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Abstract

In this paper we use a hybrid multiscale mathematical model that incorporates both individual cell behaviour through the
cell-cycle and the effects of the changing microenvironment through oxygen dynamics to study the multiple effects of
radiation therapy. The oxygenation status of the cells is considered as one of the important prognostic markers for
determining radiation therapy, as hypoxic cells are less radiosensitive. Another factor that critically affects radiation
sensitivity is cell-cycle regulation. The effects of radiation therapy are included in the model using a modified linear
quadratic model for the radiation damage, incorporating the effects of hypoxia and cell-cycle in determining the cell-cycle
phase-specific radiosensitivity. Furthermore, after irradiation, an individual cell’s cell-cycle dynamics are intrinsically modified
through the activation of pathways responsible for repair mechanisms, often resulting in a delay/arrest in the cell-cycle. The
model is then used to study various combinations of multiple doses of cell-cycle dependent chemotherapies and radiation
therapy, as radiation may work better by the partial synchronisation of cells in the most radiosensitive phase of the cell-
cycle. Moreover, using this multi-scale model, we investigate the optimum sequencing and scheduling of these multi-
modality treatments, and the impact of internal and external heterogeneity on the spatio-temporal patterning of the
distribution of tumour cells and their response to different treatment schedules.
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Introduction

Chemotherapy and radiotherapy play important roles in the
primary treatment of many cancers and in improving the survival
after cancer surgery. Currently, numerous chemotherapeutic drugs
and irradiation techniques are employed, which have evolved over
several decades through empirical clinical usage. New treatments,
such as a novel drug or a change in the scheduling of radiotherapy
take many years to assess by conducting a clinical trial and clini-
cians would benefit greatly from having an alternative scientific
approach to decide on how to improve current treatment strate-
gies, but also in arriving at good decisions more quickly. Mathema-
tical modelling of such complex, dynamic situations might provide
one solution to this problem, and speed up delivery of effica-
cious treatments to patients while preventing the use of poten-
tially sub-optimal treatment combinations. The effectiveness of these
treatment protocols is considerably affected by internal tumour
heterogeneities caused by perturbations in the intracellular path-
ways as well as by dynamical changes in the tissue microen-
vironment, in particular the distribution of oxygen [1]. Hence, it
is important to consider such heterogeneity when studying various
optimisation protocols, as this can help in improving the delivery of
multi-modality treatments.

A common treatment modality for cancer is chemotherapy. Its
delivery is limited by toxicity to normal tissues, so is often delivered

in cycles that allow recovery of normal cells, but also, unfortu-
nately, of tumour cells, leading to treatment failure. Chemother-
apeutic drugs function by killing the tumour cells through inter-
fering with the cell-cycle mechanism, which regulates complex
intracellular processes such as proliferation, cell division and DNA
replication [2]. The cell-cycle mechanism is very dynamic in
nature and is influenced by the surrounding microenvironment,
which contributes to cell-cycle mediated drug resistance and poor
treatment outcome [1,2]. One way of overcoming this is by using
an appropriate combination of chemotherapeutic drugs that target
the cell at various cell-cycle phase points, thus interfering with
tumour cell division. Radiotherapy is curative for certain cancers
when used as the sole treatment, but clinical trials conducted in the
last thirty years suggest a synergistic effect of concomitant chemo-
therapy and radiotherapy. As with chemotherapy, the cell-cycle
plays a vital role in mediating a cell’s sensitivity towards radiation
therapy, as the cell-cycle phase determines the cell’s relative
radiosensitivity [3,4]. Moreover, various studies have shown that
the cells that are in G2-M phase are more sensitive to the radiation
than those that are in G1 phase [3]. Furthermore, irradiation can
also alter a cell’s cell-cycle dynamics through the activation of
various intracellular pathways including the p53 and p21 pathways
[4]. Activation of these pathways and related cell repair mecha-
nisms can delay the rate of progression of a cell’s cell-cycle, causing
a group of tumour cells to accumulate either in the G1 or G2
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phase, preventing them from undergoing mitosis and making them
progress in a synchronous manner [3,4].

The treatment-dependent perturbations of cell-cycle progres-
sion together with cell-cycle-dependent therapeutic sensitivity are
some of the many rationales behind the use of kinetically-based
administration protocols of chemotherapy and radiation therapy
[3,5,6]. Studies have shown that both radiation therapy and che-
motherapeutic drugs can induce a cell-cycle synchrony and arrest
cells at a particular cell-cycle phase which improves the effecti-
veness of the next dose of radiation/chemotherapy [3,5]. For
example, while the drug paclitaxel induces a cell-cycle arrest at the
cell-cycle phase G2-M, Flavopiridol causes cells to accumulate in
G1 and G2 phases, enhancing the radiation sensitivity [3]. Alter-
natively, radiation-induced cell-cycle delay can help various cell-
cycle phase-specific drugs to induce a higher cell kill. Moreover,
combination regimes can also provide benefit from spatial coope-
ration and tissue reoxygenation, which enhance therapeutic response.
As the interdependency of such therapeutic protocols, the cell-cycle
mechanism and the tumour microenvironment clearly affect a cell’s
response to therapy, it is important to carefully study optimal
combination and sequencing of treatments in order to help clini-
cians design therapeutic protocols that improve survival rates, in
which mathematical modelling can be very helpful.

Clinically driven mathematical models can be used as powerful
tools to understand, study, and provide useful predictions related
to the outcome of various treatment protocols used to treat human
malignancies. Although there are several models in the literature
that study chemotherapy and radiation therapy, very few of them
analyse the effect of the cell-cycle in treatment response [7–14].
Recently, Powathil et al. [15] developed a hybrid multiscale cel-
lular automaton model incorporating the effects of oxygen hetero-
geneity and cell-cycle dynamics to study cell-cycle based chemo-
therapy delivery. They have shown that an appropriate combination
of cell-cycle specific chemotherapeutic drugs could effectively be
used to control tumour progression. Most of the mathematical
models for radiation therapy are based on a linear quadratic
(LQ) formulation [12,14,16–20]. A brief summary of various
approaches in modelling tumour dynamics and radiotherapy can
be found in the review by Enderling et al. [21]. Here, we use a
discrete multiscale modelling approach to study the multiple
effects of cell-cycle and radiotherapy. Ribba et al. [11] proposed
a multiscale model incorporating a discrete mathematical model
for cell-cycle regulation and cell-cycle phase dependent radiation
sensitivity. Richard et al. [12] studied in vitro responses of cells
with cell-cycle phase-specific sensitivity to targeted irradiation

and analysed the so called ‘‘bystander effect’’ using a cellular
automaton approach.

