Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in :
Rewriting and Typed Lambda Calculi

Cronfa URL for this paper:
http://cronfa.swan.ac.uk/Record/cronfa19413

Book chapter :

Setzer, A., Abel, A., Pientka, B. \& Thibodeau, D. (2014). Unnesting of Copatterns. Rewriting and Typed Lambda Calculi, (pp. 31-45). Springer.
http://dx.doi.org/10.1007/978-3-319-08918-8_3

This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions. When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO database to judge whether or not it is copyright safe to add this version of the paper to this repository.
http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/

Unnesting of Copatterns

Anton Setzer ${ }^{1}$, Andreas Abel ${ }^{2}$, Brigitte Pientka ${ }^{3}$, and David Thibodeau ${ }^{3}$
${ }^{1}$ Dept. of Computer Science, Swansea University, Swansea SA2 8PP, UK
a.g.setzer@swan.ac.uk
${ }^{2}$ Computer Science and Engineering, Chalmers and Gothenburg University, Rännvägen 6, 41296 Göteborg, Sweden, andreas.abel@gu.se
${ }^{3}$ School of Computer Science, McGill University, Montreal, Canada
\{bpientka, dthibo1\}@cs.mcgill.ca

Abstract

Inductive data such as finite lists and trees can elegantly be defined by constructors which allow programmers to analyze and manipulate finite data via pattern matching. Dually, coinductive data such as streams can be defined by observations such as head and tail and programmers can synthesize infinite data via copattern matching. This leads to a symmetric language where finite and infinite data can be nested. In this paper, we compile nested pattern and copattern matching into a core language which only supports simple non-nested (co)pattern matching. This core language may serve as an intermediate language of a compiler. We show that this translation is conservative, i.e. the multi-step reduction relation in both languages coincides for terms of the original language. Furthermore, we show that the translation preserves strong and weak normalisation: a term of the original language is strongly/weakly normalising in one language if and only if it is so in the other. In the proof we develop more general criteria which guarantee that extensions of abstract reduction systems are conservative and preserve strong or weak normalisation.

Keywords: Pattern matching, copattern matching, algebraic data types, codata, coalgebras, conservative extension, strong normalisation, weak normalisation, abstract reduction system, ARS

1 Introduction

Finite inductive data such as lists and trees can be elegantly defined via constructors, and programmers are able to case-analyze and manipulate finite data in functional languages using pattern matching. To compile functional languages supporting pattern matching, we typically elaborate complex and nested pattern matches into a series of simple patterns which can be easily compiled into efficient code (see for example [3]). This is typically the first step in translating the source language to a low-level target language which can be efficiently executed. It is also an important step towards developing a core calculus supporting well-founded recursive functions.

Dually to finite data, coinductive data such as streams can be defined by observations such as head and tail. This view was pioneered by Hagino [7] who
modelled finite objects via initial algebras and infinite objects via final coalgebras in category theory. This led to the design of symML, a dialect of ML where we can for example define the codata-type of streams via the destructors head and tail which describe the observations we can make about streams [8]. Cockett and Fukushima [6] continued this line of work and designed a language Charity where one programs directly with the morphisms of category theory. Our recent work [2] extends these ideas and introduces copattern matching for analyzing infinite data. This novel perspective on defining infinite structures via their observations leads to a new symmetric foundation for functional languages where inductive and coinductive data types can be mixed.

In this paper, we elaborate our high-level functional language which supports nested patterns and copatterns into a language of simple patterns and copatterns. Similar to pattern compilation in Idris or Agda, our translation into simple patterns is guided by the coverage algorithm. We show that the translation into our core language of simple patterns is conservative, i.e. the multi-step reduction relations of both languages coincide for terms of the original language. Furthermore, we show that the translation preserves strong normalisation $(S N)$ and weak normalisation $(W N)$: a term of the original language is SN or WN in one language if and only if it has this property in the other.

The paper is organized as follows: We describe the core language including pattern and copattern matching in Sect. 2. In Sect. 3, we explain the translation into simple patterns. In Sect. 4 we develop criteria which guarantee that extensions of abstract reduction systems are conservative and preserve SN or WN. We use this these criteria in Section 5 to show that the translation of patterns into simple patterns is a conservative extension preserving SN and WN.

2 A Core Language for Copattern Matching

In this section, we summarize the basic core language with (co)recursive data types and support for (co)pattern described in previous work [2].

2.1 Types and Terms

A language $\mathcal{L}=(\mathcal{F}, \mathcal{C}, \mathcal{D})$ consists of a finite set \mathcal{F} of constants (function symbols), a finite set \mathcal{C} of constructors, and a finite set \mathcal{D} of destructors. We will in the following assume one fixed language \mathcal{L}, with pairwise disjoint \mathcal{F}, \mathcal{C}, and \mathcal{D}. We write f, c, d for elements of $\mathcal{F}, \mathcal{C}, \mathcal{D}$, respectively.

Our type language includes 1 (unit), $A \times B$ (products), $A \rightarrow B$ (functions), disjoint unions D (labelled sums, "data"), records R (labelled products), least fixed points $\mu X . D$, and greatest fixed points $\nu X . R$.

$$
\begin{aligned}
& \text { Types } A, B, C::=X|\mathbf{1}| A \times B|A \rightarrow B| \mu X . D \mid \nu X . R \\
& \text { Variants } D \\
& \text { Records } R
\end{aligned}::=\left\langle c_{1} A_{1}\right| \ldots\left|c_{n} A_{n}\right\rangle,=\left\{d_{1}: A_{1}, \ldots, d_{n}: A_{n}\right\} \text {, }
$$

In the above let c_{i} be different, and d_{i} be different. Variant types $\left\langle c_{1} A_{1}\right| \ldots \mid$ $\left.c_{n} A_{n}\right\rangle$, finite maps from constructors to types, appear only in possibly recursive
data types $\mu X . D$. Records $\left\{d_{1}: A_{1}, \ldots, d_{n}: A_{n}\right\}$, finite maps from destructors to types, list the fields d_{i} of a possibly recursive record type νX. R. To illustrate, we define natural numbers Nat, lists and Nat-streams:

$$
\begin{aligned}
& \text { Nat }:=\mu X .\langle\text { zero } 1| \text { suc } X\rangle \\
& \text { List } A:=\mu X .\langle\text { nil } \mathbf{1}| \text { cons }(A \times X)\rangle \\
& \text { StrN }:=\nu X .\{\text { head }: \text { Nat, tail }: X\}
\end{aligned}
$$

In our non-polymorphic calculus, type variables X only serve to construct recursive data types and recursive record types. As usual, $\mu X . D$ ($\nu X . R$, resp.) binds type variable X in D (R, resp.). Capture-avoiding substitution of type C for variable X in type A is denoted by $A[X:=C]$. A type is well-formed if it has no free type variables; in the following, we assume that all types are well-formed.

We write $c \in D$ for $c A$ for some A being part of variant D and define the type of constructor c as $(\mu X . D)_{c}:=A[X:=\mu X . D]$. Analogously, we write $d \in R$ for $d: A$ for some A being part of the record R and define the type of the destructor d as $(\nu X . R)_{d}:=A[X:=\nu X . R]$.

A signature for \mathcal{L} is a map Σ from \mathcal{F} into the set of types. Unless stated differently, we assume one fixed signature Σ. A typed language is a pair (\mathcal{L}, Σ) where \mathcal{L} is a language and Σ is a signature for \mathcal{L}. We sometimes write Σ instead of (\mathcal{L}, Σ). We write $f \in \Sigma$ if $\Sigma(f)$ is defined, i.e. $f \in \mathcal{F}$. Next, we define the grammar of terms of a language $\mathcal{L}=(\mathcal{F}, \mathcal{C}, \mathcal{D})$. Herein, $f \in \mathcal{F}, c \in \mathcal{C}$, and $d \in \mathcal{D}$.

