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Abstract 14	

After a fire, an ash layer is commonly present, which influences soil properties and hillslope hydrology. 15	

The wettability of ash, which can vary from highly absorbent to water repellent, is an important 16	

characteristic in this context. Recent work has suggested that ash wettability is related to its degree of 17	

combustion, which in turn, can be expected to determine ash chemical composition. In this paper we 18	

therefore examine the relationship between ash water repellency and ash chemical composition. Ten ash 19	

samples with different wettability were each taken from four burned Mediterranean forest sites located at 20	

Albaida (A), Lliber (L), Navalón (N), and Pinoso (P), in the east of Spain. The persistence of water 21	

repellency of samples was assessed by the Water Drop Penetration Time (WDPT) test and Fourier 22	

Transform-Infrared (FT-IR) analysis was applied to characterise sample chemical composition. Ash water 23	

repellency varied from wettable to severely water repellent and differed in terms of maximum WDPT and 24	

percentage of water repellent samples between the four locations. In all FT-IR spectra obtained, the 25	

absorbance bands assigned to organic matter and carbonates were dominant. They are subject to change 26	

during progressive combustion. The ratios of relevant peak areas were calculated, i.e. between aliphatic 27	

bands in the 3000-2800 cm-1 region, other organic matter bands in the 1800-1200 cm-1 region, and of the 28	

calcite band at 875 cm-1. These ratios are related to organic matter and calcite contents in ash samples and 29	

proved to be closely linked to measured WDPT values through an exponential relationship. Organic 30	

matter content in all water repellent ash samples was more than twice higher than the carbonate content. 31	
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From the results obtained it is concluded that the water repellency or wettability of wildfire ash is driven 32	

by the ratio of remaining organic matter to emerging carbonates, which in turn, is related with fire 33	

severity. 34	

 35	

Keywords: Wildfire, ash composition, FT-IR spectroscopy, water repellency 36	

 37	

1. Introduction 38	

Following a wildfire or prescribed fire, ash commonly covers the soil surface for some time until 39	

it is removed by wind or water erosion. This layer can be up to many centimetres thick and can affect soil 40	

erosion (Cerdà, 1998a) and runoff generation processes and rates (Cerdà, 1998b). In recent years the 41	

relationship between ash characteristics and soil hydrology has been explored in several studies. For 42	

example, Cerdà and Doerr (2008) examined the potential impact of ash deposits immediately following a 43	

forest fire in a Mediterranean forest using simulated rainfall and found that the ash cover substantially 44	

reduced surface runoff and erosion. Also using rainfall simulations following experimental burns in a 45	

conifer forest in Montana, Woods and Balfour (2010) confirmed the importance of water storage capacity 46	

of ash, but also found that, for a specific soil texture, ash could reduce infiltration into soil due to pore 47	

clogging. Another factor, which is important in the effect of ash in hydro-geomorphological responses, is 48	

the wettability of ash itself. In most of the literature, ash is referred to as being highly wettable (e.g. Cerdà 49	

and Doerr, 2008; Doerr et al., 2006; Woods and Balfour, 2010), whereas in some studies ash has also 50	

been suggested to be water repellent, albeit with no further quantification (Gabet and Sternberg, 2008; 51	

Khanna et al., 1996; Stark, 1977). More recently, Bodi et al. (2011) evaluated 48 ash samples taken from 52	

a range of Mediterranean wildfire sites and found that over 30% of samples exhibited water repellency 53	

with persistence levels ranging from low to extreme. The water repellency levels correlated with organic 54	

carbon contents in the ash material. It can therefore be supposed that ash properties will depend strongly 55	

on the ash chemical composition. 56	

Ash from forest fire is a complex mixture composed of organic and inorganic particles. It is well 57	

established that ash properties are changing with heating (e.g. Ubeda et al., 2009), In the case of organic 58	

matter, combustion or pyrolysis lead to complete destruction of some components and the transformation 59	

to new substances of others. Previous work has shown that the chemical composition of forest fire ash can 60	
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be very variable and depends on various factors like burning temperature, type of plant species, part of 61	

plant combusted, time of exposition, fuel arrangement and package conditions of combustion, etc. 62	

(Liodakis et al., 2005; Pereira et al., 2011). The residual organic carbon is a darkening pigment in ash and 63	

its colour lightness is suggested to indicate the degree of combustion completeness (Goforth et al., 2005). 64	

