we extend
the principle of guarded recursion to extended guardedsexm we get a principle
which is up to bisimilarity derivable, but without it stroagthan the principle of
simple guarded recursion. Therefore extended guardedsieaplus the principle
of (coList,casg being a coalgebra is without bisimilarity as equality sgen with

it equivalent to that of a weakly final coalgebra. As in caskistiy we use the rules
of (coList casg being a coalgebra augmented by the principle of extendedigda
recursion as one possible type theoretic formulation ofrties for (coList case
being a weakly final coalgebra. It is not the only possible. dnegeneral one can
think of adding rules which imply further definitional eqitigls, which are provable
up to bisimilarity, as long as the rules behave well (we haadhble type checking,
subject reduction and other good properties). One reasomdétuding extended
guarded recursion is that it allows us to define the cocoastricons by defining
consn | : colList, s.t. caséconsn |) =tonsn ).

For completeness, we introduce rules for dealing with + congX,Y)) and
(nil”’ +cond(X,Y) +cond(Z,Z)). (Note that if as above we treat these definitions
as abbreviations, these rules can be derived from the roitds  andx). We bor-
row notations for case distinction from [9]:

Assume in the following ruleX,Y,Z,Z’ : Set.
Formation rule:  (nil’ +cong(X,Y) +con$(Z,Z')) : Set .

Introduction rulesnil’  : (nil’ +-cond(X,Y) +cond(Z,2))) ,
cong : X =Y — (nil' + (X,Y)+cond(z,2)) ,

cong
cond : Z 7' — (nil' +cond(X,Y) +cond(Z,Z)) .
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x: (nil’ +cons(X,Y) +cond(Z,Z")) = C(x) : Set
stepgy : C(nil’)

X: X,y Y = stegrg(X,y) : C(cond x y)

Elimination rule:
2:2,7:7' = stepgra(2,Z) : C(cond z 2)

nil’ — stepy o
cons xy > steRgrg(X.y) 1 (x: (nil’+cond(X,Y)+cond(Z,Z'))) — C(x)
cond' z 7 — stepgra(z.2)

Equality rules:  {---} nil’ = stepy
{---} (con$ xy) = stepgrz(X,y)

{---} (cond z2) = stepgra(z.2)
where{---} is the expression introduced in the elimination rule

Now we can define the rules for colist:

Formationrule: coList:Set
Elimination rule: case : coList> (nil +congN, coList))

Introduction rule A: Set
“introa : (A — (nil’ +cons$(N, A) + cond(N, coList))

— A— colList

nil’ > nil
Equality rule:  caséintroa f a) =< condnd — consn (introa f &) » (f @)
condnl ~— tonsnl

Note that the introduction rule is complex because a gefiemic of guarded recur-
sion in the same way that the elimination rule for algebraiadypes is complicated,
because it is generic. Specific instances can be describezlgnsily. For instance
we can define

toColist : (N — N) — N — coList
case(toColist f n) =cons(f n) (toColistf (n+ 1))

The coconstructors nil and cons can be defined by

nil : coList cons N — coList— coList
case nik= nil case(consn |) =tonsn |

We observe that the elimination rules are simple whereamtheduction rules
seem to be complicated and refer to all sets. This is dualdgcdtting for initial
algebras where the introduction rules are simple and the@rition rules refer to all
sets. So a weakly final coalgebra is given by its eliminatidas, which essentially
expresses: elements of coList are programs, to which wepaly ease and obtain
nil or (consn |) for some other colist
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Problems with dependent case distinctionMcBride [38] discussed dependent
case distinction, as it occurs in the PhD thesis by Giméh&gdnd is implemented
in Cog. In our notation it reads

X : coList=- B(x) : Set
depcasg: (stegy : B(nil))
— (stepens: (N: N,I : coListy) — B(consn 1))
— (I : coList)
— B(l)
depcasg sstep,; steRynshil = stepy;
depcasgstep, steRons(consn ) = stepypsn |

There is an equality rule missing, namely for an elemenbaiced by intro. Such
a rule should be (the case foon$ was added by the author to stay in accordance
with the rest of the current article):

depcasg step SteRons (introa f a)
nil’ > stepy
= qconsnd > stepynsh (introa f &) 3 (f @)
cond nl — stepy,sn|

McBride states that this is the source of the problem disem/eommunicated by
Giménez/Oury/Danielsson [18, 42, 11]. As McBride obseritedoes not even type
check: in case of a= nil’, the two sides of the equations have tyg¢mtroa f a)
andB(nil), but intrgy f a# nil.

As observed by McBride dependent case distinction resiiltse omit the
last rule, in non-canonical terms for the intensional eigp&ype. In fact the sit-
uation is even worse: We get non-canonical element® @i normal form: Let
f =depcasg)y 0((n,1)0) : coList— N. Let zeroStreans introy ((x)(cong 0x)) *:
colList. We have thatf zeroStrearis a non-canonical closed elementfn nor-
mal form. The reason is of course that we do not have an egualé for depcase
applied to an element introduced by intro.