Terms include identifiers (variables x and defined constants f) and introduction forms: pairs $\left(t_{1}, t_{2}\right)$, unit (), and constructed terms $c t$, for the positive types $A \times B, \mathbf{1}$, and $\mu X . D$. There are however no elimination forms for positive types, since we define programs via rewrite rules and employ pattern matching. On the other hand we have eliminations, application $t_{1} t_{2}$ and projection $t . d$, of negative types $A \rightarrow B$ and $\nu X . R$ respectively, but omit introductions for these types, since this will be handled by copattern matching.

We write term substitutions as $s\left[x_{1}:=t_{1}, \ldots, x_{n}:=t_{n}\right]$ or short $s[\vec{x}:=\vec{t}]$. Contexts Δ are finite maps from variable to types, written as lists of pairs $x_{1}: A_{1}, \ldots, x_{n}: A_{n}$, or short $\vec{x}: \vec{A}$, with • denoting the empty context. We write $\Delta \rightarrow A$ or $\vec{A} \rightarrow A$ for n-ary curried function types $A_{1} \rightarrow \cdots \rightarrow A_{n} \rightarrow A$ (but A may still be a function type), and $s \vec{t}$ for n-ary curried application $s t_{1} \cdots t_{n}$.

The typing rules for terms (relative to a typed language Σ) are defined in Figure 1. If we want to explicitly refer to a given typed language (\mathcal{L}, Σ) or Σ we write $\Delta \vdash_{\mathcal{L}, \Sigma} A$ or $\Delta \vdash_{\Sigma} A$, similarly for later notions of \vdash.

2.2 Patterns and copatterns

For each $f \in \mathcal{F}$, we will determine the rewrite rules for f as a set of pairs $(q \longrightarrow r)$ where q is a copattern sometimes referred to as left hand side, and r a

$$
\begin{array}{cccc}
\frac{\Delta(x)=A}{\Delta \vdash x: A} & \frac{\Delta \vdash t:(\mu X \cdot D)_{c}}{\Delta \vdash(): \mathbf{1}} & \frac{\Delta \vdash t}{\Delta \vdash c t: \mu X \cdot D} & \frac{\Delta \vdash t_{1}: A_{1} \quad \Delta \vdash t_{2}: A_{2}}{\Delta \vdash\left(t_{1}, t_{2}\right): A_{1} \times A_{2}} \\
\frac{\Delta \vdash f: \Sigma(f)}{\Delta \vdash t: A \rightarrow B \quad \Delta \vdash t^{\prime}: A} & \frac{\Delta \vdash t: \nu X \cdot R}{\Delta \vdash t t^{\prime}: B} & \frac{\Delta \vdash t \cdot d)}{\Delta \vdash t \cdot d X \cdot R)_{d}}
\end{array}
$$

Fig. 1. Typing rules
term, sometimes referred to as right hand side. Patterns p and copatterns q are special terms given by the grammar below, where $c \in \mathcal{C}$ and $d \in \mathcal{D}$.

$p::=x$	Variable pattern	$q::=f$	Head (constant)
$\mid()$	Unit pattern		$\mid q p$

In addition we require p and q to be linear, i.e. each variable occurs at most once in p or q. When later defining typed patterns $\Delta \vdash q: A$ as part of a coverage complete pattern set for a constant f, we will have that, if this judgement is provable as a typing judgement for terms, the variables in q are exactly the variables in Δ, and f is the head of q.

The distinction between patterns and copatterns is in this article only relevant in this grammar, therefore we often write simply "pattern" for both.

Example 1 (Cycling numbers). Function cyc of type Nat \rightarrow StrN, when passed an integer n, produces a stream $n, n-1, \ldots, 1,0, N, N-1, \ldots, 1,0, N, N-1, \ldots$ for some fixed N. To define this function we match on the input n and also observe the resulting stream, highlighting the mix of pattern and copattern matching. The rules for cyc are the following:

$$
\begin{array}{ll}
\text { cyc } x & \text {.head } \longrightarrow x \\
\text { cyc }(\text { zero }()) \text {.tail } \longrightarrow \text { cyc } N \\
\text { cyc }(\text { suc } x) & \text {.tail } \longrightarrow \operatorname{cyc} x
\end{array}
$$

Example 2 (Fibonacci Stream). Nested destructor copatterns appear in the following definition of the stream of Fibonacci numbers. It uses zipWith _+_ which is the pointwise addition of two streams.

$$
\begin{aligned}
& \text { fib .head } \quad \longrightarrow 0 \\
& \text { fib .tail .head } \longrightarrow 1 \\
& \text { fib .tail .tail } \longrightarrow \text { zipWith _+_ fib (fib .tail) }
\end{aligned}
$$

2.3 Coverage

For our purposes, the rules for a constant f are complete, if every closed, welltyped term t of positive type can be reduced with exactly one of the rules of
f. Alternatively, we could say that all cases for f are uniquely covered by the reduction rules. Coverage implies that the execution of a program progresses, i.e. does not get stuck, and is deterministic. Note that by restricting to positive types, which play the role of ground types, we ensure that t is not stuck because f is underapplied. Progress has been proven in previous work [2]; in this work, we extend coverage checking to an algorithm for pattern compilation.

We introduce the judgement $f: A \triangleleft \mid Q$, called a coverage complete pattern set for f (cc-pattern-set for f). Here Q is a set $Q=\left(\Delta_{i} \vdash q_{i}: C_{i}\right)_{i=1, \ldots, n}$. If $f: A \triangleleft \mid Q$ then constant f of type A can be defined by the coverage complete patterns q_{i} (depending on variables in Δ_{i}) together with rewrite rules $q_{i} \longrightarrow t_{i}$ for some $\Delta_{i} \vdash t_{i}: C_{i}$.

The rules for deriving cc-pattern-sets are presented in Figure 2. In the variable splitting rules, the split variable is written as the last element of the context. Because contexts are finite maps they have no order - any variable can be split. Note as well that patterns and copatterns are by definition required to be linear.

Result splitting:

$$
\begin{gathered}
\overline{f: A \triangleleft \mid(\cdot \vdash f: A)} \mathrm{C}_{\text {Head }} \frac{f: A \triangleleft \mid Q(\Delta \vdash q: B \rightarrow C)}{f: A \triangleleft \mid Q(\Delta, x: B \vdash q x: C)} \mathrm{C}_{\mathrm{App}} \\
\frac{f: A \triangleleft \mid Q(\Delta \vdash q: \nu X . R)}{f: A \triangleleft \mid Q\left(\Delta \vdash q . d:(\nu X . R)_{d}\right)_{d \in R}} \mathrm{C}_{\text {Dest }}
\end{gathered}
$$

Variable splitting:

$$
\begin{gathered}
\frac{f: A \triangleleft \mid Q(\Delta, x: \mathbf{1} \vdash q: C)}{f: A \triangleleft \mid Q(\Delta \vdash q[x:=()]: C)} \mathrm{C}_{\mathrm{Unit}} \\
\frac{f: A \triangleleft \mid Q\left(\Delta, x: A_{1} \times A_{2} \vdash q: C\right)}{f: A \triangleleft \mid Q\left(\Delta, x_{1}: A_{1}, x_{2}: A_{2} \vdash q\left[x:=\left(x_{1}, x_{2}\right)\right]: C\right)} \mathrm{C}_{\text {Pair }} \\
\frac{f: A \triangleleft \mid Q(\Delta, x: \mu X . D \vdash q: C)}{f: A \triangleleft \mid Q\left(\Delta, x^{\prime}:(\mu X . D)_{c} \vdash q\left[x:=c x^{\prime}\right]: C\right)_{c \in D}} \mathrm{C}_{\text {Const }}
\end{gathered}
$$

Fig. 2. Coverage rules

The judgement $f: \Sigma(f) \triangleleft \mid\left(\Delta_{i} \vdash q_{i} \longrightarrow t_{i}: C_{i}\right)_{i=1, \ldots, n}$ called a coverage complete set of rules for f (cc-rule-set for f) has the following derivation rule

$$
\frac{f: \Sigma(f) \triangleleft \mid\left(\Delta_{i} \vdash q_{i}: C_{i}\right)_{i=1, \ldots, n} \quad \Delta_{i} \vdash t_{i}: C_{i}(i=1, \ldots, n)}{f: \Sigma(f) \triangleleft \mid\left(\Delta_{i} \vdash q_{i} \longrightarrow t_{i}: C_{i}\right)_{i=1, \ldots, n}}
$$

Then $f: \Sigma(f) \triangleleft \mid\left(\Delta_{i} \vdash q_{i}: C_{i}\right)_{i=1, \ldots, n}$ is called the underlying cc-pattern-set of the cc-rule set. The corresponding term rewriting rules for f are $q_{i} \longrightarrow t_{i}$.

