

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in :

Language and Automata Theory and Applications

Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa18003

Conference contribution :

Gwynne, M. & Kullmann, O. (2014). On SAT Representations of XOR Constraints. Language and Automata Theory

and Applications, -420).

http://dx.doi.org/10.1007/978-3-319-04921-2_33

This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the

terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions.

When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO

database to judge whether or not it is copyright safe to add this version of the paper to this repository.

http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/

http://cronfa.swan.ac.uk/Record/cronfa18003
http://dx.doi.org/10.1007/978-3-319-04921-2_33
http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/

On SAT Representations of XOR Constraints

Matthew Gwynne and Oliver Kullmann

Computer Science Department, Swansea University, UK
http://cs.swan.ac.uk/~csmg/

http://cs.swan.ac.uk/~csoliver/

Abstract. We consider the problem of finding good representations, via
boolean conjunctive normal forms F (clause-sets), of systems S of XOR-
constraints x1 ⊕ · · · ⊕ xn = ε, ε ∈ {0, 1} (also called parity constraints),
i.e., systems of linear equations over the two-element field. These repre-
sentations are to be used as parts of SAT problems F ∗ ⊃ F , such that
F ∗ has “good” properties for SAT solving. The basic quality criterion is
“arc consistency”, that is, for every partial assignment ϕ to the variables
of S, all assignments xi = ε forced by ϕ are determined by unit-clause
propagation on the result ϕ ∗ F of the application. We show there is
no arc-consistent representation of polynomial size for arbitrary S. The
proof combines the basic method by Bessiere et al. 2009 ([2]) on the
relation between monotone circuits and “consistency checkers”, adapted
and simplified in the underlying report Gwynne et al. [10], with the lower
bound on monotone circuits for monotone span programs in Babai et al.
1999 [1]. On the other side, our basic positive result is that computing an
arc-consistent representation is fixed-parameter tractable in the number
m of equations of S. To obtain stronger representations, instead of mere
arc-consistency we consider the class PC of propagation-complete clause-
sets, as introduced in Bordeaux et al. 2012 [4]. The stronger criterion is
now F ∈ PC, which requires for all partial assignments, possibly involv-
ing also the auxiliary (new) variables in F , that forced assignments can
be determined by unit-clause propagation. We analyse the basic trans-
lation, which for m = 1 lies in PC, but fails badly so already for m = 2,
and we show how to repair this.

Keywords: arc consistency, parity constraints, monotone circuits, mono-
tone span programs, unit-propagation complete, acyclic incidence graph.

1 Introduction

Recall that the two-element field Z2 has elements 0, 1, where addition is XOR,
which we write as ⊕, while multiplication is AND, written ·. A linear system
S of equations over Z2, in matrix form A · x = b, where A is an m × n matrix
over {0, 1}, with m the number of equations, n the number of variables, while
b ∈ {0, 1}m, yields a boolean function fS, which assigns 1 to a total assignment
of the n variables of S iff that assignment is a solution of S. The task of finding
“good” representations of fS by conjunctive normal forms F (clause-sets, to be

A.-H. Dediu et al. (Eds.): LATA 2014, LNCS 8370, pp. 409–420, 2014.
c© Springer International Publishing Switzerland 2014

410 M. Gwynne and O. Kullmann

precise), for the purpose of SAT solving, shows up in many applications, for
example cryptanalysing the Data Encryption Standard and the MD5 hashing
algorithm in [5], translating Pseudo-Boolean constraints to SAT in [6], and in
roughly 1 in 6 benchmarks from SAT 2005 to 2011 according to [19].

The basic criterion for a good F is “arc-consistency”. See Chapter 3 of [24]
for an overview of “arc-consistency” at the constraint level, see [7] for discus-
sion of the support encoding, a SAT translation of explicitly-given constraints
which maintains arc-consistency, and see [6] for an overview of maintaining arc-
consistency when translating Pseudo-boolean constraints to SAT. To define arc-
consistency for SAT, we use r1 for unit-clause propagation, and we write ϕ ∗ F
for the application of a partial assignment ϕ to a clause-set F .1 For a boolean
function f , a CNF-representation F of f is arc-consistent iff for every partial
assignment ϕ to the variables of f the reduced instantiation F ′ := r1(ϕ ∗ F)
has no forced assignments anymore, that is, for every remaining variable v and
ε ∈ {0, 1} the result 〈v → ε〉 ∗ F ′ of assigning ε to v in F ′ is satisfiable.