In wood ash, dominant elements are calcium, potassium, magnesium, silicon, manganese, aluminium, 65	

phosphorus, sulphur, iron, sodium and zinc (Liodakis et al., 2007; Etiegni and Campbell, 1991). Although 66	

conditions during laboratory burning experiments may differ substantially from those during wildfires 67	

and the results must be carefully compared, model laboratory experiments may give some useful 68	

information on the relationships between ash composition and temperature reached. Thus Misra et al. 69	

(1993) investigated relationships between wood ash properties and heating temperature. CaCO3 and 70	

K2Ca(CO3)2 were the main compounds in ash produced at 600 °C , whereas CaO and MgO were 71	

identified in 1300 °C ash. Ulery et al. (1993) reported calcite as the major inorganic component in wood 72	

ash. Úbeda et al. (2009) observed formation of CaCO3 at temperatures from 350 to 550 °C and Woods 73	

and Balfour (2010) observed (in polarized light) white ash with calcite as infillings between larger 74	

particles in thin sections. The pH and calcium carbonate content in ash were reported to increase with 75	

lighter colour, while total nitrogen and organic carbon content increased with darker colour (Goforth et 76	

al., 2005). More recently Gabet and Bookter (2011) analysed ash produced by the burning of Ponderosa 77	

pine wood (Pinus ponderosa). The elemental composition was dominated by Ca, K, Mg, P, Mn, Fe and 78	

Al. Mineralogical analysis revealed the presence of calcite, quartz and feldspars. There are various 79	

hypotheses about the origin of calcite in ash materials. The most frequent explanation of calcite origin is 80	

that calcium oxide is produced during wood combustion and subsequently transformed to hydroxide and 81	

carbonate due to reaction with atmospheric water vapour and CO2 (e.g. Ulery et al, 1993; Goforth et al., 82	

2005). It was also pointed out that rapid evaporation of plant cell water during burning may lead to the 83	

increase in solution concentration and precipitation of well developed calcite crystals from a saturated 84	

solution (Ulery et al, 1993). Additionally, Quintana et al. (2007) detected transformation of whewellite 85	

(calcium oxalate) into calcite at around 400 °C in both the organic horizon and the plant leaves. 86	

In this study we applied Fourier Transform Infrared spectroscopy (FT-IR) to a variety of ash 87	

samples in order to provide a better understanding of ash chemical composition and its relationship with 88	

ash wettability. To our knowledge, FT-IR has not been applied to wildfire ash samples before, however, 89	

D’Acqui et al. (2010) demonstrated the suitability of FT-IR spectroscopy for determination of properties 90	

for soils from the Mediterranean region and this technique might prove useful for ash. Features observed 91	

in the FT-IR spectrum may not only provide information on the composition of ash material, but may also 92	
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indicate conditions during burning (various compounds or functional groups have different thermal 93	

stability) and resulting physical and chemical ash properties. Soil organic matter, for example, has been 94	

shown to give characteristic absorbance bands in FT-IR spectrum. The peaks at 2920 and 2860 cm-1 are 95	

due to stretching vibration of methylene groups (-CH2-) (Ellerbrock et al., 2005; Kaiser and Ellerbrock, 96	

2005). These groups build aliphatic hydrocarbons, which are considered to contribute to water repellency 97	

occurrence in soils. Capriel et al. (1995) proposed the use of absorbance bands 3000-2800 cm-1 as index 98	

of hydrophobicity and Simkovic et al. (2008) showed that thermal destruction of these peaks had been 99	

accompanied with elimination of the soil water repellency. Two other absorbance bands at 1740 to 1720 100	

cm-1 and 1640 to 1620 cm-1 represent C=O groups in aldehydes, ketones and carboxylic acids (Chapman 101	

et al., 2001; Ellerbrock et al., 2005; Kaiser and Ellerbrock, 2005). The adjacent region at 1620 to 1600 102	

cm-1 is associated with aromatic C=C vibrations (Kaiser and Ellerbrock, 2005; Dick et al., 2006). 103	

Absorbance bands observable in FT-IR spectra have various implications for the temperature a 104	

material has been exposed to. For example, clay minerals may dehydroxylate during heating, indicated by 105	

disappearance of stretching of the O–H vibration bands and the Al-O-H deformation band. Kaolinite 106	

dehydroxylates at ~450-650 °C and smectites at about 600-800 °C (Kurap et al., 2010). Many organic 107	

substances have less thermal stability than kaolinite. Amongst them, the condensed organic fraction is 108	

more stable than aliphatic hydrocarbons. Simkovic et al. (2008) observed removal of the aliphatic 109	

absorbance bands in the region of 3000-2800 cm-1 at temperatures slightly above 200 °C. Even at 110	

temperatures below 200 °C some changes in the IR spectrum may occur due to volatilization of water and 111	

some organic substances. 112	

Given the potential of FT-IR spectra in the evaluation of ash composition, the aim of this study 113	

was to apply FT-IR to ash samples taken from wildfires of different severity in order to (i) characterize 114	

ash composition and (ii) evaluate the potential relationship of ash composition with ash water repellency.  115	