In the present paper, we study the multiple effects of radiation
therapy when applied in combination with cell-cycle specific
chemotherapy in the control of malignant cell growth by using a
previously developed hybrid multiscale cellular automaton model
for tumour cell growth [15]. In particular, we are interested in
studying the effects of cell-cycle regulation in radiation therapy
and further, how radiation-induced cell-cycle heterogeneity can
potentially be used to increase tumour control when radiotherapy
is administered with chemotherapy (‘‘chemoradiotherapy’’). More-
over, as the radiation sensitivity is also affected by the surrounding
tumour microenvironment, especially the oxygen distribution, we
use a modified linear quadratic model to study the effects of
radiation in a changing microenvironment.

Results/Discussion

For many years clinicians have been using chemo-radiothera-
peutic combinations for treating various human cancers, as these
interact with each other to provide better treatment outcomes
[3,5,6]. One of the significant factors that can affect the interaction
between these modalities and their effectiveness is the intracellular
cell-cycle dynamics [1–4]. In an earlier study [15], we analysed the
effects of cell-cycle phase-specific chemotherapeutic drugs in
controlling tumour growth using a hybrid multiscale model. Here,
we have incorporated a detailed model for radiation damage
within the hybrid multiscale framework to study the cell-cycle
dynamics and their effects during the combined treatment pro-
tocols. In the following description, we discuss the computational
results that we obtained from the mathematical model that
incorporated internal cell-cycle dynamics and oxygen heteroge-
neity to study multiple therapeutic responses. The details of the
hybrid multiscale mathematical model, incorporating the effects of
radiation and chemotherapies are given in the methods section.

Effects of cell-cycle based chemotherapy
Cell-cycle phase-specific chemotherapeutic drugs are used in

treating various human malignancies as they interfere with the
rapidly proliferating mass of the cells by blocking their cell division
cycle. Some of these chemotherapeutic drugs are S phase-specific
as they interfere with its replication (e.g. topoisomerase or thymi-
dylate synthase inhibitors), resulting in cell death or cell-cycle
arrest at the intra-S checkpoint or at the G2/M checkpoint. Some
other drugs are M phase-specific as they damage the formation of
the mitotic spindle or prevent it from disassociating (e.g. taxanes,
vinca alkaloids) while some block phase transitions at G1/S or
G2/M cell-cycle checkpoints (e.g. CDKIs) and other drugs are not
necessarily phase-specific as they interact with the DNA irres-
pective of its cell-cycle phases. Here, for simplicity we consider two
types of phase-specific chemotherapeutic drugs that are either G1
specific or G2-S-M specific. While the concept of phase-specific
chemotherapy is useful, and although some drugs have specific
effects on the machinery of mitosis (e.g. ‘spindle’ poisons) it is
becoming clear that chemotherapy drugs may affect more than
one aspect of the cell cycle, and so the concept of phase-specificity
is somewhat of an over-simplification.

The effects of cell-cycle specific chemotherapeutic drugs on solid
tumours with intracellular and oxygen heterogeneities are described
using the same cellular automaton framework used by Powathil
et al. [15]. Using the mathematical model we have shown that
the cytotoxic effectiveness of the cell-cycle phase-specific chemo-
therapeutic drugs is significantly dependent on the spatial distri-
bution of the tumour cell mass, the timing of the drug delivery,

Author Summary

Anti-cancer treatments such as radiotherapy and chemo-
therapy have evolved through clinical trial-and-error over
decades, and although they cure some cases and are
partially effective in many, the majority of such cancers
ultimately recur. Doctors turn to new, expensive drugs as
they emerge, but perhaps fail to study and learn how to
use the therapies they already have most effectively. This is
partly because clinical trials are expensive to conduct, both
in terms of time and money. The cancer cell is complicat-
ed, but many mechanisms that control its response to
treatment are now understood. We show here how a
mathematical model accurately reproduces the results of
previous biological experiments of cancer treatment,
opening up the possibility of using it to predict which
combinations of drugs and radiotherapy would be best for
patients.

Computational Modelling of Cancer Therapy
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the time between the doses of cytotoxic drugs, and also the cell-
cycle and oxygen heterogeneity [15]. We have assumed that the
diffusion coefficients and supply rates depend on the location of
tumour cells within the tumour, as observed experimentally and
hence, the cell-kill due to the chemotherapeutic drugs that are
introduced affect the diffusion and supply rates of the drug and
nutrients in a favourable manner and thus help to redistribute
the subsequent doses introduced [15]. The study also highlighted
the importance of considering intracellular and external hetero-
geneities while studying the potential effectiveness of chemothe-
rapeutic drugs [15].

Effects of radiation therapy: Cell-cycle, hypoxia and
radiation sensitivity

The effectiveness of radiation therapy significantly depends on
the intracellular and extracellular dynamics of the targeted tumour.
The key intracellular processes, such as cell-cycle dynamics and
external factors including oxygen distribution play a vital role in
determining the radiosensitivity of the cells that are irradiated
[3,22]. In addition, the radiation fractions (treatments) that are
delivered further dynamically change this radiosensitivity over
time by redistributing the tumour cells within the cell-cycle, by
inducing repopulation of the tumour cell mass, by allowing reoxy-
genation of the tumour, and by causing the need for repair of
the DNA damage induced by treatment [3,4,22].

Cell-cycle phase redistribution. Experimentally, it has
been shown that ionizing radiation can slow down the rate of
growth of the cell populations, blocking them in various phases of
the cell-cycle, resulting in a cell-cycle phase redistribution leading
to a partial synchronisation [3,23,24]. Figure 1a (and Figure S1)
shows the experimental results from a base excision repair study by
Chaudhry [23] (Figure 5 in [23]) which shows the cell-cycle
distribution of HeLa cells after radiation exposure. In this
experimental study, HeLa cells were irradiated with 3 Gy (1
Gray = 1 J/kg) of radiation and the cell-cycle distribution of cells
sampled at 3 h, 6 h, 9 h, 12 h, 16 h, 19 h, 20 h, 22 h and 24 h
were analysed using flow cytometry [23]. The results obtained
after irradiation were also compared against a control population
(no radiation) sampled at the same time points. The results show
that the controls have cells predominantly distributed in G1 as
compared to G2. After irradiation, the majority of the cells start to
accumulate in G2 phase, about 12 h after irradiation and stay in
G2 phase before going back to a G1 phase dominant cell distri-
bution by 22–24 h after irradiation. In another experimental study
by Goto et al. [24], where human TK6 lymphoblastoids are irra-
diated with a 3 Gy X-ray radiation, a similar change in cell-
cycle distribution was also reported (Figure 5 in [24]). The
results from Goto et al. [24] show that at about 6 h after the
irradiation, the majority of the cells that were in G1 accumulate
in G2 and stay there for up to 36 h until returning to the G1
phase of the cell-cycle [24].