A program \mathcal{P} over the typed language Σ is a function mapping each constant f to a cc-rule-set \mathcal{P}_{f} for f. We write $t \longrightarrow \mathcal{P} t^{\prime}$ for one-step reduction of term t to
t^{\prime} using the compatible closure ${ }^{4}$ of the term rewriting rules in \mathcal{P}, and drop index \mathcal{P} if clear from the context of discourse. We further write $\longrightarrow_{\mathcal{P}}^{*}$ for its transitive and reflexive closure and $\longrightarrow>_{\mathcal{P}}$ for its transitive closure.

Example (Deriving a cc-pattern-set for cyc) We start with $\mathrm{C}_{\mathrm{Head}}$

$$
\text { cyc : Nat } \rightarrow \text { StrN } \triangleleft \mid(\cdot \vdash \text { cyc }: \text { Nat } \rightarrow \text { StrN })
$$

We apply x to the head by $\mathrm{C}_{\mathrm{App}}$.

$$
\text { cyc }: \text { Nat } \rightarrow \operatorname{StrN} \triangleleft \mid(x: \text { Nat } \vdash \operatorname{cyc} x: \operatorname{StrN})
$$

Then we split the result by $\mathrm{C}_{\text {Dest }}$.

$$
\text { cyc }: \text { Nat } \rightarrow \operatorname{StrN} \triangleleft \left\lvert\, \begin{aligned}
& (x: \text { Nat } \vdash \operatorname{cyc} x \text {.head }: \text { Nat }) \\
& (x: \text { Nat } \vdash \text { cyc } x \text {.tail }: \text { StrN })
\end{aligned}\right.
$$

In the second copattern, we split x using $\mathrm{C}_{\text {Const }}$.

$$
\begin{array}{lll}
& (x: \text { Nat } \vdash \operatorname{cyc} x & \text {.head }: \text { Nat }) \\
\text { cyc }: \text { Nat } \rightarrow \operatorname{StrN} \triangleleft \mid & (x: 1 \quad \vdash \operatorname{cyc}(\text { zero } x) & \text {.tail }: \text { StrN }) \\
(x: \text { Nat } \vdash \operatorname{cyc}(\text { suc } x) & \text {.tail }: \operatorname{StrN})
\end{array}
$$

We finish by applying $\mathrm{C}_{\text {Unit }}$ which replaces x by () in the second clause.

$$
\begin{array}{rll}
& (x: \text { Nat } \vdash \operatorname{cyc} x & \text { head }: \text { Nat }) \\
\text { cyc }: \text { Nat } \rightarrow \operatorname{StrN} \triangleleft \mid & (\cdot \operatorname{cyc}(\text { zero }()) & \text {.tail }: \text { StrN }) \\
& (x: \text { Nat } \vdash \operatorname{cyc}(\text { suc } x) & . \operatorname{tail}: \text { StrN })
\end{array}
$$

This concludes the derivation of the cc-pattern-set for the cyc function.

3 Reduction of Nested to Simple Pattern Matching

In the following, we describe a translation of deep (aka nested) (co)pattern matching (i.e. pattern matching as defined before) into shallow (aka non-nested) pattern matching, which we call simple pattern matching, as defined below. We are certainly not the first to describe such a translation, except maybe for copatterns, but we have special requirements for our translation. The obvious thing to ask for is simulation, i.e. each reduction step in the original program should correspond to one or more reduction steps in the translated program. However, we want the translation also to preserve and reflect normalization: A term in the original program terminates, if and only if it terminates in the translated program. Preservation of normalization is important for instance in dependently typed languages such as Agda, where the translated programs are run during type checking and need to behave exactly like the original, user-written programs.

[^0]The strong normalization property is lost by some of the popular translations. For instance, translating rewrite rules to fixed-point and case combinators breaks normalization, simply because fixed-point combinators reduce by themselves, allowing infinite reduction sequences immediately. But also special fixed-point combinators that only unfold, if their principal argument is a constructor term, or dually co-fixed-point combinators that only unfold, if their result is observed ${ }^{5}$, have such problems. Consider the following translation of a function f with deep matching into such a fixed-point combinator:

$$
\begin{aligned}
& f(\text { zero }()) \quad \longrightarrow \text { zero }() \\
& f(\operatorname{suc}(\text { zero }())) \longrightarrow \text { zero }() \\
& f(\operatorname{suc}(\operatorname{suc} x)) \longrightarrow f(\operatorname{suc} x))
\end{aligned} \rightsquigarrow \text { fix } f(x) \text {.case } x \text { of }\left\{\begin{array}{l}
\text { zero }() \quad \longrightarrow \text { zero }() \\
\text { suc }(\text { zero }()) \longrightarrow \text { zero }() \\
\text { suc }(\operatorname{suc} x) \longrightarrow f(\operatorname{suc} x))
\end{array}\right.
$$

While the term $f(\operatorname{suc} x)$ terminates for the original program simply because no pattern matches (i.e. no rewrite rule applies), it diverges for the translated program since the fixed-point applied to a constructor unfolds to a term containing the original term as a subterm. A closer look reveals that this special fixed-point combinator preserves normalization for simple pattern matching only.

3.1 Simple patterns

A simple copattern q_{s} is of one of the forms $f \vec{x}$ (no matching), $f \vec{x} . d$ (shallow result matching) or $f \vec{x} p_{\mathrm{s}}$ (shallow argument matching) where $p_{\mathrm{s}}::=()\left|\left(x_{1}, x_{2}\right)\right| c x$ is a simple pattern.

Definition 1 (Simple coverage-complete pattern sets).

(a) Simple cc-pattern-sets $f:\left.A \triangleleft\right|_{\mathrm{s}} Q$ are defined as follows $(\Delta=\vec{x}: \vec{A})$:

$$
\begin{array}{r}
f:\left.\Delta \rightarrow A \triangleleft\right|_{\mathrm{s}}(\Delta \vdash f \vec{x}: A) \\
f: \Delta \rightarrow \nu X .\left.R \triangleleft\right|_{\mathrm{s}}\left(\Delta \vdash f \vec{x} \cdot d:(\nu X . R)_{d}\right)_{d \in R} \\
f: \Delta \rightarrow \mathbf{1} \rightarrow A \\
\left.\right|_{\mathrm{s}}(\Delta \vdash f \vec{x}(): A) \\
f:\left.\Delta \rightarrow\left(B_{1} \times B_{2}\right) \rightarrow A \triangleleft\right|_{\mathrm{s}}\left(\Delta, y_{1}: B_{1}, y_{2}: B_{2} \vdash f \vec{x}\left(y_{1}, y_{2}\right): A\right) \\
f: \Delta \rightarrow(\mu X . D) \rightarrow A \\
\left.\right|_{\mathrm{s}}\left(\Delta, x^{\prime}:(\mu X . D)_{c} \vdash f \vec{x}\left(c x^{\prime}\right): A\right)_{c \in D}
\end{array}
$$

(b) A cc-rule-set is simple if the underlying cc-pattern-set is simple. A constant in a program is simple, if its cc-rule-set is simple. A program is simple if all its constants are simple.

Remark 2. If $f:\left.A \triangleleft\right|_{\mathrm{s}} Q$ then $f: A \triangleleft \mid Q$.