 116	

2. Materials and methods 117	

2.1. Site description and ash samples 118	

Ash samples were taken from four Mediterranean sites located in the provinces of Alicante and 119	

Valencia, eastern Spain: Albaida (A), Lliber (L), Navalón (N), and Pinoso (P). Prior to the fires, all sites 120	

were dominated by Pinus halepensis Miller. The understorey comprised mainly of Quercus coccifera, 121	
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Rosmarinus officinalis and Brachypodium retosum. Occurence of other specied (Cistus albidus, Erica 122	

multiflora, Juniperus oxycedrus, Pistacia lentiscus, and Ulex parviflorus) varied depending on the 123	

quantity of precipitation and the time since the previous fire. Fire severity at the four locations had been 124	

classified according to ash colour as moderate-severe, moderate, severe, and moderate-severe, 125	

respectively (Bodi et al., 2011). At each site, ten ash samples were taken randomly from underneath pine 126	

trees and understorey vegetation (Table 1). The samples were air-dried and used for subsequent analyses.  127	

More details about sites, sampling and samples are given in the study by Bodi et al. (2011), which 128	

focused on wettability of ash and its relationship to plant species, burn severity and total organic carbon 129	

content.  130	

2.2. Ash water repellency 131	

Persistence of water repellency was assessed by widely used water drop penetration time 132	

(WDPT) test (Doerr, 1998). Ash samples were placed in Petri dishes and WDPT measurements were 133	

carried out after two weeks equilibration in a climate chamber (manufacturer Memmert HPP 108) at a 134	

constant temperature of 20°C and a relative air humidity of 50% (Doerr et al., 2002). Three drops of 135	

distilled water were placed onto the surface of each ash sample using a dropper and actual time required 136	

for complete penetration of the droplet was recorded. In order to reduce evaporation Petri dishes were 137	

covered following drop placement testing. The average of the three WDPT values was used for 138	

assessment of particular ash sample. The following classes of persistence of water repellency were 139	

distinguished: wettable (<5 s), slightly water repellent (5 – 60 s), strongly water repellent (60 – 600 s), 140	

severely water repellent (600 – 3600 s) and extremely water repellent (> 3600 s) (Dekker and Ritsema, 141	

1995). 142	

2.3. FT-IR spectroscopy 143	

The ash samples were ground to powder in an agate mill prior FT-IR analysis. The samples were 144	

pressed into KBr pellets with sample/KBr ratio 2/200 mg. Infrared spectral analysis was carried out in the 145	

mid-infrared wavelength range (wavenumbers from 4000 to 400 cm-1) and results obtained in the form of 146	

absorbance values. One hundred and twenty eight scans at a resolution of 4 cm-1 were averaged for each 147	

spectrum. FT-IR spectra were measured on a NICOLET Magna IR 750 spectrometer with a DTGS 148	

detector and OMNIC 8.1 software that was used for background corrections. 149	
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In order to compare and quantify any differences between the ash samples as regards FT-IR 150	

spectra, an additional treatment of the data sets was carried. OMNIC 8.1 software was used for fitting of 151	

individual peaks to a complex set of overlapping peaks in a spectrum. The software automatically 152	

adjusted the peak centre, height and width to produce a composite spectrum that matches the original. 153	

Peak fitting was applied to selected absorbance bands after the baseline correction. The results obtained 154	

were used to identify bands in which relative decrease or increase of absorbance was prevailing as a result 155	

of combustion. Particularly the wavelength regions 3000–2800 and 1800–1200 cm-1 were taken for 156	

detailed mathematical treatment in order to separate absorbance bands assigned to organic matter and 157	

calcite in ash samples. Subsequently ratios of peak areas were calculated. 158	

2.4. Organic matter and carbonate contents 159	

Total contents of organic matter and inorganic carbonates were determined by differential thermal 160	

analysis. The analysis was performed on TGA-DTA system (SDT 2960, manufacturer TA Instruments, 161	