We have analysed these changes in cell-cycle phase distribution
caused by radiation using our multiscale mathematical model and
compared the results against the control population (without
radiation). To compare with the experimental data, the tumour
cells are allowed to grow (starting with one tumour cell at time
zero) until time = 400 h (about 1000 cells) and then the cells are
irradiated at time = 400 h with a radiation dose of 3 Gy and the
the corresponding number of cells in G1 and G2 phases are
plotted in Figure 1b at times 403 h, 406 h, 409 h, 412 h, 419 h,
422 h, 424 h, 430 h, 436 h, 442 h and 448 h. The plots in
Figure 1b show that after irradiation at 400 h, the majority of the
cells stay in G1 phase up to 409 h. By 412 h after the radiation,
most of the cells enter G2 phase of the cell-cycle, making the

number of cells in G2 phase higher than the number in G1 phase.
The cells maintain this state until 436 h and then they return back
to a G1 phase dominant cell distribution. However, in the control
population, the majority of the cells are distributed in the G1
phase of the cell-cycle throughout the sampling times.

These results show a qualitative agreement with the experi-
mental studies described above [23,24] and indicate that the
developed model can satisfactorily predict qualitative changes in
the cell-cycle distribution during radiation therapy. This redistri-
bution of cells within their cell-cycle phases can significantly affect
response to subsequent doses of radiation therapy or chemother-
apy, but at the same time any additional doses of radiation can
cause further redistribution of cells in the cell-cycle. In the case of
irradiation of cells with one single dose, a subsequent dose of G2
phase-specific chemotherapy may seem a better choice if it is given
within the time frame of 12–36 h after the radiation as the number
of cells in G2 phase is higher than the number in G1 phase. How-
ever, this benefit may not be seen if multiple fractions of radia-
tion doses are given, as the cell-cycle dynamics change accordingly.

Cell-cycle and radiation dosage. To study cell-cycle dyna-
mics when cells are treated with multiple fractions of radiation
doses of radiation, we have simulated the radiation therapy of the
tumour cells with 2.5 Gy/day for 5 days, up to 12.5 Gy starting at
time = 400 h. This is compared against the results of irradiation
with a single dose of 12.5 Gy given at time = 400 h and the control
cell distribution. The total number of cells and the number of cells
that are in G1, G2, and resting phases for (a) the control case, (b)
when cells are treated with a single dose of radiation and (c) when
cells are treated with fractional doses of radiation, are plotted
against time in Figures 2a, 2b and 2c, respectively. The subplots in
these Figures show the percentage of hypoxic area with respect to
time. It can be seen from Figure 2a that the cells grow mostly in an
asynchronous pattern with almost an equal proportion of cells in
either G1 or G2 phases, which further tends to reach a plateau as
time increases. However, as the tumour size increases, the popula-
tion of cells in the quiescent phase increases steadily compared
with the proliferating population of cells. Although in the present
model the cell-cycle delay due to hypoxia and space-limitation
contribute to these population dynamics, this effect has previously
been related to the basic Gompertzian tumour growth dynamics
[25–27]. In particular, Gyllenberg and Webb examined the role of
cellular quiescence on the pattern of tumour growth and suggested
that the basic Gompertzian tumour growth can be explained by a
non-linear relationship where the cells in larger tumour masses
have an increased probability to enter the quiescent phase [25].
From a clinical perspective, tumours with a large proportion of
quiescent cells are much harder to treat than tumours with more of
the dividing fraction and most of the time the quiescent cell popu-
lation is found to be more resistant to most available treatments.
Hence, it would be interesting to study these tumour dynamics
under various combinations of treatments.

When the cells are irradiated with a single dose of radiation, as
discussed in the previous paragraph, the majority of the cells stay
in G2 phase of the cell-cycle after the radiation for a short period
and then the majority move into G1, stay in that distribution for
about 60–70 h (partial synchronisation) before eventually recove-
ring and following the cycling pattern seen in the case of the
control cell population (Figure 2b). Note from the subfigure of
Figure 2b that when cells are killed, the changing spatial distri-
bution of the tumour mass and the availability of free space
reoxygenate the tumour (hypoxia area reduced) as observed
experimentally [28,29], which may further increase the prolifera-
tion, but also change radiosensitivity, as hypoxic cells are relatively
radioresistant. However, when multiple doses of radiation are

Computational Modelling of Cancer Therapy
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given to achieve the same total dose, the synchronisation is
observed only during the treatment time, and is lost as soon as the
radiation is stopped (Figure 2c). This is consistent with a laboratory
experimental result which showed that the distribution of cells is
different if the cells are irradiated with either a single large dose or
fractionated treatment (giving the same total dose) [30]. Also note
that soon after the radiation, with the creation of empty space and
a favourable microenvironment, the number of cells in resting
phase decreases as the resting cells re-enter the active phase of the
cell-cycle (into G1 phase).

Hypoxia and radiation. The relative presence or absence of
oxygen within the vicinity of a cell greatly influences its cell-cycle
status and radiation sensitivity [22,31]. When oxygenation increases,
the biological effect of the ionizing radiation also increases as

the presence of oxygen allows the radiation to cause more
damage to the tumour cell’s DNA [22].

Here, we introduced these effects by using a concept of an
oxygen enhancement ratio, which is the ratio of dose to produce a
given effect without oxygen to the dose to produce the same effect
with oxygen [32]. Furthermore, a well-oxygenated microenviron-
ment can also increase the proportion of proliferating cells. In
Figure 3a, we plot the temporal changes in the total number of
cells and the cells that are in various phases of the cell-cycle,
when cells are irradiated with 2.5 Gy/day for 5 days in a 100%
oxygenated microenvironment. Compared to the heteroge-
neous case in Figure 2c, the presence of oxygen increases the cell-
kill, reduces the number of cells in the resting phase and
consequently increases the proportion of cells in the proliferative

Figure 1. Comparison of the cell-cycle distributions with and without radiation. (a) experimental results from Chaudhry [23] and (b)
simulation results. (a) Cell cycle distribution of HeLa Cells after radiation exposure. Cells were irradiated with 3 Gy and samples were taken after 3 h,
6 h, 9 h, 12 h, 16 h, 22 h, and 24 h for flow cytometry analysis. The cell cycle distribution of irradiated cells was compared to unirradiated cells
collected at the same time points. The left peak in each case represents cells in G1 and the right peak represents cells in G2 phase. From Chaudhry
[23] (BioMed Central OpenAccess). (b) The total number of cells in G1 and G2 phases when the cell is irradiated with dose = 3 Gy at time = 400, 403,
406, 409, 412, 416, 419, 422, 424, 430, 436, 442 and 448 h. The cell-cycle distribution of irradiated cells was compared to unirradiated cells collected at
the same time points. The results show a qualitative agreement with the experimental results.
doi:10.1371/journal.pcbi.1003120.g001
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phase with a majority of the cells being in G2 phase at the time of
irradiation.