We show that there is no polynomial-size arc-consistent representation of ar-
bitrary S (Theorem 7). The proof combines the translation of arc-consistent
CNF-representations of f into monotone circuits computing a monotonisation
̂f , motivated by [2] and proven in the underlying report [10], with the lower
bound on monotone circuit sizes for monotone span programs (msp’s) from [1].
Besides this fundamental negative result, we provide various forms of good rep-
resentations of systems S with bounded number of equations. Theorem 12 shows
that there is an arc-consistent representation with O(n · 2m) many clauses. The
remaining results use a stronger criterion for a “good” representation, namely
they demand that F ∈ PC, where PC is the class of “unit-propagation com-
plete clause-sets” as introduced in [4] — while for arc-consistency only partial
assignments to the variables of f are considered, now partial assignments for all
variables in F (which contains the variables of f , and possibly further auxiliary
variables) are to be considered. For m = 1 the obvious translation X1, by subdi-
viding the constraints into small constraints, is in PC (Lemma 10). For m = 2 we
have an intelligent representation X2 in PC (Theorem 13), while the use of X1

(piecewise) is still feasible for full (dag-)resolution, but not for tree-resolution.
We conjecture (Conjecture 14) that Theorem 12 and Theorem 13 can be com-
bined, which would yield a fixed-parameter tractable algorithm for computing a
representation F ∈ PC for arbitrary S with the parameter m.

It is well-known that translating each XOR to its prime implicates can result
in hard (unsatisfiable) instances for resolution. This goes back to the “Tseitin
formulas” introduced in [26], which were proven hard for full resolution in [27],
and generalised to (empirically) hard satisfiable instances in [12]. Thus, to tackle
XOR-constraints, some solvers integrate XOR reasoning. EqSatz ([23]) extracts
XOR clauses from its input and applies DP-resolution plus incomplete XOR
reasoning rules. CryptoMiniSAT ([25]) integrates Gaußian elimination during

1 r1 has been generalised to rk for k ∈ N0 in [14,15]. In the underlying report [10]
we discuss this form of generalised unit-clause propagation, where for example r2 is
failed-literal elimination, but in this paper we concentrate on r1.

On SAT Representations of XOR Constraints 411

search, allowing both explicitly specified XOR clauses and also XOR clauses ex-
tracted from CNF input, however in the newest version 3.3 the XOR handling
during search is removed, since it is deemed too expensive. [17] integrates XOR
reasoning into MiniSat in a similar manner to SMT, while [18] expands on this
by reasoning about equivalence classes of literals created by binary XORs. [20]
learns conflicts in terms of “parity (XOR) explanations”. [21] extends the rea-
soning from “Gaußian elimination” to “Gauß-Jordan elimination”, which also
detects forced literals, not just inconsistencies. Still, for leading current SAT
solvers usage of SAT translations is important. Considering such translations
of XORs to CNF, [19] identifies the subsets of “tree-like” systems of XOR con-
straints, where one obtains an arc-consistent CNF representation; our results on
acyclic systems strengthens this. Additionally they consider equivalence reason-
ing, where for “cycle-partitionable” systems of XOR constraints this reasoning
is sufficient to derive all conclusions. They also show how to eliminate the need
for such special reasoning by another arc-consistent CNF representation. In gen-
eral, the idea is to only use Gaußian elimination for such parts of XOR systems
which the SAT solver is otherwise incapable of propagating on. Existing prop-
agation mechanisms, especially unit-clause propagation, and to a lesser degree
equivalence reasoning, are very fast, while Gaußian elimination is much slower.
Experimental evaluation on SAT 2005 benchmarks instances showed that such
CNF translations can outperform dedicated XOR reasoning modules.

Viewing a linear system S as a constraint on var(S), one can encode evaluation
via Tseitin’s translation, obtaining a CNF-representation F with the property
that for every total assignment ϕ, i.e., var(ϕ) = var(S), we have that r1(ϕ ∗ F)
either contains the empty clause or is empty.2 However, as Theorem 7 shows,
there is no polysize representation which treats all partial assignments. Gaußian
elimination handles all partial assignments in polynomial time (detects unsatisfi-
ability of ϕ∗F for all partial assignments ϕ), but this can not be integrated into
the CNF formalism (by using auxiliary variables and clauses), since algorithms
always need total assignments, and so partial assignments ϕ would need to be
encoded — the information “variable v not assigned” (i.e., v /∈ var(ϕ)) needs to
be represented by setting some auxiliary variable, and this must happen by a
mechanism outside of the CNF formalism. It is an essential strength of the CNF
formalism to allow partial instantiation; if we want these partial instantiations
also to be easily understandable by a SAT solver, then the results of [2] and our
results show that there are restrictions. Yet there is little understanding of these
restrictions. There are many examples where arc-consistent and stronger repre-
sentations are possible, while the current non-representability results, one in [2],
one in this article and a variation on [2] in [16], rely on non-trivial lower bounds
on monotone circuit complexity; in fact, as we show in [10], there is a polysize

arc-consistent representation of a boolean function f iff the monotonisation ̂f ,
encoding partial assignments to f , has polysize monotone circuits.