[^1]
3.2 The translation algorithm by example

Neither the cyc function, nor the Fibonacci stream are simple. The translation into simple patterns introduces auxiliary function symbols, which are obtained as follows: We start from the bottom of the derivation tree of a non simple cc-pattern-set, remove the last derivation step, and create a new function symbol. This function takes as arguments the variables we have not split on from the original function and (co)pattern matches just as the last derivation set of the original derivation did. Let us walk through the algorithm of transforming patterns into simple patterns for the cyc function. The original program is

$$
\begin{aligned}
& (x: \text { Nat } \vdash \operatorname{cyc} x \quad \text {.head } \longrightarrow x \quad: \text { Nat }) \\
& \text { cyc : Nat } \rightarrow \operatorname{StrN} \triangleleft \mid(\quad \vdash \text { cyc (zero ()) .tail } \longrightarrow \text { cyc } N: \operatorname{StrN}) \\
& (x: \text { Nat } \vdash \operatorname{cyc}(\operatorname{suc} x) \quad \text {.tail } \longrightarrow \operatorname{cyc} x: \operatorname{StrN})
\end{aligned}
$$

In the derivation of the underlying cc-pattern-set, the last step was $\mathrm{C}_{\text {Unit }}$ replacing pattern variable $x: \mathbf{1}$ by pattern (). We introduce a new constant g_{2} with simple cc-rule-set and replace the right hand side of the split clause with a call to g_{2} in the cc-rule-set of cyc. We obtain the following program:

$$
\begin{aligned}
& (x: \text { Nat } \vdash \operatorname{cyc} x \quad \text {.head } \longrightarrow x \quad: \text { Nat }) \\
& \text { cyc } \left.: \text { Nat } \rightarrow \text { StrN } \triangleleft \mid \quad(x: \mathbf{1} \quad \vdash \text { cyc (zero } x) \text {.tail } \longrightarrow g_{2} x \quad: \operatorname{StrN}\right) \\
& (x: \text { Nat } \vdash \operatorname{cyc}(\operatorname{suc} x) \text {.tail } \longrightarrow \operatorname{cyc} x: \operatorname{StrN}) \\
& g_{2}:\left.\mathbf{1} \rightarrow \operatorname{StrN} \quad \triangleleft\right|_{\mathrm{s}} \quad\left(\cdot \quad \vdash g_{2}() \quad \longrightarrow \text { cyc } N: \operatorname{StrN}\right)
\end{aligned}
$$

Let a term in the new language be good, if all occurrences of g_{2} are applied at least once. We can define a back-translation int of good terms into the original language by recursively replacing $g_{2} s$ by cyc (zero s).tail.

The second last step in the derivation of the cc-pattern-set was a split of pattern variable x : Nat into zero x and suc x using $\mathrm{C}_{\text {Const }}$. Again, we introduce a simple auxiliary function g_{1}, which performs just this split and obtain a simple program with mutually recursive functions cyc, g_{1}, and g_{2} :

$$
\begin{aligned}
& \text { cyc : Nat } \rightarrow \operatorname{StrN} \triangleleft \|_{s} \quad \begin{array}{ll}
(x: \operatorname{Nat} \vdash \operatorname{cyc} x \text {.head } \longrightarrow x & : \text { Nat }) \\
\left(x: \text { Nat } \vdash \operatorname{cyc} x . \operatorname{tail} \longrightarrow g_{1} x\right. & : \operatorname{StrN})
\end{array} \\
& g_{1}:\left.\operatorname{Nat} \rightarrow \operatorname{StrN} \triangleleft\right|_{\mathrm{s}} \begin{array}{l}
\left(x: \mathbf{1} \vdash g_{1}(\operatorname{zero} x) \longrightarrow g_{2} x\right. \\
\left(x: \operatorname{Nat} \vdash g_{1}(\operatorname{suc} x) \longrightarrow \operatorname{StrN}\right) \\
(\operatorname{cyc} x: \operatorname{StrN})
\end{array} \\
& g_{2}:\left.\mathbf{1} \rightarrow \operatorname{StrN} \quad \triangleleft\right|_{\mathrm{s}} \quad\left(\cdot \quad \vdash g_{2}() \quad \longrightarrow \text { cyc } N: \operatorname{StrN}\right)
\end{aligned}
$$

The back-interpretation of g_{1} for good terms of the new program replaces recursively $g_{1} s$ by cyc s.tail. We note the following:
(a) The translation can be performed by induction on the derivation of coverage; or, one can do the translation while checking coverage. ${ }^{6}$

[^2](b) The generated functions are simple upon creation and need not be processed recursively. The right hand sides of these functions are either right hand sides of the original program or calls to earlier generated functions applied to exactly the pattern variables in context.
(c) When generating a function, it is invoked on the pattern variables in context. We can define a function int which interprets this generated function back into terms of the original program (if applied to good terms).
(d) Since we gave earlier created functions (here: g_{2}) a higher index than later created functions (here: g_{1}), calls between generated functions increase the index. There can only be finitely many calls between generated functions before executing an original right hand side again. This fact ensures preservation of normalization (see later).
(e) Calls between generated functions are undone by the back translation int, thus the corresponding reduction steps vanish under int.

In the case of the Fibonacci stream, the translated simple program is as follows:

$$
\begin{array}{ll}
\text { fib .head } \longrightarrow 0 & g \text {.head } \longrightarrow 1 \\
\text { fib .tail } \longrightarrow g & g \text {.tail } \longrightarrow \text { zipWith _+_ fib (fib .tail) }
\end{array}
$$

3.3 The translation algorithm

Let \mathcal{P} be the input program for typed language Σ. Let \mathcal{P}_{f} be a non-simple cc-rule-set of \mathcal{P}. Consider the last step in the derivation of the underlying cc-pattern-set. Since \mathcal{P}_{f} is non-simple, this step cannot be $\mathrm{C}_{\mathrm{Head}}$. Assume

$$
\mathcal{P}_{f}=f: \Sigma(f) \triangleleft \mid Q\left(\Delta_{i} \vdash q_{i} \longrightarrow t_{i}: C_{i}\right)_{i \in I}
$$

where in some cases $I=\{0\}$. Let the last step in the derivation of the underlying cc-pattern-set be

$$
\frac{f: \Sigma(f) \triangleleft \mid Q\left(\Delta^{\prime} \vdash q: A\right)}{f: \Sigma(f) \triangleleft \mid Q\left(\Delta_{i} \vdash q_{i}: C_{i}\right)_{i \in I}} \mathrm{C}
$$

We extend Σ to Σ^{\prime} by adding one fresh constant $g: \Delta^{\prime} \rightarrow A$. Let $\Delta^{\prime}=\vec{y}: \vec{A}$. Depending on C we introduce below a simple q_{i}^{\prime} and define the program \mathcal{P}^{\prime} for the typed language Σ^{\prime} by

$$
\begin{array}{lll}
\mathcal{P}_{f}^{\prime}=f: \Sigma(f) & \triangleleft \mid & Q \\
\left.\mathcal{P}_{g}^{\prime}=g: \Delta^{\prime} \vdash q \longrightarrow g \longrightarrow \vec{y}: A\right) \\
\mathcal{P}_{h}^{\prime}=\left.\Delta_{h}^{\prime} \rightarrow A \triangleleft\right|_{s} \quad \text { otherwise } & \left(\Delta_{i} \vdash q_{i}^{\prime} \longrightarrow t_{i}: C_{i}\right)_{i \in I} \\
\end{array}
$$

Note that the underlying cc-pattern-set for f is as in the premise of $\mathrm{C}, \mathcal{P}_{g}^{\prime}$ is simple, and all other constants are left unchanged. Therefore the height of the derivation for the cc-pattern-set for f is reduced by 1 . We then recursively apply the algorithm on \mathcal{P}^{\prime}. Since each step of the algorithm makes the coverage derivation of one non-simple function shorter, and new constants are simple, the algorithm terminates, returning only simple constants.