Cell-cycle and radiation. As we discussed in the Introduc-
tion, an individual cell’s radiation sensitivity depends significantly
on its cell-cycle status [3,4]. While the cell-cycle phases determine
the radio-responsiveness, radiation itself can modify the cell-cycle
dynamics, mainly by delaying the cell-cycle progression to allow
repair of DNA damage [4]. In Figures 3b, 3c and 3d, we study
various factors that are associated with cell-cycle and radiosensitivity.

In this radiation model, we have assumed that immediately after
the radiation, there is a divisional delay of 1–9 h (randomly chosen)
if the cells are either in their G1 or G2 phases of the cell-cycle.
Figure 3b shows the temporal changes in the number of cells if no
cell-cycle delay after the radiation is assumed. Comparing these
results with those assuming a repair delay in Figure 2c, it can be
seen that the proportion of cells in various phases is slightly
different but roughly comparable. This might be due to the fact
that the repair time delay is assumed to be less than 10 h, much
less than the time interval between two doses of radiation therapy.

In Figure 3c, we have plotted the effects of radiation therapy on
the number of cells when no cell-cycle specificity for the radiation
sensitivity is assumed. Here, all the cells have the same sensitivity,

which is taken to be the maximum (c~1 in equation 12). The figure
shows that if the radiation sensitivity of the cells is increased there
will be a corresponding increase in the cell-kill, which then further
enhances the reoxygenation of the tumour (subfigure in Figure 3c).

The number of cells for the case where no DNA repair is
assumed is plotted in Figure 3d and shows an increase in the
number of cells killed as compared to the normal case (Figure 2c),
as expected. In all four cases (Figure 3), when new empty spaces
are created by cell death and the microenvironment is well
oxygenated, resting cells revert to the normal cell-cycle which
further increases the number of cells in the active G1 and G2
phases. Figure 3 also shows that the two important factors that
affect the radiation responsiveness of the cells are the cell-cycle
phase-specific radiation sensitivity of the individual cells and the
activation of the repair mechanisms within the cell.

The combination of cell-cycle based chemotherapy and
radiation therapy

Clinically, a kinetically based administration of chemotherapy
and radiation therapy is often used to achieve an improved
therapeutic effect due to the processes of spatial cooperation,
independent additive cell-kill and cellular, molecular and tissue

Figure 2. Number of cells in G1, G2 and resting phases for a heterogeneous environment. The number of cells (a) under no treatment, (b)
under single dose of radiation with 12.5 Gy and (c) under fractional radiation starting at time = 400 h (5 fractions of 2.5 Gy).
doi:10.1371/journal.pcbi.1003120.g002
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level interaction between modalities [3,5,6]. However, most of
these interactions are dependent on the type of drugs given and
the temporal separation between the drugs and radiation fractions,
and hence an appropriate combination of these therapeutic
modalities is an essential requirement to achieve maximum
survival [33,34]. Here, we show the analysis of the effects of four
hypothetically-scheduled, clinically-used combinations (adjuvant
radiation, neo-adjuvant radiation, concurrent radiation and chemo-
radiation-chemo) of cell-cycle phase-specific chemotherapy and
fractionated radiation therapy. A representative result showing
the changing dynamics of cells in various cell-cycle phases for
the adjuvant therapy (radiation is given after the chemotherapy)
is given in Figure 4 and the figures for the rest of the combi-
nations can be found in the Supplementary Material, in Figure
S2, S3 and S4. Moreover, a comparison of the total number of
cells for different combination protocols is given in Figure 5.

Figure 4 shows the sequencing of two types of chemotherapeutic
drugs followed by radiation therapy. Two doses of cell-cycle phase-
specific chemotherapy, specific to either G1 or G2 phases of the
cell-cycle, are given at time = 340 h and 370 h, followed by 5
fractions of radiation, given with a daily dose of d = 2.5 Gy,
starting at time = 400 h. The plots show that when the radiation
therapy is given after the chemotherapy doses, the partial cell
synchrony during the radiation is lost and a higher proportion of
cells stay in G1, except for the case where two G2 phase-specific
drugs (Figure 4b) are combined. In Figure S2, we plot the effects of
combination treatments when two doses of the chemotherapy

drugs are given after the radiation therapy. The radiation starts at
time = 340 h with a similar dose as the previous case and the doses
of chemotherapeutic drugs are given at times = 466 h and 496 h.
As we have seen in the previous section, the radiation given before
two doses of chemotherapy introduces a partial cell-cycle synch-
rony of cell distribution that remains until the end of the therapy.

The cell-phase distribution for the case when the doses of chemo-
therapeutic drug are given before and after the radiation, is
shown in Figure S3. The figure shows that the administration of
a G2-specific drug, which kills fewer number of cells compared
to the G1-phase-specific drug, helps to keep the cells in synchrony
throughout the treatment time (similar to Figure 4). In the last case,
we studied the application of chemotherapy during the radiation
schedule where the chemotherapeutic drugs are given at times
370 h and 400 h with the radiation, starting at time = 340 h. The
plots in Figure S4 indicate that the increased cell-kill further reduces
the cell-cycle synchrony with the number of G1 phase cells being
dominant. The total number of cells for all four cases of radiation
and chemotherapy sequencing are compared in Figure 5. The plots
show that in the absence of additional fractions of radiation and
further doses of chemotherapy all the schedules perform in a similar
fashion, although some give a better cell-kill. However, the effects of
the sequencing are critically dependent on the number of cells in
various phases of the cell-cycle, as this determines how sensitive they
are to the various therapeutic strategies.