New Castle, USA) with a 90 cm3 min-1 standard air flow rate from 20 to 1000 °C. Measurements were 162	

performed at 10 °C/min heating rate. Decrease of weight between 200 and 600 °C was used for 163	

determination of the soil organic matter/carbon content. Inorganic carbonate content was determined from 164	

the weight loss between 600 and 800 °C. 165	

2.5. Digital microscopy 166	

A digital microscope (Keyence VHX 1000, Camera VHX 1100, Lens x 20-200 VH Z20W, Lens 167	

x100-1000 VH Z100W, Motorized Stand VHX-S50) was used to observe the morphologies of the ash 168	

materials at magnification x30-700. 169	

2.6. Statistical analysis 170	

The variability of WDPT values among the four study sites was evaluated with Kruskal-Wallis 171	

test. This test was adopted because the WDPT values do not respect the normality. Kruskal-Wallis test is 172	

the non-parametric analogue of ANOVA test, which does not make assumptions about normality. During 173	

the analysis each measured value was substituted with the rank in the overall data set. The sum of the 174	

ranks was calculated for each group and statistical parameter H was calculated. The p value 175	

corresponding to chi-square equal to H was determined when the degrees of freedom were number of 176	

study sites minus 1. Significant H values from the Kruskal-Wallis test indicate significant difference 177	

among evaluated groups. 178	
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 179	

3. Results and discussion 180	

3.1. Ash water repellency 181	

Water repellency of ashes from the four locations were highly variable, ranging from wettable to 182	

severely water repellent (Table 2). Statistically significant result of the Kruskal-Wallis test 183	

confirmed that WDPT values were significantly different among the four wildfire sites (H = 184	

11.4; d.f. = 3; p = 0.0099). There are differences in the sites as regards the maximum WDPT values 185	

reached amongst the 10 samples, decreasing in order L1> A7 > P6 > N5. Similarly, when sites are 186	

arranged according to occurence of samples with WDPT above 60 s, the same order emerges: L (6 187	

samples) > A(3) > P(2) > N(0), which corresponds fully with sites ordered by increasing fire severity 188	

(Table 1). Heating and pyrolysis of organic material has been shown to lead to an increase, and at higher 189	

temperature, destruction of soil water repellency (DeBano et al. 1979; Bryant et al. 2005) and Bodí et al. 190	

(2011) found that for ash generated in the laboratory under oxygen containing atmosphere at temperatures 191	

exceeding ~350 to 400 °C, water repellency was absent. 192	

This explains the correspondence of WDPT values to the differences in wildfire severities at 193	

selected study sites. Thus the highest temperatures related to ash production would be expected at site N 194	

where all samples were wettable or only slightly water repellent. In contrast, at site L, affected by low fire 195	

severity, over half of the ash samples were strongly water repellent. Noticeable is the occurrence of 196	

severely water repellent samples together with wettable samples within sites L, N and P. This may 197	

indicate either a strong heterogeneity of the medium and high burn severity sites, or a very strong 198	

sensitivity of water repellent properties to the composition of combusted ash materials. 199	

The observed variability in ash water repellency may affect hydrological responses of burned 200	

sites. The net impact of ash material on hydrological processes continues to be a matter of debate. Some 201	

authors suggest that the presence of ash increases surface runoff due to surface sealing (e.g. Gabet and 202	

Sternberg, 2008; Onda et al., 2008) while others reported that its water absorbent nature decreases surface 203	

runoff (Cerdà and Doerr, 2008; Woods and Balfour, 2008; Larsen et al., 2009; Kinner and Moody, 2010).  204	

The effect of ash water repellency itself on surface runoff has not been investigated in detail to date, but it 205	

is specuated here that at patches where ash is water repellent, net runoff generation will be greater than at 206	

patches where the ash layer has a similar depth, but is wettable. 207	
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3.2. FT-IR spectra characteristics 208	

Accordingly the FT-IR spectra of the least and the most combusted ash samples from the four 209	

study sites are described as follows. The samples were selected according to relative proportion of the 210	

absorbance bands assigned to organic matter and calcite. The absorbance bands are expected to broadly 211	

represent the degree of organic matter combustion of samples. Figure 1 shows the characteristic 212	

absorbance bands in the FT-IR spectra of the least combusted sample A7. The broad absorbance band at 213	