2 In Subsection 9.4.1 of [11] this class of representations is called ∃UP ; up to linear-
time transformation it is the same as representations by boolean circuits.

412 M. Gwynne and O. Kullmann

2 Preliminaries

We follow the general notations and definitions as outlined in [13]; for full details
see the underlying report [10] (which contains additional and generalised results).
We use N = {1, 2, . . .} and N0 = N∪ {0}. Let VA be the infinite set of variables,
and let LIT = VA ∪ {v : v ∈ VA} be the set of literals, the disjoint union
of variables as positive literals and complemented variables as negative literals.
We use L := {x : x ∈ L} to complement a set L of literals. A clause is a
finite subset C ⊂ LIT which is complement-free, i.e., C ∩ C = ∅; the set of
all clauses is denoted by CL. A clause-set is a finite set of clauses, the set of all
clause-sets is CLS. By var(x) ∈ VA we denote the underlying variable of a literal
x ∈ LIT , and we extend this via var(C) := {var(x) : x ∈ C} ⊂ VA for clauses
C, and via var(F) :=

⋃

C∈F var(C) for clause-sets F . The possible literals in a

clause-set F are denoted by lit(F) := var(F) ∪ var(F). Measuring clause-sets
happens by n(F) := |var(F)| for the number of variables, c(F) := |F | for the
number of clauses, and �(F) :=

∑

C∈F |C| for the number of literal occurrences.
A special clause-set is � := ∅ ∈ CLS, the empty clause-set, and a special clause is
⊥ := ∅ ∈ CL, the empty clause. A partial assignment is a map ϕ : V → {0, 1} for
some finite V ⊂ VA, where we set var(ϕ) := V , and where the set of all partial
assignments is PASS. For v ∈ var(ϕ) let ϕ(v) := ϕ(v) (with 0 = 1 and 1 = 0).
We construct partial assignments by terms 〈x1 → ε1, . . . , xn → εn〉 ∈ PASS
for literals x1, . . . , xn with different underlying variables and εi ∈ {0, 1}. For
ϕ ∈ PASS and F ∈ CLS we denote the result of applying ϕ to F by ϕ ∗ F ,
removing clauses C ∈ F containing x ∈ C with ϕ(x) = 1, and removing literals
x with ϕ(x) = 0 from the remaining clauses. By SAT := {F ∈ CLS | ∃ϕ ∈
PASS : ϕ∗F = �} the set of satisfiable clause-sets is denoted, and by USAT :=
CLS \ SAT the set of unsatisfiable clause-sets. By r1 : CLS → CLS we denote
unit-clause propagation, that is r1(F) := {⊥} if ⊥ ∈ F , r1(F) := F if F contains
only clauses of length at least 2, while otherwise a unit-clause {x} ∈ F is chosen,
and recursively we define r1(F) := r1(〈x → 1〉 ∗ F); it is easy to see that the
final result r1(F) does not depend on the choice of unit-clauses. Reduction by r1
applies certain forced assignments to the (current) F , which are assignments
〈x → 1〉 such that the opposite assignment yields an unsatisfiable clause-set,
that is, where 〈x → 0〉 ∗ F ∈ USAT ; the literal x here is also called a forced
literal. Two clauses C,D ∈ CL are resolvable iff they clash in exactly one
literal x, that is, C ∩D = {x}, in which case their resolvent is (C ∪D) \ {x, x}
(with resolution literal x). A resolution tree is a full binary tree formed by the
resolution operation. We write T : F � C if T is a resolution tree with axioms
(the clauses at the leaves) all in F and with derived clause (at the root) C. A
prime implicate of F ∈ CLS is a clause C such that a resolution tree T with
T : F � C exists, but no T ′ exists for some C′ ⊂ C with T ′ : F � C′; the
set of all prime implicates of F is denoted by prc0(F) ∈ CLS. Two clause-sets
F, F ′ ∈ CLS are equivalent iff prc0(F) = prc0(F

′). A clause-set F is unsatisfiable
iff prc0(F) = {⊥}. If F is unsatisfiable, then every literal x ∈ LIT is a forced
literal for F , while otherwise x is forced for F iff {x} ∈ prc0(F).