In every combination except concomitant therapy (chemother-
apy given during radiation), we kept the total treatment time

Figure 3. Number of cells under various conditions that influence the radiation damage after the irradiation. (a) Plots for a well
oxygenated microenvironment (no hypoxia, OMF = 1 in the equation (12)) (cells killed = 621), (b) plot assuming no cell-cycle delay for repair after the
radiation (cells killed = 516), (c) plots assuming there is no cell-cycle phase-specific sensitivity for repair after the radiation (c~1 in equation (12)) (cells
killed = 1361) and (d)plots when there is no DNA repair after the radiation (S!~S for all doses in equation (13)) (cells killed = 913).
doi:10.1371/journal.pcbi.1003120.g003
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constant, if not identical, to compare the effects on tumour control.
We have also used the same set of parameter values and doses for
each phase-specific chemotherapy [15]. It can be seen from
Figure 5 that when a G1-phase-specific drug is administrated, the
cell-kill is usually higher than a G2-phase-specific drug. This is
mainly because, in most of the cases, the percentage of cells that
are in G1 phase is higher than those in G2. The two factors that
contribute to such a cell population distribution are hypoxia and
space limitation, as hypoxic cells take a longer time to complete
one full cell-cycle and the lack of space forces the cell to enter a
resting phase. The cell will re-enter the active phase of the cell-
cycle when conditions become favourable. In other words, resting
tumour cells may, under favourable conditions created by the
administration of the therapies, play a vital role in cell synchro-
nisation and knowledge of this should inform the design of better
combinations of cell-cycle phase-specific chemotherapy and frac-
tionated radiation therapy. Moreover, it can be seen from Figure 5
that although the various combination regimes mostly show
varying results immediately after the treatment, in the absence of
further treatments, these lead to a similar end point with same
number of cells as time increases as observed in most clinical
situations. However, these differences in the proportion of cells in

various cell-cycle phases immediately after each treatment protocol
might be vital in designing further treatment plans for that
individual patient.

Additionally, another factor that plays an important role in
therapeutic intervention is the spatial distribution of cells in the
tumour mass and its blood supply as these determine the nature of
the tumour microenvironment. The tumour microenvironment, in
particular oxygen distribution, can significantly affect a cell’s
radiation sensitivity and thereby introduce cell-cycle heterogeneity
throughout the tumour. On the other hand, the vascular distri-
bution within and surrounding the tumour mass determines the
effectiveness of the spatial distribution and supply of the chemothe-
rapeutic drugs which determine the cell-kill. A representative figure
showing the spatial distribution of the cells in various cell-cycle
phases at different treatment time points is given in Figure S5.

Towards a predictive clinical tool: Using the
computational model to derive optimal therapeutic
regimes

In this section, we illustrate the potential of our multiscale
computational model to compare different treatment regimens

Figure 4. Number of cells when chemotherapy is given before radiation therapy. Two doses of G1 and/or G2 drugs are given at
time = 340 h and 370 h, which are followed by 5 fractions of radiation therapy (1 week) with a daily dose of 2.5 Gy starting at time = 400 h. (a) Plots
when two G1 phase-specific drugs are given before radiation, (b) plots when two G2 phase-specific drugs are given before radiation, (c) plots when a
G1 phase-specific drug followed by a G2 specific drug are given before radiation and (d) plots when a G2 phase-specific drug followed by a G2
specific drug are given before radiation.
doi:10.1371/journal.pcbi.1003120.g004
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and test the predictions against what happens in a real tumour
model in a prospective manner. In doing so we provide a ranking
of each regimen in terms of overall treatment efficacy. This high-
lights the potential of our model to produce an optimal treatment
regimen for a given patient. We have compared two different
treatment protocols currently used in oesophageal cancer, namely
Herskovic, modified Herskovic (both currently used in clinical
practice) and also a third experimental protocol which is currently
not used in clinical practice.

Oesophageal cancer is in the ‘‘top 10’’ most common malig-
nancies worldwide, and is the fifth highest in terms of mortality
[35]. The treatment of oesophageal cancer used to be primarily
surgical or palliative. In the 1980s, clinical trials started that were
designed to look at radiation treatment of these tumours and
determine whether better results could be obtained by combining
radiation therapy with chemotherapy. A seminal trial that
commenced in that decade (‘‘Herskovic’’) reported two groups of
patients who received either radiation therapy alone or radiation
therapy with chemotherapy [36–38]. Although the trial was not
conducted with the same rigour of a modern-day trial (numbers
were relatively small and not all the patients were randomized,
leading to the possibility of confounding the results), the authors
reported that none of the radiotherapy alone group but a
significant minority of the combined modality group was alive
several years after treatment. The method of giving ‘‘chemo-
radiotherapy’’ for non-operable cases was then adopted and a dose
of radiation and chemotherapy using Cisplatin and 5-FU was used
as most patients could tolerate this combination without severe or
life-threatening complications. A later modification, not supported

by any trial evidence, was to change the extra chemotherapy given
in this regimen from adjuvant (after the chemo-radiotherapy, to
neo-adjuvant (before the radiotherapy) as this was better tolerated
[38]. This ‘‘modified-Herskovic’’ regimen was then used for the
best part of a decade or more, before further clinical studies were
done to evaluate new chemotherapy agents and different radiothe-
rapy planning techniques [38]. One of these, the SCOPE-1 study,
a two arm, open, randomised multicentre Phase II/III trial, is
designed to investigate the effect of the drug cetuximab on
chemoradiotherapy [39]. This study has recently stopped recruit-
ing and involves hundreds of patients.

For the Herskovic treatment protocol, chemotherapy treatment
is given on weeks 1, 5, 8 and 11 of the treatment period with
Cisplatin 80 mg/m2 on day 1 (D1) as a single dose, and 5FU,

1000mg=m2=day from day 1 to 4 (D1-4) as a continuous infusion.
Radiation therapy is given from weeks 1 to 5, in 25 fractions of
2 Gy. Similarly, for the modified Herskovic regimen, chemother-
apy is given on weeks 1, 3, 6 and 10 and radiation therapy is given
from week 6 to 10 in 25 fractions of 2 Gy dose. Finally, for the
experimental protocol, which has been designed for this compar-
ison study, chemotherapy is given on weeks 1, 3, 6 and 9 and
radiation is given from weeks 12 to 15 in 20 fractions of 2.5 Gy
dose. Note that, in all these three treatment protocols the total
amount of chemotherapeutic drug and the radiation dosage is kept
the same (although their biological effect are different).

We simulated treatment with each of the three regimens using
our multiscale model over a period of 17 weeks. The simulations
were carried out using precisely the same set of parameter values
for all three treatment regimens and the results showing the total

Figure 5. Number of cells with different combinations of chemotherapy and radiation therapy. Two doses of G1 and/or G2 drugs are
given in a combination with radiation therapy given in 5 fractions (1 week) with a daily dose of 2.5 Gy. (a) Plots when two doses of drugs are given
(time = 340 h, 370 h) before radiation (time = 400 h), (b) plots when two doses of drugs are given (time = 466 h, 496 h) after radiation (time = 340 h),
(c) plots when each doses of drugs are given before (time = 340 h) and after (time = 496 h) radiation (time = 370 h) and (d) plots when two doses of
drugs are given (time = 370 h and 400 h) during radiation (time = 340 h).
doi:10.1371/journal.pcbi.1003120.g005

Computational Modelling of Cancer Therapy

PLOS Computational Biology | www.ploscompbiol.org 8 July 2013 | Volume 9 | Issue 7 | e1003120



cell kill over time are given in Figure 6. First of all we note, as can
be seen by comparing the green and blue curves, that our
computational simulation results show that the modified Herskovic
regimen gives a better final outcome than that of the Herskovic
treatment plan as suspected clinically [38]. This gives a degree of
confidence in our multiscale model, since this is effectively a ‘‘blind
test’’ between the two different regimens. However, interestingly,
as seen by comparing the red curve with the green and blue
curves, our multiscale model predicts that the new experimental
regimen is more effective than either the Herskovic or Modified
Herskovic regimen. Although more clinical and experimental
studies would be required to confirm these predications, these
results highlight the predictive power of our model and its ability
to distinguish between a number of different regimens and rank
them in terms of overall efficacy or indeed even to predict an
optimal treatment strategy.