3368 cm-1 corresponds to O–H stretching vibrations in water and hydroxyl groups in various organic and 214	

inorganic substances (Gerzabek et al., 2006). Relatively intensive bands at 2926 and 2854 cm-1 from C–H 215	

stretching vibrations are attributed to aliphatic hydrocarbons (Ellerbrock et al., 2005). Absorbance bands 216	

occurring as a shoulder at 1731 and a peak at 1607 cm-1 are typical for C=O vibrations in carboxylic 217	

groups and for C=C vibrations in aromatics, respectively (Dick et al., 2006). Several more or less 218	

intensive bands are caused by presence of calcite (CaCO3) at 2516, 1797, 1426, 875, and 713 cm-1 219	

(Tatzber et al., 2007).  220	

A mixture of inorganic particles is represented by absorbance bands typical for primary silicate 221	

minerals and clays (Farmer, 1974). These components are less sensitive to heating compared to organic 222	

matter (Simkovic et al., 2008; Kurap et al., 2010). Thus, the intensive band at 1033 cm-1 is attributed to 223	

Si-O stretching vibrations. Absorbance bands of Si-O-Al at 535 cm-1 and Si-O-Si at 472 cm-1 (bending 224	

vibrations), weak shoulders of O–H stretching bands at 3697 and 3621 cm-1 and an Al-O-H deformation 225	

band at 912 cm-1, which all are typical for clay minerals, are also present (Farmer, 1974). 226	

Very notable for the studied ashes is the presence of calcium oxalate (whevellite), which can be 227	

identified according to absorbance band at 1317 cm-1. It also has less intensive bands at 780 and 516 cm-1 228	

(Li et al., 2004), which overlap with absorbance bands of silicates.  229	

In the most combusted ash sample A3, absorbance bands belonging to organic substances almost 230	

disappeared. In the 2800-3000 cm-1 region the dominant absorption are ascribed to a combination bands 231	

of calcite with peak maxima at 2981 and 2874 cm-1 (Tatzber et al., 2007; D’Acqui et al., 2010; Kurap et 232	

al., 2010). Calcite absorbance bands predominate in the whole spectrum. Also bands assigned to admixed 233	

silicate minerals are present, including the quartz doublet at 797 and 779 cm-1 (Reig et al., 2002). In a  234	

study by Che et al. (2011) O-H stretching and deformation bands in kaolinite became weaker at 400 °C 235	

and disappeared at 500 °C. Thus, the presence of kaolinite (as evidenced by absorbance band at 3697 cm-1 236	

and by O-H stretching and deformation bands) is probably caused by mixing of ash material with less 237	
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affected mineral soil during sampling. Almost complete destruction of organic matter in the ash material 238	

corresponds with the moderate-severe fire severity. 239	

A similar pattern with respect to FT-IR features is evident amongst samples at remaining three 240	

sites with only small variations (Fig. 2 – 4). In all spectra the absorbance bands assigned to organic matter 241	

and carbonates are dominant features and they are subject to change during progressive combustion. With 242	

increasing combustion, the absorbance bands assigned to organic matter at 2928-2925, 2854 and 1619-243	

1615 cm-1 are relatively decreasing with respect to absorbance bands of carbonates at 1439-1432 and 877-244	

875 cm-1. However, in highly combusted samples, the peaks in the range of 3000-2800 cm-1 (organic 245	

matter) are very weak and superimposed with calcite combination bands at 2981 and 2874 cm-1. 246	

After peak deconvolution the absorbance bands assigned to organic matter and calcite were 247	

separated in the 3000-2800 cm-1 and 1800-1200 cm-1 regions. Six individual absorbance bands were 248	

distinguished in the 3000-2800 cm-1 region (Fig. 5). The methylene peaks occur at 2923 and 2852 cm-1 249	

together with weaker methyl peaks at 2956 and 2895 cm-1. As the peak areas of the methyl and methylene 250	

groups are decreasing, the calcite combination bands at 2978 and 2873 cm-1 are increasing in more 251	

combusted ash samples. In the 1800-1200 cm-1 region (Fig. 6) organic matter peaks attributed to 252	

carboxylic and aromatic groups at 1707 cm-1 and 1600 cm-1, respectively, were separated from calcite 253	

peak at 1435 cm-1. 254	

Individual peak areas assigned to organic matter in the regions 3000-2800 cm-1 (Fig. 5) and 1800-255	