In case of variable splitting, we always reorder Δ^{\prime} such that the variable we split on appears last. When referring to a context Δ, assume $\Delta=\vec{x}: \vec{A}$. Case $q x \longrightarrow t$ and C is

$$
\frac{f: \Sigma(f) \triangleleft \mid Q(\Delta \vdash q: B \rightarrow C)}{f: \Sigma(f) \triangleleft \mid Q(\Delta, x: B \vdash q x: C)} \mathrm{C}_{\mathrm{App}}
$$

Define $q_{0}^{\prime}=g \vec{x} x$. Therefore,

$$
\begin{array}{lrl}
\mathcal{P}_{f}^{\prime}=f: \Sigma(f) & \triangleleft \mid & Q(\Delta \vdash q \longrightarrow g \vec{x}: B \rightarrow C) \\
\mathcal{P}_{g}^{\prime}=g: \Delta \rightarrow B \rightarrow C & \left.\triangleleft\right|_{s} & (\Delta, x: B \vdash g \vec{x} x \longrightarrow t: C)
\end{array}
$$

Case $q . d \longrightarrow t_{d}$ for all $d \in R$ and C is

$$
\frac{f: \Sigma(f) \triangleleft \mid Q(\Delta \vdash q: \nu X . R)}{f: \Sigma(f) \triangleleft \mid Q\left(\Delta \vdash q . d:(\nu X . R)_{d}\right)_{d \in R}} \mathrm{C}_{\text {Dest }}
$$

Define $q_{d}^{\prime}=g \vec{x} . d$. Therefore,

$$
\begin{array}{ll}
\mathcal{P}_{f}^{\prime}=f: \Sigma(f) & \triangleleft \mid \\
\mathcal{P}_{g}^{\prime}=g: \Delta(\Delta \vdash q \longrightarrow g \vec{x}: \nu X . R) \\
\end{array}
$$

Case $q\left[x^{\prime}:=()\right] \longrightarrow t$ and C is

$$
\frac{f: \Sigma(f) \triangleleft \mid Q\left(\Delta, x^{\prime}: \mathbf{1} \vdash q: C\right)}{f: \Sigma(f) \triangleleft \mid Q\left(\Delta \vdash q\left[x^{\prime}:=()\right]: C\right)} \mathrm{C}_{\mathrm{Unit}}
$$

Define $q_{0}^{\prime}:=g \vec{x}()$. Therefore,

$$
\begin{array}{ll}
\mathcal{P}_{f}^{\prime}=f: \Sigma(f) & \triangleleft \mid \\
\mathcal{P}_{g}^{\prime}:=g: \Delta\left(\Delta, x^{\prime}: \mathbf{1} \vdash q \longrightarrow g \vec{x} x^{\prime}: C\right) \\
\end{array}
$$

Case $q\left[x^{\prime}:=\left(x_{1}, x_{2}\right)\right] \longrightarrow t$ and C is

$$
\frac{f: \Sigma(f) \triangleleft \mid Q\left(\Delta, x^{\prime}: A_{1} \times A_{2} \vdash q: C\right)}{f: \Sigma(f) \triangleleft \mid Q\left(\Delta, x_{1}: A_{1}, x_{2}: A_{2} \vdash q\left[x^{\prime}:=\left(x_{1}, x_{2}\right)\right]: C\right)} \mathrm{C}_{\text {Pair }}
$$

Define $q_{0}^{\prime}=g \vec{x}\left(x_{1}, x_{2}\right)$. Therefore,

$$
\begin{array}{ll}
\mathcal{P}_{f}^{\prime}=f: \Sigma(f) & \triangleleft \mid \\
\mathcal{P}_{g}^{\prime}:=g: \Delta\left(\Delta, x^{\prime}: A_{1} \times A_{2} \vdash q \longrightarrow g \vec{x} x^{\prime}: C\right) \\
& \triangleleft\left(A_{1} \times A_{2}\right) \rightarrow C \\
\left.\triangleleft\right|_{s}\left(\Delta, x_{1}: A_{1}, x_{2}: A_{2} \vdash g \vec{x}\left(x_{1}, x_{2}\right) \longrightarrow t: C\right)
\end{array}
$$

Case $q\left[x^{\prime}:=c x^{\prime}\right] \longrightarrow t_{c}$ for all $c \in D$ and C is

$$
\frac{f: \Sigma(f) \triangleleft \mid Q\left(\Delta, x^{\prime}: \mu X . D \vdash q: C\right)}{f: \Sigma(f) \triangleleft \mid Q\left(\Delta, x^{\prime}:(\mu X . D)_{c} \vdash q\left[x^{\prime}:=c x^{\prime}\right]: C\right)_{c \in D}} \mathrm{C}_{\mathrm{Const}}
$$

Define $q_{c}^{\prime}:=g \vec{x}\left(c x^{\prime}\right)$. Therefore,

$$
\begin{array}{ll}
\mathcal{P}_{f}^{\prime}=f: \Sigma(f) & \triangleleft \mid Q\left(\Delta, x^{\prime}: \mu X . D \vdash q \longrightarrow g \vec{x} x^{\prime}: C\right) \\
\mathcal{P}_{g}^{\prime}=g: \Delta \rightarrow \mu X . D \rightarrow C & \left.\triangleleft\right|_{s}\left(\Delta, x^{\prime}:(\mu X . D)_{c} \vdash g \vec{x}\left(c x^{\prime}\right) \longrightarrow t_{c}: C\right)_{c \in D}
\end{array}
$$

4 Extensions of Abstract Reduction Systems

It is easy to see that a reduction in the original program \mathcal{P} (over Σ) corresponds to possibly multiple reductions in the translated language \mathcal{P}^{\prime} (over Σ^{\prime}). What is more difficult to prove is that we do not get additional reductions, i.e. if $t \nrightarrow{ }_{\mathcal{P}}^{*} t^{\prime}$ then it is impossible to reduce t to t^{\prime} using reductions and intermediate terms in \mathcal{P}^{\prime}. We call this notion conservative extension. Even this will not be sufficient as pointed out in Sect. 3, we need in addition preservation of normalisation. We will define and explore the corresponding notions more generally for abstract reduction systems (ARS).

An $A R S$ is a pair $(\mathcal{A}, \longrightarrow)$, often just written \mathcal{A}, such that \mathcal{A} is a set and \longrightarrow is a binary relation on \mathcal{A} written infix. Let \longrightarrow^{*} be the transitive-reflexive and $\longrightarrow{ }^{\geq 1}$ be the transitive closure of \longrightarrow. An element $a \in \mathcal{A}$ is in normal form $(N F)$ if there is no $a^{\prime} \in \mathcal{A}$ such that $a \longrightarrow a^{\prime}$. It is weakly normalising (WN) if there exists an $a^{\prime} \in \mathcal{A}$ in NF such that $a \longrightarrow^{*} a^{\prime} . a$ is strongly normalising (SN) if there exist no infinite reduction sequence $a=a_{0} \longrightarrow a_{1} \longrightarrow a_{2} \longrightarrow \cdots$. Let SN, WN, NF be the set of elements in \mathcal{A} which are SN , WN, NF respectively. For a reduction system $\left(\mathcal{A}^{\prime}, \longrightarrow{ }^{\prime}\right)$, let $\mathrm{SN}^{\prime}, \mathrm{WN}^{\prime}, \mathrm{NF}^{\prime}$ be the elements of \mathcal{A}^{\prime} which are $\longrightarrow{ }^{\prime}-\mathrm{SN},-\mathrm{WN},-\mathrm{NF}$.

Let $(\mathcal{A}, \longrightarrow),\left(\mathcal{A}^{\prime}, \longrightarrow{ }^{\prime}\right)$ be ARS such that $\mathcal{A} \subseteq \mathcal{A}^{\prime}$. Then,

$$
\mathcal{A}^{\prime} \text { is a conservative extension of } \mathcal{A} \quad \text { iff } \forall a, a^{\prime} \in \mathcal{A} . a \longrightarrow \longrightarrow^{*} a^{\prime} \Leftrightarrow a \longrightarrow^{\prime *} a^{\prime}
$$

\mathcal{A}^{\prime} is an SN-preserving extension of \mathcal{A} iff $\forall a \in \mathcal{A}$. $a \in \mathrm{SN} \Leftrightarrow a \in \mathrm{SN}^{\prime}$
\mathcal{A}^{\prime} is a WN -preserving extension of \mathcal{A} iff $\forall a \in \mathcal{A}$. $a \in \mathrm{WN} \Leftrightarrow a \in \mathrm{WN}^{\prime}$

Lemma 3 (Transitivity of conservative/SN/WN-preserving extensions).