Conclusions
One of the crucial steps towards the successful delivery of anti-

cancer treatment is the optimal scheduling and sequencing of
different therapeutic modalities, in particular radiotherapy and
chemotherapy. The roles of cell-cycle phases as well as tissue
hypoxia are believed to be critical in determining the radiation
sensitivity of cells and the action of several chemotherapeutic drugs
[3]. Changes in the treatment of cancer are currently driven largely
by the products emerging from the pharmaceutical industry and
although some thought and time is devoted to understanding how
best to schedule, combine, and deliver the anti-cancer treatments
that are currently available in order to increase their effectiveness, it
would be helpful to be able to make rapid rationale treatment
choices when designing new treatments based on currently available

knowledge rather than take several years to test two treatment
regimens in the clinical setting, as currently happens with clinical
phase III studies. We believe in silico experiments may help in this
regard.

In this paper, we have presented a hybrid multiscale cellular
automaton model to study the effects of radiotherapy, alone and in
combination with cell-cycle specific chemotherapeutic drugs, in
controlling the growth of a solid tumour. We have also incorpo-
rated the heterogeneities in cell-cycle dynamics and oxygen
distribution into our hybrid cellular automaton model as they
play an important role in therapeutic effectiveness. The effect of
radiation therapy is studied using a modified linear quadratic
model that incorporates some of the important factors responsible
for radiation sensitivity such as cell-cycle phase-specific radiation
sensitivity, improved survival due to DNA repair, and hypoxia.
The simulation results from the model showed very good agree-
ment with previous biological experimental results in predicting
the cell-cycle dynamics after the irradiation of the tumour cell
mass with a single dose of the radiation. The results predicted an
increase in the number of G2 phase cells and a possible scenario of
partial synchronisation of the cell-cycle, while the control cell
population remained in a more or less G1 phase cells dominated
proportion. When the cells are irradiated with fractionated radia-
tion, the results showed that the cell-kill enhances the reoxygena-
tion of the tumour mass but also allows the re-entry of resting cells
into the active cell-cycle.

The study of various factors affecting radiation sensitivity indicated
that cell-cycle phase-specific sensitivity and survival due to DNA
repair mechanisms could play a vital role in improving radiation
cell-kill. Using the present model we have also analysed various
possible combinations of cell-cycle phase-specific chemotherapeutic

Figure 6. Plots showing the computational simulation results of our multiscale model comparing the outcomes of three different
treatment regimens over a period of 17 weeks for patients with oesophageal cancer. Herskovic (green line), Modified Herskovic (blue line)
and Experimental (red line) [see text for details of each regimen]. The results show that the Modified Herskovic treatment protocol gives a better final
outcome than that of the Herskovic treatment plan. However, the model also predicts that the newly proposed experimental treatment protocol is
better than both the Herskovic and Modified Herskovic.
doi:10.1371/journal.pcbi.1003120.g006
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drugs and fractionated radiotherapy. The results show that the
sequencing and the type of the chemotherapeutic drugs can
significantly affect the cell-cycle and oxygen heterogeneities of
the tumour mass which will further affect the effectiveness of the
entire therapeutic strategy when they are given in several doses
and/or fractions and are consistent with various experimental
results [33,34]. Overall, the results from the model show its
potential usefulness in studying and understanding a kinetic admi-
nistration of cell-cycle phase-specific chemotherapeutic drugs in
combination with radiation therapy. The results from the
current and previous studies [15] also confirmed the importance
of temporally changing spatial dynamics to improve therapeutic
strategies. In future studies, we would like adapt the current
model to address the interactions between tumour cells and
normal cells and to study how their combined spatial dynamics
affect their therapeutic responses.

Furthermore, our general computational model can be easily
adapted to reflect the behaviour in real clinical scenarios by
appropriate validation and comparison with experimental and
clinical data. One such comparison on the treatment protocols
used in the treatment of oesophageal cancer indicated a thera-
peutic benefit of the modified Herskovic treatment protocol over
the previously used Herskovic protocol. Moreover, the simulations
indicated that a suggested new experimental treatment protocol
might be an even better strategy than currently used treatment
options, but clearly more detailed studies are necessary to validate
this prediction.

As discussed earlier, the evolution of clinical treatment is slow
and takes place over many decades, for the reasons that clinicians
must be cautious when introducing new treatments in case of poor
efficacy or excess and unexpected toxicity or intracellular and
extracellular heterogeneities, and that once a preferred treatment
route has been started on, it is generally modified in an incre-
mental fashion. It is very unusual for clinicians to start a completely
new way of treating tumours without evidence. The computaional
simulation results of our multiscale mathematical model indicates a
way for doctors to test the efficacy of new treatment strategies, to
allow them to plan more adventurous treatments in silico, prior to
beginning actual testing and long and costly clinical trials. This
departure may help relieve some of the stagnation in treatment
strategy for tumours that have a poor prognosis, and allow medicine
to move forward to more innovative treatments that can be
evaluated for potential efficacy, prior to clinical testing.