1200 cm-1 (Fig. 6) together with a calcite peak at 875 cm-1 were taken for further evaluation of the 256	

relationships between the ash WDPT values and the FT-IR compositional characteristics of the ash 257	

samples. The peaks, and ratios of peak areas, were determined for each sample and obtained results are 258	

listed in Table 2. The ratios of the absorbance bands were highly variable in the ash samples and showed 259	

a high sensitivity to burning impact on the ash properties. It is presupposed that evaluated parameters of 260	

the FT-IR spectrum reflects adequately major changes of the organic and inorganic compounds in the 261	

ashes and that these parameters are suitable for explanation and interpretation of observed changes in ash 262	

water repellency.  263	

 264	

3.3. Ash water repellency vs. ash composition 265	
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Combustion of plant biomass and litter material induces two processes, which can be considered 266	

as concurrent with respect to ash water repellency or wettability. Whether ash material will be water 267	

repellent or wettable depends on the relative proportion of hydrophilic and hydrophobic surfaces. The 268	

properties of organic matter, found in ash, are changing during burning processes (Úbeda et al., 2009) and 269	

charred particles formed by organic matter can be considered as the source of hydrophobic surfaces 270	

(Almendros et al, 1992; Knicker, 2007; Bodí et al., 2011). Overall, however, the effect of burning (i.e. 271	

combustion) is a gradual decrease in organic matter content, which leads to an absolute decrease of 272	

hydrophobic surfaces in ash material. From the FT-IR spectra of ash samples it is evident that absorbance 273	

bands assigned to functional groups of organic matter in both the 3000-2800 cm-1 region and the 1800-274	

1200 cm-1 region are decreasing during combustion and these changes are closely correlated (Fig. 7). 275	

Organic matter combustion is accompanied by the synthesis of inorganic substances with 276	

hydrophilic surfaces. Particularly carbonates are typically formed during organic matter burning under 277	

conditions commonly occurring during wildfires. While charred organic matter is a darkening pigment in 278	

ash, the lighter colour in ash is associated with an increase of the calcium carbonate content (Goforth et 279	

al., 2005). Calcium carbonate (calcite) has a higher free energy than water and therefore has hydrophilic 280	

surface (Keller and Luner, 2000). In partially combusted ash hydrophobic organic and hydrophilic 281	

inorganic surfaces will both be present. These components will be responsible for the net water 282	

repellent/wettable character of the ash material. In the less combusted ash material examined here, the 283	

plant tissue residues are still recognizable (Fig. 8a) and the ash layer exhibits water repellent properties. 284	

While plant residues are absent in the strongly combusted ash (Fig. 8b), whitish calcite crystals are 285	

present (Fig. 9), which facilitate ash wettability. 286	

Based on the above assumptions, FT-IR characteristics may be identified that correlate with 287	

WDPT values. Particularly, parameters directly related to organic matter and carbonate contents could be 288	

considered as properties related to ash wettability or water repellency. In FT-IR spectra of ash samples, 289	

certain peaks (peak areas) are clearly related to organic matter and carbonate contents as described above 290	

and could be used for such purposes. 291	

Several absorbance bands in FT-IR spectra can be assigned to various functional groups of ash 292	

organic mater. Some of them were previously reported to be linked to soil water repellency or wettability 293	

(Simkovic et al., 2008; Ellerbrock et al., 2005). The most promising are absorbance bands between 3000 294	

and 2800 cm-1 corresponding to aliphatic functional groups. This region is closely related to the aliphatic 295	

fraction of organic matter and had been satisfactorily applied with respect to soil water repellency by 296	
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Simkovic et al. (2008). Ellerbrock et al. (2005) used ratio of two absorbance bands representing 297	

hydrophobic groups (3020-2800 cm-1) and hydrophilic groups (1740-1710 cm-1 and 1640-1620 cm-1) as 298	

the explaining parameter for contact angle values, used as a measure of water repellency in soils. 299	

However, the adjacent region between 1620 and 1600 cm-1 can also be attributed to aromatic C=C 300	

vibrations (Kaiser and Ellerbrock, 2005; Dick et al., 2006), which represent hydrophobic groups. 301	

Gerzabek et al. (2006) showed a quantitative relationship between the FT-IR bands and soil organic 302	

matter content in non-calcareous bulk mineral soil. Thus, a broad spectrum region with a maximum 303	

between 1620 and 1600 cm-1 may also be considered as suitable because there are several overlapping 304	

peaks in this region belonging to various functional groups of organic matter and this complex absorbance 305	

band can be related as a whole to organic matter content in the ash material. 306	

Similarly, for carbonates, a number of absorbance bands can be distinguished, but many of them 307	

are overlapping with organic matter bands or with bands from other inorganic substances. For example, 308	

the combination bands of calcite (2982 and 2875 cm-1) lie in the aliphatic region of organic matter. The 309	

bands at 2513 and 1798 cm-1 are weak and may overlap with other absorbance bands of organic matter. 310	