 Let $\mathcal{A}, \mathcal{A}^{\prime}, \mathcal{A}^{\prime \prime}$ be ARSs, \mathcal{A}^{\prime} be an extension of \mathcal{A} and $\mathcal{A}^{\prime \prime}$ an extension of \mathcal{A}^{\prime}, both of which are conservative, SN -preserving, or WN-preserving extensions. Then $\mathcal{A}^{\prime \prime}$ is a conservative, SN -preserving, or WN-preserving extension, respectively, of \mathcal{A}.In order to show the above properties, we use the notion of a back-translation from the extended ARS into the original one:

Let $(\mathcal{A}, \longrightarrow),\left(\mathcal{A}^{\prime}, \longrightarrow^{\prime}\right)$ be ARSs such that $\mathcal{A} \subseteq \mathcal{A}^{\prime}$. Then a back-interpretation of \mathcal{A}^{\prime} into \mathcal{A} is given by

- a set Good such that $\mathcal{A} \subseteq$ Good $\subseteq \mathcal{A}^{\prime}$; we say a is good if $a \in$ Good;
- a function int : Good $\rightarrow \mathcal{A}$ such that $\forall a \in \mathcal{A} \operatorname{int}(a)=a$.

We define 3 conditions for a back-interpretation (Good, int) where condition (SN
2) refers to a measure $\mathrm{m}:$ Good $\rightarrow \mathbb{N}$:
(SN 1) $\forall a, a^{\prime} \in \mathcal{A} . a \longrightarrow a^{\prime} \Rightarrow a \longrightarrow^{\prime \geq 1} a^{\prime}$.
(SN 2) If $a \in$ Good, $a^{\prime} \in \mathcal{A}^{\prime}$ and $a \longrightarrow{ }^{\prime} a^{\prime}$ then $a^{\prime} \in$ Good and we have $\operatorname{int}(a) \longrightarrow \geq 1 \operatorname{int}\left(a^{\prime}\right)$ or $\operatorname{int}(a)=\operatorname{int}\left(a^{\prime}\right) \wedge \mathrm{m}(a)>\mathrm{m}\left(a^{\prime}\right)$.
(WN) If $a \in \operatorname{Good} \cap \mathrm{NF}^{\prime}$ then $\operatorname{int}(a) \in \mathrm{NF}$.
The following theorem substantially extends Lem. 1.1.27 of [13] and Lem. 2.2.5 of [11]:

Theorem 4 (Backinterpretations for ARSs and conservativity, SN, WN). Let $(\mathcal{A}, \longrightarrow),\left(\mathcal{A}^{\prime}, \longrightarrow{ }^{\prime}\right)$ be ARSs such that $\mathcal{A} \subseteq \mathcal{A}^{\prime}$. Let (Good, int) be a backinterpretation from \mathcal{A}^{\prime} into $\mathcal{A}, \mathrm{m}: \operatorname{Good} \rightarrow \mathbb{N}$. Then the following holds:
(a) (SN 1), (SN 2) imply that \mathcal{A}^{\prime} is a conservative extension of \mathcal{A} preserving SN.
(b) (SN 1), (SN 2), (WN) imply that \mathcal{A}^{\prime} is an extension of \mathcal{A} preserving WN.

Proof: (a): Proof of Conservativity: $a \longrightarrow \longrightarrow^{*} a^{\prime}$ implies by (SN 1) $a \longrightarrow^{\prime *} a^{\prime}$. If $a, a^{\prime} \in \mathcal{A}, a \longrightarrow \longrightarrow^{\prime *} a^{\prime}$ then by (SN 2) $a=\operatorname{int}(a) \longrightarrow{ }^{*} \operatorname{int}\left(a^{\prime}\right)=a^{\prime}$.
Proof of preservation of SN : We show the classically equivalent statement $\forall a \in \mathcal{A} . \neg(a$ is $\longrightarrow-\mathrm{SN}) \Leftrightarrow \neg\left(a\right.$ is $\left.\longrightarrow{ }^{\prime}-\mathrm{SN}\right)$.
For " \Rightarrow " assume $a=a_{0} \longrightarrow a_{1} \longrightarrow a_{2} \longrightarrow \cdots$ is an infinite \longrightarrow-reduction sequence starting with a. Then by (SN 1) $a=a_{0} \longrightarrow^{\prime \geq 1} a_{1} \longrightarrow^{\prime \geq 1} a_{2} \longrightarrow^{\prime \geq 1} \cdots$ is an infinite $\longrightarrow{ }^{\prime}$-reduction sequence.
For " \Leftarrow " assume $a=a_{0}^{\prime} \longrightarrow{ }^{\prime} a_{1}^{\prime} \longrightarrow \mathcal{P}^{\prime} a_{2}^{\prime} \longrightarrow \mathcal{P}^{\prime} \cdots$.
Then by (SN 2) $a=\operatorname{int}\left(a_{0}\right)=\operatorname{int}\left(a_{0}^{\prime}\right) \longrightarrow^{*} \operatorname{int}\left(a_{1}^{\prime}\right) \longrightarrow^{*} \operatorname{int}\left(a_{2}^{\prime}\right) \longrightarrow^{\prime *} \ldots$. If $\operatorname{int}\left(a_{i}^{\prime}\right)=\operatorname{int}\left(a_{i+1}^{\prime}\right)$ then $\mathrm{m}\left(a_{i}^{\prime}\right)>\mathrm{m}\left(a_{i+1}^{\prime}\right)$, so by (SN 2) after finitely many steps, where $\operatorname{int}\left(a_{i}^{\prime}\right)=\operatorname{int}\left(a_{i+1}^{\prime}\right)$, we must have one step $\operatorname{int}\left(a_{j}^{\prime}\right) \longrightarrow \geq 1 \operatorname{int}\left(a_{j+1}^{\prime}\right)$. Thus, we obtain an infinite reduction sequence starting with a in \mathcal{A}.
(b) Assume $a \in \mathcal{A}, a \in \mathrm{WN}$. Then $a \longrightarrow^{*} a^{\prime} \in \mathrm{NF}$ for some a^{\prime}, therefore $a^{\prime} \in \mathrm{SN}$, by (a) $a^{\prime} \in \mathrm{SN}^{\prime}, a^{\prime} \longrightarrow \longrightarrow^{\prime *} a^{\prime \prime}$ for some $a^{\prime \prime} \in \mathrm{NF}^{\prime}$, therefore $a \longrightarrow^{\prime *} a^{\prime} \longrightarrow \longrightarrow^{\prime *} a^{\prime \prime} \in \mathrm{NF}^{\prime}$, $a \in \mathrm{WN}^{\prime}$. For the other direction, assume $a \in \mathcal{A}, a \in \mathrm{WN}^{\prime}$. Then $a \longrightarrow{ }^{\prime *} a^{\prime} \in \mathrm{NF}^{\prime}$ for some a^{\prime}, by (SN 2), (WN) $a=\operatorname{int}(a) \longrightarrow^{*} \operatorname{int}\left(a^{\prime}\right) \in \mathrm{NF}, a \in \mathrm{WN}$.

5 Proof of Correctness of the Translation

In our translation we extend our language by new auxiliary constants while keeping the old ones, including their types. More formally, we define $\Sigma \subseteq_{F} \Sigma^{\prime}$, pronounced Σ^{\prime} extends Σ by constants, if (1) Σ^{\prime} and Σ have the same constructor and destructor symbols \mathcal{C}, \mathcal{D}, (2) the constants \mathcal{F} of \mathcal{L} form a subset of the constants of \mathcal{L}^{\prime}, and (3) Σ and Σ^{\prime} assign the same types to \mathcal{F}.