The underlying problem is that dependent case distinctipmesses that every
element of coList is of the form nil gconsn 1), i.e. that case' is surjective. In order
to repair this problem, McBride suggests to switch to obatownal type theory. This
means essentially to define for all types a propositionadkiyutogether with some
additional axioms. In case of coList, this equality woulddigmilarity. Since, if we
add to weakly final coalgebras bisimilarity as equality, vixéain final coalgebras,
the problem vanishes. However, it does not solve the probidrat the correct rules
regarding definitional equalities in intensional type ttyeare.



1 Coalgebras as Types determined by their Elimination Rules 15

1.4 Meaning explanations for coalgebraic types as determad by
their elimination rules.

We give now meaning explanations for coList based on theciplie that elements
of coalgebras are determined by their elimination rulekistas a set. Elements of
coList are programis which, if we apply case to them, evaluatenibor (consn I')
for somen in N, and some other elemefitof coList. Note that we do not demand
thatl’ is defined beforé Several elements of coList might be introduced simultane-
ously. Two elements I’ of coList are equal if after applying case to it, both evatuat
to nil or they evaluate tgconsn lp) and(consn' 1) wheren, ' are equal elements of
N andlo, I are equal elements of coList. Again we do not demand thatdhality

of lp, Ij is established before the equalityloff is established.

AssumeA is a set andf a function mapping an element éfto an element of
(nil”’ 4+ cong(N,A) + cond(N, coList)). Then for everya : A, (introa f @) is an
element of coList. For this we determiriease(introp f a)): Compute(f a). If

(f a) evaluates tanil’ then (case(introa f a)) evaluates tanil. If (f a) evaluates
to (cons n &), then(case(introa f a)) evaluates tgconsn (introa f &)). If (f @)
evaluates tgcond' n I), then(case(introa f @)) evaluates tgconsn ).

AssumeA, A’ are equal setsf, f’ map elements ofA to equal elements of
(nil” +cons$(N, A) + cond(N, coList)). For alla,a equal elements oA we have
that (introa f @) and(introy f’ @) are equal elements of coList: Assumanda’
are equal elements &

Assume(f a) evaluates tail’. Then, sincef is equal tof” anda is equal tod,

f/ & evaluates tmil’ as well. Ther(case(introa f @)) and(case(introy f’ &)) both
evaluate to the same elemenit

Assume(f a) evaluates tqcons n ay). Then(f’ &) evaluates tdcons n’ &)
for somen’ equal ton and a;, equal toag. Then (case(introa f a)) evaluates to
(consn (introa f ag)) and(case(introy f’ @)) evaluates tgconsn (introy f' &p)).
nandn’ are equal elements of, and(introa f ag) and (introy f’ &) are equal
elements of coList. Therefofease(introa f a)) and(case(introy f' @')) evaluate
to equal elements.

Assume(f a) evaluates tgcon$ n l). Then(f &) evaluates tqcong n' I’) for
somen equal ton’ andl equal tol’. Thereforgcasd ) and(casd’) and therefore as
well (casg(introa f &) and(casg(introy f’ @) evaluate to equal elements. Therefore
(introa f @) and(introy f’ @) are equal.

Function sets as determined by their elimination rulesWe can see now that the
elements of the function type of the logical framework arevadl introduced by
their elimination rules: Assuma is a set andB(x) is a set depending on elements
x of A. Then(x: A) — B(x) is a set. An element ofx : A) — B(X) is a program

t which, when applied to an elemeabf A evaluates to an element Bfa). Two
elements, t’ of (x: A) — B(x) are equal, if, when applied to an elemardf A, they
evaluate to equal elementsBfa). Assume that for everyof Awe have that is an
element ofB(x). Then(x)t is the following element ofx : A) — B(x): If applied to

a: Aitfirst substitutes i the variablex by a. Let the result be. Thensis evaluated,
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which is the result returned. Since foof A, t is an element oB(x), sis an element
of B(a). So(x)t is an element ofx : A) — B. Assume that,t’ are equal elements of
B(x), depending ox of typeA. Then if (x)t and(x)t" are applied to an elemeatf
typeA, we obtains, s which are equal elements Bfa). So(x)t and(x)t’ are equal
elements ofx: A) — B(x).

More advanced examples of coalgebrasolList is only the simplest example of a
coalgebra. More advanced examples are the definition ahliéity on colists or
on other transition systems. In [22, 23, 24, 25, 26] we dised$ow to define state-
dependent interactive programs in Martin-Lof type thearnd in [25] we showed
how to define them as an indexed coalgebra. More examplesecéouhd for in-
stance in Chapter 13 of [6].

1.5 Conclusion

We have seen that coalgebras can be introduced in Marfinyp@ theory using
formation, elimination, introduction and equality ruldédeaning explanations can
be given by defining as elements of coalgebras those whioWw alimination rules.
One can then explain that the introduction rules indeeadhice elements of the
coalgebra. So elements of coalgebras are given by theimgltian rules, the intro-
duction rules can be considered as being derived. This idasito algebraic data
types, for which the elements are given by their introductigdes, and the elimina-
tion rules are derived. We have seen as well that the eleroétite function types
from the logical framework are as well determined by theim@&iation rules. One
can as well develop models of coalgebras, in which coalgedmainterpreted as the
set of those terms which allow to apply the elimination pipe
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