Methods

The computational experiments are performed on a two
dimensional spatial computational grid using a previously devel-
oped hybrid multiscale cellular automaton model, incorporating
the effects of radiation in combination with the chemotherapy
[15]. To study the spatio-temporal growth of the cancer cells and
their response to the radiotherapy and chemotherapy, the model
consists of four major components that associates each automaton
cell. These are: (1) cells - the automaton element is occupied either
by a cancer cell or it remains empty. If the automaton (grid) cell is
occupied by a cancer cell, the automaton rules that control the
evolution of this cancer cell are mainly based on a system of
ordinary differential equations that control the cell-cycle dynamics;
(2) the local oxygen (hence hypoxia inducible factor12a
(HIF1{a)) concentration, whose evolution is modelled by a
system of partial differential equation; (3) randomly distributed
blood vessels from where the oxygen is supplied within the domain
and (4) chemotherapeutic drug concentrations, modelled by a
system of partial differential equations. A schematic overview of

the model with the scales involved is given in Figure 7. A brief
summary of each of these components are given in the following
subsections and more details of this hybrid multiscale cellular
automaton model (excluding the radiation model) and the
parameter values can be found in Powathil et al. [15]

Cellular and intracellular level
The computational model is simulated on a spatial grid of size

100|100 grid points and each automaton element whether it is
empty or occupied, has a physical size of l|l, where l~20 mm,

simulating a cancer tissue of 2|2 mm2 area. If the element is
occupied by a cancer cell, the evolution of this cancer cell is based
on the decisions made by the cell-cycle mechanism within the cell.
To model the cell-cycle dynamics within each cell, we use a very
basic model originally developed by Tyson and Novak [40,41] that
includes only the interactions which are considered to be essential
for cell-cycle regulation and control, as given below.

d½CycB#
dt

~k1{(k’2zk’’2½Cdh1#z½p27=p21#½HIF #)½CycB#, ð1Þ

d½Cdh1#
dt

~
(k03zk003 ½p55cdcA#)(1{½Cdh1#)

J3z1{½Cdh1#
{

k4½mass#½CycB#½Cdh1#
J4z½Cdh1# ,

ð2Þ

d½p55cdcT#
dt

~k’5zk’’5
(½CycB#½mass#)n

Jn
5z(½CycB#½mass#)n {k6½p55cdcT#, ð3Þ

d½p55cdcA#
dt

~
k7½Plk1#(½p55cdcT#{½p55cdcA#)

J7z½p55cdcT#{½p55cdcA#
{

k8½Mad#½p55cdcA#
J8z½p55cdcA#

{k6½p55cdcA#,
ð4Þ

d½Plk1#
dt

~k9½mass#½CycB#(1{½Plk1#){k10½Plk1#, ð5Þ

d½mass#
dt

~m½mass# 1{
½mass#

m!

! "
, ð6Þ

where ki are the rate constants and the values are chosen in
proportional to those in Tyson and Novak [40,41] as given in
Powathil et al. [15].

In addition to the cancer cells and the empty spaces, the spatial
domain also consists of a random distribution of blood vessel cross

sections with density wd~Nv=N2, where Nv is the number of
vessel cross sections (Figure S6). This can be justified if we assume
that the blood vessels are perpendicular to the cross section of
interest and there are no branching points through the plane of
interest [42,43]. Moreover, the tumour vessel network is irregular,
chaotic and abnormal as compared to that of normal vascular
network [44,45].

Microenvironment and tumour growth

The effects of microenvironment in the progression of tumour
growth is included in the model by incorporating the oxygen
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dynamics, which are modelled using the following partial diffe-
rential equation.

LK(x,t)

Lt
~+:(DK (x)+K(x,t))zr(x)m(x){wK(x,t)cell(x,t) ð7Þ

where K(x,t) denotes the oxygen concentration at position x at
time t, DK (x) is the diffusion coefficient and w is the rate of oxygen
consumption by a cell at position x at time t (cell(x,t)~1 if
position x is occupied by a cancer cell at time t and zero
otherwise). Here, m(x) denotes the vessel cross section at position
x (m(x)~1 for the presence of blood vessel at position x, and zero
otherwise); thus the term r(x)m(x) describes the production of
oxygen at rate r(x). Here, the diffusion coefficient and the supply
rate of the oxygen vary depending the location of the of the cancer
cells and blood vessels as explained in [15]. This equation is solved
using a no-flux boundary conditions and an initial condition [32].

The changes in the oxygen concentration, especially hypoxia
may affect various intra and intercellular process of the cells that
constitute the tumour mass. In the present model, the effects of
hypoxia are included through the activation and inactivation of
HIF{1a which further results in changes in intracellular cell-
cycle dynamics. When oxygen concentration at a specific position
x falls below 10% (hypoxic cell), HIF{1a is assumed to become
active from an inactive phase, which further delays the cell-cycle
dynamics (cf. Equation (1)). Here, we assume that all the cancer
cells consume oxygen and do not exhibit Warburg effect and also
ignore other transcriptional responses of HIF1 such as glycolysis
and angiogenesis.

Chemotherapy
Chemotherapy is a commonly used treatment for cancer.

Chemotherapeutic drugs act on rapidly proliferating cells, such as

cancer cells, by interfering with the cell-cycle and other cell-cycle
specific targets. Hence, it might be more effective to use a
combination of chemotherapeutic drugs that targets the cells in
different phases of the cell-cycle. The distribution of chemother-
apeutic drug type i, Ci(x,t) can be modelled by a similar equation
as that of oxygen distribution (Eq. 7), given by:

LCi(x,t)

Lt
~+:(Dci(x)+Ci(x,t))zrci(x)m(x){

wciCi(x,t)cell(x,t){gciCi(x,t)

ð8Þ

where Dci(x) is the diffusion coefficient of the drug type i, wci is the
rate by which the drug is take in by a cell (assumed to be zero as it
is very negligible when compared to oxygen uptake), rci is the drug
supply rate by the pre-existing vascular network and gci is the drug
decay rate [32]. Here, as similar to the oxygen distribution, the
diffusion Dci(x) and the supply rate rci of the drugs are spatially
varied depending on the location in the computational domain.
The details can be found in [15].

Radiation response
Radiation therapy is often used in combination with chemo-

therapy with the intention of increased therapeutic gain for
patients with cancer. The survival probability of the cells after they
are irradiated are traditionally calculated using linear quadratic
(LQ) model [46], given by

S(d)~exp({ad{bd2) ð9Þ

where d is the radiation dose and a and b are sensitivity

parameters, taken to be a~0:3 Gy{1 and b~0:03 Gy{2 [32]. It

Figure 7. Schematic diagram of the model showing the appropriate scales involved.
doi:10.1371/journal.pcbi.1003120.g007
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has been observed that the radiation sensitivity varies with the
cell’s oxygenation status [47,48] and the effect of changing tissue
oxygen levels on the radiation sensitivity can be incorporated into
the LQ model (Eq. 9) by using the concepts of an ‘‘oxygen
enhancement ratio’’ or ‘‘oxygen modification factor’’ [32], defined
as

OMF~
OER(pO2)

OERm
~

1

OERm

OERm:pO2(x)zKm

pO2(x)zKm
ð10Þ

where pO2(x) is the oxygen concentration at position x, OER is
the ratio of the radiation doses needed for the same cell kill under
anoxic and oxic conditions, OERm~3 is the maximum ratio and
Km~3 mm Hg is the pO2 at half the increase from 1 to OERm

[32,49]. Hence, the modified LQ model for the survival
probability, incorporating the effects of oxygen distributions can
be written as:

S(d)~exp {a:OMF:d{b(OMF:d)2
# $

: ð11Þ

The relative radiosensitivity of an individual cell is also partially
determined by the cell’s cell-cycle phase and studies show that the
cells are more sensitive when in the S-G2-M phase as compared
with the G1 phase [3]. We have incorporated this varying
sensitivity due to the changes in cell-cycle phase by an additional

term c in the equation for survival probability (Eq. 11) [20], which
gives:

S(d)~exp c {a:OMF:d{b(OMF:d)2
% &# $

: ð12Þ

The parameter c varies from 0 to 1, depending on the individual
cell’s position at the time of the irradiation. Here, we assumed that
the cells in S-G2-M phase has maximum sensitivity with c~1
while the cells in G1 phase and the resting phase has relative
sensitivities of c~0:5 and c~0:25, respectively.