Let \mathcal{P} be a program for $\Sigma, \operatorname{Term}_{\Sigma}=\left\{t \mid \exists \Delta, A . \Delta \vdash_{\Sigma} t: A\right\}$. The $A R S$ for a program \mathcal{P} is $\left(\operatorname{Term}_{\Sigma}, \longrightarrow_{\mathcal{P}}\right)$. Let $\mathcal{P}, \mathcal{P}^{\prime}$ be programs for typed languages Σ, Σ^{\prime}, respectively. \mathcal{P}^{\prime} is an extension of \mathcal{P} iff $\Sigma \subseteq_{F} \Sigma^{\prime}$. If \mathcal{P}^{\prime} is an extension of \mathcal{P}, then \mathcal{P}^{\prime} is a conservative, $S N$-preserving, or $W N$-preserving extension of \mathcal{P} if the corresponding condition holds for the ARSs $\left(\operatorname{Term}_{\Sigma}, \longrightarrow_{\mathcal{P}}\right)$ and $\left(\operatorname{Term}_{\Sigma^{\prime}}, \longrightarrow_{\mathcal{P}^{\prime}}\right)$.

We will define a back-interpretations by replacing in terms $g t_{1} \ldots t_{n}$ the new constants g by a term of the original language. Due to lack of λ-abstraction, we only get a term of the original language if g is applied to n arguments. So, for our back translation, we need an $\operatorname{arity}(g)=n$ of new constants, and an interpretation $\operatorname{Int}(g)$ of those terms:

Assume $\Sigma \subseteq_{F} \Sigma^{\prime}$. A concrete back-interpretation (arity, Int) of Σ^{\prime} into Σ is given by the following:

- An arity $\operatorname{arity}(g)=n$ assigned to each new constant g of Σ^{\prime} such that $\Sigma^{\prime}(g)=A_{1} \rightarrow \cdots \rightarrow A_{n} \rightarrow A$ for some types A_{1}, \ldots, A_{n}, A. Here, A (as well as any A_{i}) might be a function type.
- For every new constant g of Σ^{\prime} with $\operatorname{arity}(g)=n$ and $\Sigma^{\prime}(g)=A_{1} \rightarrow \cdots \rightarrow A_{n} \rightarrow A$ a term $\operatorname{Int}(g)=t$ of Σ such that $x_{1}: A_{1}, \ldots, x_{n}: A_{n} \vdash t: A$. In this case, we write $\operatorname{lnt}(g)[\vec{t}]$ for $t[\vec{x}:=\vec{t}]$.
Assume that (arity, Int) is a concrete back-interpretation of Σ^{\prime} into Σ.
- The set Good ${ }_{\text {arity, Int }}$ of good terms is given by the set of $t \in \operatorname{Term}_{\Sigma}$ such that each occurrence of a new constant g of arity n in t is applied to at least n arguments.
- If $t \in \operatorname{Good}_{\text {arity, Int }}$, then $\operatorname{int}_{\text {arity, }} \operatorname{Int}(t)$, in $\operatorname{short} \operatorname{int}(t)$, is obtained by inductively replacing all occurrences of $g \vec{t}$ for new constants g by $\operatorname{lnt}(g)[\operatorname{int}(\vec{t})]$.
Trivially, concrete back-interpretations are back-interpretations. We now have the definitions in place to prove $\mathrm{SN}+\mathrm{WN}$-conservativity of our translation.

Lemma 5 (Some simple facts).

(a) If $f: A \triangleleft \mid Q(\Delta \vdash q: A)$ then each variable in Δ occurs exactly once in q.
(b) If x is a variable occurring in pattern q, then t is a subterm of $q[x:=t]$.
(c) Assume s is a maximal subterm of t, i.e. s is a subterm such that there is no term s^{\prime} such that $s s^{\prime}$ is a subterm starting at the same occurrence as s in t. If t is good, then s is good as well.

Theorem 6 (Correctness of Translation). Let \mathcal{P} be a program for Σ. Then there exists a typed language $\Sigma^{\prime} \supseteq_{\mathrm{F}} \Sigma$ and a simple program \mathcal{P}^{\prime} for Σ^{\prime}, which is a conservative extension of \mathcal{P} preserving SN and WN.

Proof: Define for a program \mathcal{P} the height of its derivation height (\mathcal{P}) as the sum of the heights of the derivations of those covering patterns in \mathcal{P}, which are not simple covering patterns. The proof is by induction on height (\mathcal{P}).

The case height $(\mathcal{P})=0$ is trivial, since \mathcal{P} is simple. Assume height $(\mathcal{P})>0$. We obtain a $\Sigma^{\prime} \supseteq_{\mathrm{F}} \Sigma$ and corresponding program \mathcal{P}^{\prime} for Σ^{\prime} by applying one step of Algorithm 3.3 to \mathcal{P}. We show below that \mathcal{P}^{\prime} is a conservative extension of \mathcal{P} preserving SN and WN. Since the derivations for the coverage complete pattern sets in \mathcal{P}^{\prime} are the same as for \mathcal{P}, except for the one for \mathcal{P}_{f}^{\prime}, which is reduced in height by one as the algorithm takes out the last derivation of the coverage derivation of \mathcal{P}_{f}, and that for \mathcal{P}_{g}^{\prime}, which is simple, we have height $\left(\mathcal{P}^{\prime}\right)=\operatorname{height}(\mathcal{P})-1$. By induction hypothesis there exists a conservative extension $\mathcal{P}^{\prime \prime}$ of \mathcal{P}^{\prime} preserving SN and WN, which is simple, which is as well a conservative extension of \mathcal{P} preserving SN and WN. This extension is obtained by the recursive call made by the algorithm.

So we need to show that \mathcal{P}^{\prime} is a conservative extension of \mathcal{P} preserving SN and WN. Let $f, g, \Delta^{\prime}, \vec{y}, q, A, I, \Delta_{i}, q_{i}, t_{i}, C_{i}, q_{i}^{\prime}$ be as stated in Algorithm 3.3, $\Delta_{i}=\vec{y}_{i}: \vec{A}_{i}$, and n be the length of Δ^{\prime}.

We introduce a concrete back-interpretation of \mathcal{P}^{\prime} into \mathcal{P} by $\operatorname{arity}(g):=n$ and $\operatorname{Int}(g)[\vec{y}]:=q$. Let $\mathrm{m}(t)$ be the number of occurrences of f in t. Let (Good, int) be the corresponding back interpretation.

Assume \mathcal{P}^{\prime} fulfils with the given q_{i}^{\prime} the following conditions:
(1) $\operatorname{int}\left(q_{i}^{\prime}\right)=q_{i} \longrightarrow \mathcal{P}^{\prime} q_{i}^{\prime}$
(2) If $q[\vec{x}:=\vec{s}] \vec{t}=q_{i}$, then $g \vec{s} \vec{t}=q_{i}^{\prime}$, where t_{i} are terms or of the form .d.

Then (Good, int) fulfils (SN 1), (SN 2), and (WN), and therefore \mathcal{P}^{\prime} is a conservative extension of \mathcal{P} preserving SN and WN:
(SN 1) holds since the only changed derivation is based on the original redex $q_{i}\left[\vec{y}_{i}:=\vec{t}\right] \longrightarrow \mathcal{P} t_{i}\left[\vec{y}_{i}:=\vec{t}\right]$ and by (1) $q_{i}\left[\vec{y}_{i}:=\vec{t}\right] \longrightarrow \mathcal{P}^{\prime} q_{i}^{\prime}\left[\vec{y}_{i}:=\vec{t}\right] \longrightarrow \mathcal{P}^{\prime} t_{i}\left[\vec{y}_{i}:=\vec{t}\right]$. (SN 2) holds since the new redexes are the following:
$-q[\vec{y}:=\vec{t}] \longrightarrow \mathcal{P}^{\prime} g \vec{t}$, where $q[\vec{y}:=\vec{t}]$ is good. Since it is good and variables in a pattern are not applied to other terms, by Lem. $5 \vec{t}$ is good as well, and therefore as well $g \vec{t}$. We have $\operatorname{int}(q[\vec{y}:=\vec{t}])=q[\vec{y}:=\operatorname{int}(\vec{t})]=\operatorname{int}(g \vec{t})$. Furthermore, $\mathrm{m}(q[\vec{y}:=\vec{t}])=\mathrm{m}(g \vec{t})+1>\mathrm{m}(g \vec{t})$, since pattern q starts with f, and each variable in \vec{y} occurs by Lem. 5 exactly once in q.
$-q_{i}^{\prime}\left[\vec{y}_{i}:=\vec{t}\right] \longrightarrow \mathcal{P}^{\prime} t_{i}\left[\vec{y}_{i}:=\vec{t}\right]$. Since $q_{i}^{\prime}\left[\vec{y}_{i}:=\vec{t}\right]$ is good, as in (a) \vec{t} are good and therefore $t_{i}\left[\vec{y}_{i}:=\vec{t}\right]$ is good. Furthermore, by (1) $\operatorname{int}\left(q_{i}^{\prime}\left[\vec{y}_{i}:=\vec{t}\right]\right)=$ $\left.\operatorname{int}\left(q_{i}^{\prime}\right)\left[\vec{y}_{i}:=\operatorname{int}(\vec{t})\right]\right)=q_{i}\left[\vec{y}_{i}:=\operatorname{int}(\vec{t})\right] \longrightarrow \mathcal{P} t_{i}\left[\vec{y}_{i}:=\operatorname{int}(\vec{t})\right]=\operatorname{int}\left(t_{i}\left[\vec{y}_{i}:=\vec{t}\right]\right)$.
Proof of (WN): We first show that (2) implies
(3) If $s \in \operatorname{Good}, \operatorname{int}(s)=q_{i}$ then $s=q_{i} \vee s=q_{i}^{\prime}$