The most intensive absorbance band around 1427 cm-1 is wide and overlapping with many other bands of 311	

organic and inorganic origin and the same is true for the 712 cm-1 band. The most promising FT-IR 312	

absorbance band representing calcite content in the ash samples can be considered to be the peak at 875 313	

cm-1. Reig et al. (2002) used peaks at 875 and 712cm-1 for FT-IR quantitative analysis of calcite in 314	

geological samples. In the analysed ash samples the peak at 875 cm-1 is narrow, selective and distinct 315	

enough for approximation of variable calcite content in the evaluated ash samples. 316	

Based on the above-discussed assumptions, the ratios of responsible peak areas were calculated – 317	

namely, ratios of aliphatic peaks in the 3000-2800 cm-1 region and of organic matter peaks in the 1800-318	

1200 cm-1 region to calcite peak at 875 cm-1. These ratios are directly related to the ratio of organic matter 319	

to calcite content in ash material. Calculated values are listed together with measured WDPT values in 320	

Table 2. The relationships between the ratio of organic matter to calcite absorbance bands and logWDPT 321	

values are given in Figs. 10 and 11. The relationship with the aliphatic region (2800-3000 cm-1) is less 322	

sensitive for more combusted ashes (because aliphatic peaks are very weak), but both relationships have a 323	

very similar character. 324	

The relationship between the logWDPT and the ratio of ash organic matter to ash calcite (peak 325	

areas in the 1800-1200 cm-1 region divided by peak area at 875 cm-1) probably corresponds very well to 326	

the actual composition of ash material with respect to ratio of organic matter and calcite contents. As can 327	
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be seen in Fig. 11 this relationship is not linear and can be approximated with an exponential function. 328	

From the obtained diagram follows that ash water repellency will not change gradually with changes in 329	

ash composition. The function has a characteristic shape with a flat top and a steep decrease in logWDPT 330	

at low values of the organic matter/calcite ratio. The ash behaviour is thus expected to be very sensitive to 331	

ash composition especially at ratios where exponential function is sharply decreasing (Fig. 11). There is a 332	

relatively narrow area in the diagram where the water repellent ash changes to being wettable. 333	

There is close relationship between the FT-IR data and the ratio between organic matter and 334	

carbonate contents as can be seen in Figs. 12 and 13. All water repellent ash samples are found above the 335	

dashed line, which denotes the ratio of organic matter to carbonate contents of 2:1 (for weight 336	

percentages). This means that water repellency occurs only in the ash samples where the organic matter 337	

content is more than twice higher than the content of carbonates. From Figs. 12 and 13  it can be 338	

concluded that water repellency or wettability of wildfire ashes will be driven by the ratio of remaining 339	

organic matter to emerging carbonates. This ratio will depend on the burning conditions during the fire. 340	

Ash organic matter mineralisation (combustion) will increase with increasing burning temperature and 341	

duration, but will depend also on the original properties of burned organic matter and oxygen availability. 342	

The calcium carbonate formation depends among other factors, of the plant flammability. The same 343	

temperature can produce different severities in species with different flammability, and located in 344	

different environments (Ubeda et al., 2009). Thus ash water repellency can be different in fires produced 345	

with the same temperature in the same ecosystem, and between the same specie located in different areas. 346	

Variations in these parameters will result in the occurrence of ashes with very variable wettabilities at 347	

burned sites. The resulting ash properties in turn can lead to contrasting effects as regards soil behaviour 348	

and hydrogeomorphological responses of hillslopes following fire. 349	

The results presented in this paper are an extension of knowledge about ash water repellency, reported by 350	

Bodi et al. (2011). Our new results show a very narrow boundary line between wettable and water 351	

repellent ash. The threshold is determined by the relationship between the content of organic matter and 352	

carbonates in the ash. FT-IR spectroscopy has proven to be very fast and inexpensive alternative for 353	

evaluation of ash composition with respect to possible occurrence of ash water repellency. But this 354	

boundary between water repellent and wettable ash also determines the different post-fire consequences. 355	