In the current model, although we are not considering the
individual cell repair, the studies suggest that 98% of damage
caused by the radiation is likely to be repaired within few hours of
radiation, if they are treated with low dose radiation (v5Gy)
[50,51]. If the radiation dosage is higher, this repair mechanism
may not be sufficient to repair all the DNA damage. Considering
these aspects, Endering et al. [16], introduced some correctional
terms into the LQ model to accommodate these effects due to the
cellular repair during low dose radiation treatment. Using these
modifications (allowing for less repair) into the above LQ model
(Eq. 11) with the effects of hypoxia, we obtain the survival
probability of the cell as:

S!(d)~
S dw5

Sz(1{S)|0:5 dƒ5:

'
ð13Þ

Figure 8. Figure showing various processes involved in the simulation. Plot of the concentration profiles of the various intracellular proteins
and the cell-mass over a period of 200 hours for one automaton cell in the model. This is obtained by solving the system of equations, Equations 1 to
6 with the relevant parameter values from Powathil et al. [15] and the plot below shows a representative realisation of the spatial distribution of
oxygen or drugs, obtained by solving the corresponding equations.
doi:10.1371/journal.pcbi.1003120.g008
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This survival probability is then used to calculate the survival
chances of each cell when they are irradiated with the radiation
rays. To study this survival chance of an individual cell, a random
number is drawn for each cell at every time when they are
irradiated and compared against the calculated survival probabil-
ity. The irradiated cell survives if the random number is smaller
than the survival probability and die otherwise.

Here, we also consider the effects of radiation on cell-cycle as
irradiation results in a divisional delay, and, in particular, G2
phase delay/arrest in many cell lines [3,4]. Experimental results
show that irradiated cells in G2 phase may take up to 9 hours
longer to complete the cell-cycle due to the activation of several
intracellular repair mechanisms induced by the radiation [4].
Radiation damage can also induce a cell-cycle delay in G1 phase,
mainly through the activation of p53 and p21 pathways [3]. In the
present model, we include this effect of irradiation induced delay
by forcing the cells to stay in the same phase for an extra time
duration of up to 9 hours [4]. This divisional delay might be an
important factor to consider while studying the optimal sequencing
of radiation therapy with cell-cycle phase-specific chemotherapy.

Computational methods
The hybrid multiscale cellular automaton model is simulated

using the rules and the parameters that are described in Powathil
et al. [15]. Here, the position of the new daughter cells are deter-
mined by Moore and Von Neumann neighbourhoods alternatively
to avoid the associated cell distribution patterns specific to each
method. An overview of the equations and their simulation results
as adapted from Powathil et al. [15] is given in the Figure 8. We
have incorporated the effects of radiation into the model using the
equations (12) and (13). The survival status of an individual cell is
then determined using the calculated survival probability by
comparing them against a random probability.

Supporting Information

Figure S1 Percentage of cells in G1 and G2 states with
and without radiation. (a) experimental results from [23] and
(b) simulation results (percentage of proliferating cells).
(TIF)

Figure S2 Number of cells when chemotherapy is given
after radiation therapy. Two doses of G1 and/or G2 drugs
are given at time = 466 h and 496 h, after 5 fractions of radiation
therapy (1 week) with a daily dose of 2.5 Gy starting at time =
340 h. (a) Plots when two G1 phase-specific drugs are given after
radiation, (b) plots when two G2 phase-specific drugs are given
after radiation, (c) plots when a G1 phase-specific drug followed by
a G2 specific drug are given after radiation and (d) plots when a
G2 phase-specific drug followed by a G2 specific drug are given
after radiation.
(TIF)

Figure S3 Number of cells when a chemotherapy (one
dose) is given before and after radiation therapy. Two
doses of G1 and/or G2 drugs are given at time = 340 h and 496 h
and 5 fractions of radiation therapy (1 week) with a daily dose of
2.5 Gy are given in between the chemotherapy doses, starting at
time = 370 h. (a) Plots when two G1 phase-specific drugs are given,
each before and after radiation, (b) plots when two G2 phase-
specific drugs are given, each before and after radiation, (c) plots
when a G1 phase-specific drug is given before the radiation followed
by a G2 specific drug and (d) plots when a G2 phase-specific
drug is given before radiation followed by a G2 specific drug.
(TIF)

Figure S4 Number of cells when chemotherapy is given
during radiation therapy. Two doses of G1 and/or G2 drugs
are given at time = 370 h and 400 h, during the 5 fractions of
radiation therapy (1 week) with a daily dose of 2.5 Gy starting at
time = 340 h. (a) Plots when two G1 phase-specific drugs are given
during radiation, (b) plots when two G2 phase-specific drugs are
given during radiation, (c) plots when a G1 phase-specific drug
followed by a G2 specific drug are given during radiation and (d)
plots when a G2 phase-specific drug followed by a G2 specific drug
are given during radiation.
(TIF)

Figure S5 The spatial distribution of cells within a
growing tumour before, during and after the combina-
tion therapy. Plots showing the spatial distribution of cells within
a growing tumour at (a) time = 340 h, (b) time = 345 h, (c)
time = 370 h, (d) time = 420 h, (e) time = 470 h, (f) time = 496 h,
(g) time = 500 h and (h) time = 600 h when tumour is treated with
two G1 phase-specific drugs are given, each before and after
radiation therapy (5 fractions of 2.5 Gy). The colour represents
different cell-cycle status of the individual cells, which are G1
(blue), S-G2-M (green), resting (magenta), hypoxic cells in G1
(rose), hypoxic cells in S-G2-M (yellow) and hypoxic cells in resting
(silver).
(TIF)

Figure S6 Plot showing the concentration profile of
oxygen supplied from the vasculature. The red coloured
spheres represent the blood vessel cross sections and the colour
map shows the percentages of oxygen concentration.
(TIF)
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