Since q_{i} starts with f, s must start with f or g. The only occurrence of a constant in q_{i} is at the beginning, therefore $s=f \vec{r}$ or $s=g \vec{r}$ where $\operatorname{int}(\vec{r})=\vec{r}$. If $s=f \vec{r}$ then $s=\operatorname{int}(s)=q_{i}$. If $s=g \vec{r}=g \vec{s} \vec{t}, q[\vec{x}:=\vec{s}] \vec{t}=\operatorname{int}(s)=q_{i}$, therefore by (2) $s=g \vec{s} \vec{t}=q_{i}^{\prime}$.
Using (3), assume $s \in \operatorname{Good}, s \in \mathrm{NF}^{\prime}$, and show $\operatorname{int}(s) \in \mathrm{NF}$. Assume $\operatorname{int}(s) \notin \mathrm{NF}$, $\operatorname{int}(s)$ has redex $\widetilde{q}[\vec{x}:=\vec{r}]$ for a pattern \widetilde{q} of \mathcal{P}. If $\widetilde{q} \neq q_{i}, \widetilde{q}$ starts with some $h \neq f, g$, and has no occurrences of f, g. Then s contains $\widetilde{q}\left[\vec{x}:=\overrightarrow{r^{\prime}}\right]$ where $\operatorname{int}\left(\overrightarrow{r^{\prime}}\right)=\vec{r}$, and has therefore a redex, contradicting $s \in \mathrm{NF}^{\prime}$. Therefore $\widetilde{q}=q_{i}$ for some i. Therefore s contains a subterm $s^{\prime}\left[\vec{x}:=\overrightarrow{r^{\prime}}\right]$ such that $\operatorname{int}\left(s^{\prime}\right)=q_{i}$, $\operatorname{int}\left(\overrightarrow{r^{\prime}}\right)=\vec{r}$. But then by (1), (3) $s^{\prime}\left[\vec{x}:=\overrightarrow{r^{\prime}}\right]$ has a reduction, again a contradiction.

So the proof is complete provided conditions (1), (2) are fulfilled. We verify the case when the last rule is $\left(\mathrm{C}_{\text {Dest }}\right)$, the other cases follow similarly:
(1) $\operatorname{int}\left(q_{d}^{\prime}\right)=\operatorname{int}(g \vec{x} \cdot d)=\operatorname{lnt}(g)[\vec{x}] . d=q . d=q_{d} \longrightarrow \mathcal{P}^{\prime} g \vec{x} \cdot d=q_{d}^{\prime}$.
(2) If $q[\vec{x}:=\vec{s}] \vec{t}=q_{d}=q . d, \vec{s}=\vec{x}, \vec{t}=. d, g \vec{s} \vec{t}=g \vec{x} . d=q_{d}^{\prime}$.

6 Conclusion

We have described a reduction of deep copattern matching to shallow copattern matching. The translation preserves weak and strong normalization. It is conservative, thus establishing a weak bisimulation between the original and the translated program. The translated programs can be used for more efficient evaluation in a checker for dependent types or can serve as intermediate code for translation into a more low-level language that has no concept of pattern at all.

There are two more translations of interest. The first one, which we have mostly worked out, is a translation into a variable-free language of combinators, including a proof of conservativity and preservation of normalization. Our techniques were developed more generally in order to prove correctness for this translation as well. A second translation would be to a call-by-need lambdacalculus with lazy record constructors. This would allow us to map definitions of
infinite structures by copatterns back to Haskell style definitions by lazy evaluation. While there seems to be no (weak) bisimulation in this case, one still can hope for preservation of normalization, maybe established by logical relations.

Acknowledgements The authors want to thank the referees for many detailed and valuable comments, especially regarding preservation of weak normalisation and generalisation to ARS. Anton Setzer acknowledges support by EPSRC (Engineering and Physical Science Research Council, UK) grant EP/C0608917/1. Andreas Abel acknowledges support by a Vetenskapsrådet framework grant 254820104 (Thierry Coquand) to the Department of Computer Science and Engineering at Gothenburg University. Brigitte Pientka acknowledges support by NSERC (National Science and Engineering Research Council Canada). David Thibodeau acknowledges support by a graduate scholarship of Les Fonds Québécois de Recherche Nature et Technologies (FQRNT).

References

1. Andreas Abel. A Polymorphic Lambda-Calculus with Sized Higher-Order Types. PhD thesis, Ludwig-Maximilians-Universität München, 2006.
2. Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer. Copatterns: Programming infinite structures by observations. In Proc. of the 40 th ACM Symp. on Principles of Programming Languages, POPL 2013, pages 27-38. ACM Press, 2013.
3. Lennart Augustsson. Compiling pattern matching. In Jean-Pierre Jouannaud, editor, Functional Programming Languages and Computer Architecture (FPCA'85), volume 201 of Lect. Notes in Comput. Sci., pages 368-381. Springer, 1985.
4. Gilles Barthe, Maria J. Frade, Eduardo Giménez, Luis Pinto, and Tarmo Uustalu. Type-based termination of recursive definitions. Math. Struct. in Comput. Sci., 14(1):97-141, 2004.
5. Edwin Brady. Idris, a general purpose dependently typed programming language: Design and implementation. http://www.cs.st-andrews.ac.uk/~eb/drafts/impldtp.pdf, 2013.
6. Robin Cockett and Tom Fukushima. About Charity. Technical report, Department of Computer Science, The University of Calgary, June 1992. Yellow Series Report No. 92/480/18.
7. Tatsuya Hagino. A typed lambda calculus with categorical type constructors. In Category Theory and Computer Science, volume 283 of Lect. Notes in Comput. Sci., pages 140-157. Springer, 1987.
8. Tatsuya Hagino. Codatatypes in ML. J. Symb. Logic, 8(6):629-650, 1989.
9. INRIA. The Coq Proof Assistant Reference Manual. INRIA, version 8.4 edition, 2012.
10. Ulf Norell. Towards a Practical Programming Language Based on Dependent Type Theory. PhD thesis, Dept. of Computer Science and Engineering, Chalmers, Göteborg, Sweden, 2007.
11. Paula Gabriela Severi. Normalisation in lambda calculus and its relation to type inference. PhD thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 1996.
12. Terese. Term Rewriting Systems. Cambridge University Press, 2003.
13. Femke van Raamsdonk. Concluence and Normalisation for Higher-Order Rewriting. PhD thesis, Vrije Universiteit, Amsterdam, The Netherlands, 1996.

[^0]: ${ }^{4}$ See e.g. Def. 2.2.4 of [12].

[^1]: ${ }^{5}$ Such fixed-point combinators are used in the Calculus of Inductive Constructions, the core language of Coq [9], but have also been studied for sized types [4, 1].

[^2]: ${ }^{6}$ This is actually happening in the language Idris [5]; Agda [10] has separate phases, but uses the split tree generated by the coverage checker to translate pattern matching into case trees.