The water repellency implicates various negative effects which are frequently referred for water repellent 356	

soils (Doerr et al.. 2000; Shakesby and Doerr, 2006). Among the most serious consequences of post-fire 357	

water repellency must be included enhanced surface runoff and erosion, occurrence of dry patches, 358	
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decreased germination, etc. Although we can not assume that water repellent ash layer will be preserved 359	

for a longer time, ash particles can become part of the soil and affect its properties. A similar effect of ash 360	

on soil water repellency has been already reported by Bodí et al. (2011). Therefore we can not exclude 361	

even the long-term consequences in case of formation of water repellent ash. 362	

4. Conclusions 363	

Comparison between study sites affected by different fire severities showed consistent differences 364	

in ash wettabilities. The occurrence of strongly to severely water repellent ash samples (WDPT > 60 s) 365	

varied from 70% to 0% for sites with low-moderate to severe wildfires respectively. Maximum WDTP 366	

values amongst samples follow the same fire severity order. A suspected relationship between the degree 367	

of ash water repellency with ash composition was supported by data obtained on ash composition using 368	

FT-IR. 369	

FT-IR data showed that key changes in ash composition comprise a decrease of organic matter 370	

content and increase of carbonate content with increasing fire severity. Relative changes in the proportion 371	

of absorbance bands may be potentially used for estimation of wildfire ash properties and effects on 372	

detrimental post-fire hydro-geomorphological impacts. A comparison of peak areas between the spectra 373	

from the samples affected by wildfires of different severity suggests that the FT-IR spectrum regions 374	

attributed to organic matter and calcite are the most informative with respect to water repellency 375	

occurrence and severity. The ratio of absorbance bands belonging to organic matter and calcite is the 376	

parameter suggested to determine whether ash material will be water repellent or wettable. Function 377	

fitting this relationship showed that ash WDPT values are strongly sensitive to the organic matter/calcite 378	

ratio. The relationship also explains why ash water repellency can be very variable even within sites of 379	

seemingly uniform burn severity. 380	

Organic matter content in all water repellent ash samples was more than twice higher than the 381	

carbonate content. This compositional boundary also determines post-fire effects of ash layer. Water 382	

repellent ash layer will enhance surface runoff formation and soil erosion. While these effects of ash layer 383	

are expected to have only short-term effect, we can not exclude long term impact of ash water repellency 384	

on post-fire processes when the ash particles become part of the soil. 385	
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Figure captions 502	

 503	

Fig. 1. FT-IR spectra of the most (upper) and the least (lower) combusted ash samples from the Albaida 504	
study site. 505	

Fig. 2. FT-IR spectra of the most (upper) and the least (lower) combusted ash samples from the Lliber 506	
study site. 507	

Fig. 3. FT-IR spectra of the most (upper) and the least (lower) combusted ash samples from the 508	
Navalón study site. 509	

Fig. 4. FT-IR spectra of the most (upper) and the least (lower) combusted ash samples from the Pinoso 510	
study site. 511	

Fig. 5. Example of the peak deconvolution in the 3000-2800 cm-1 region in the ash sample A9 from the 512	
Albaida study site. 513	

Fig. 6. Example of the peak deconvolution in the 1800-1200 cm-1 region in the ash sample A9 from the 514	
Albaida study site. 515	

Fig. 7. Relationship between relative intensity of absorbance bands assigned to aliphatic hydrocarbons 516	
(A3000-2800) and carboxylic and aromatic groups (A1800-1200), plotted on a logarithmic x and y axis. 517	

Fig. 8. The morphology of the ash material as observed with a digital microscope (Keyence VHX 1000) 518	
at low magnification: a) needle residues with preserved morphology in the least combusted 519	
water repellent ash (Sample A7) and b) most combusted wettable ash (Sample A3) without any 520	
visible plant residues. 521	

Fig. 9. Whitish calcite crystals on the surface of most combusted wettable ash (Sample A3) as observed 522	
with digital microscope (Keyence VHX 1000) at high magnification. 523	

Fig. 10. Relationship between the ash water repellency (log WDPT) and the peak area ratio of 524	
absorbance bands assigned to aliphatic hydrocarbons (A3000-2800) and to calcite (A875) 525	

Fig. 11. Relationship between ash water repellency (log WDPT) and the peak area ratio of absorbance 526	
bands assigned to organic matter (carboxylic and aromatic groups, A1800-1200) and to calcite (A875) 527	

Fig. 12. Relationship between the ratio of organic matter (OM) and inorganic carbonate (IC) contents 528	
and the peak area ratio of absorbance bands assigned to aliphatic hydrocarbons (A3000-2800) and to 529	
calcite (A875) 530	
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Fig. 13. Relationship between the ratio of organic matter (OM) and inorganic carbonate (IC) contents 531	
and the peak area ratio of absorbance bands assigned to organic matter (carboxylic and aromatic 532	
groups, A1800-1200) and to calcite (A875) 533	