On SAT Representations of XOR Constraints 413

3 Propagation-Hardness and PC
A clause-set F is a “CNF-representation” of a boolean function f , if the satisfying
assignments of F projected to the variables of f are precisely the satisfying
assignments of f . Stronger, F is an “arc-consistent” representation of f , if F is a
CNF-representation of f and phdvar(f)(F) ≤ 1 holds, which is defined as follows.

Definition 1. For F ∈ CLS and V ⊆ VA the relation phdV (F) ≤ 1 holds (F
has p(ropagation)-hardness at most 1 relative to V) if for all partial assignments
ϕ ∈ PASS with var(ϕ) ⊆ V the clause-set F ′ := r1(ϕ ∗ F) has no forced literals
x ∈ lit(F ′), that is, for all x ∈ lit(F ′) the clause-set 〈x → 0〉 ∗ F ′ is satisfiable.

We write “phd(F)” for “phdvar(F)(F)”. The class PC ⊂ CLS is the set of all F
with phd(F) ≤ 1 (the class of unit-propagation-complete clause-sets).

See [8,9] and the underlying report [10] for the general picture, where the measure
phdV (F) ∈ N0 is defined in general. We now present the basic graph-theoretic
criterion for

⋃

i∈I Fi ∈ PC for clause-sets Fi ∈ PC.

Definition 2. For a finite family (Fi)i∈I of clause-sets Fi ∈ CLS the inci-
dence graph B((Fi)i∈I) is the bipartite graph, where the two parts are given
by

⋃

i∈I var(Fi) and I, while there is an edge between v and i if v ∈ var(Fi).
We say that (Fi)i∈I is acyclic if B((Fi)i∈I) is acyclic (i.e., has no cycle as an
(undirected) graph, or, equivalently, is a forest). A single clause-set F ∈ CLS is
acyclic if ({C})C∈F is acyclic.

The following central lemma is kind of folklore in the CSP literature; for a
complete proof see the underlying report [10].

Lemma 3. Consider an acyclic family (Fi)i∈I of clause-sets. If no Fi has forced
assignments, then also

⋃

i∈I Fi has no forced assignments.

We obtain a sufficient criterion for the union of unit-propagation complete clause-
sets to be itself unit-propagation complete:

Theorem 4. Consider an acyclic family (Fi)i∈I of clause-sets. If for all i ∈ I
we have Fi ∈ PC, then also

⋃

i∈I Fi ∈ PC.

Proof. Let F :=
⋃

i∈I Fi, and consider a partial assignment ϕ with F ′ �= {⊥} for
F ′ := r1(ϕ∗F). We have to show that F ′ has no forced assignments. For all i ∈ I
we have r1(ϕ ∗ Fi) �= {⊥}, and thus r1(ϕ ∗ Fi) has no forced assignments (since
Fi ∈ PC). So

⋃

i∈I r1(ϕ ∗Fi) has no forced assignments by Lemma 3. Using that
for A,B ∈ CLS holds r1(A ∪ r1(B)) = r1(A ∪B), we get F ′ = r1(

⋃

i∈I ϕ ∗ Fi) =
r1(

⋃

i∈I r1(ϕ ∗ Fi)) =
⋃

i∈I r1(ϕ ∗ Fi), whence F ′ has no forced assignments. ��

Two special cases of acyclic (Fi)i∈I are of special importance to us, and are
spelled out in the following corollary (see [10] for full details).

Corollary 5. Consider a family (Fi)i∈I of clause-sets with Fi ∈ PC for all
i ∈ I. Then each of the following conditions implies

⋃

i∈I Fi ∈ PC:

414 M. Gwynne and O. Kullmann

1. Any two different clause-sets have at most one variable in common, and
the variable-interaction graph is acyclic. (The variable-interaction graph has
vertex-set I, while there is an edge between i, j ∈ I with i �= j if var(Fi) ∩
var(Fj) �= ∅.)

2. There is a variable v with var(Fi) ∩ var(Fj) ⊆ {v} for all i, j ∈ I, i �= j.

4 XOR-Clause-Sets

As usual, anXOR-constraint (also known as “parity constraint”) is a (boolean)
constraint of the form x1⊕· · ·⊕xn = ε for literals x1, . . . , xn and ε ∈ {0, 1}, where
⊕ is the addition in the 2-element field Z2 = {0, 1}. Note that x1⊕· · ·⊕xn = y is
equivalent to x1⊕· · ·⊕xn⊕y = 0, while x⊕x = 0 and x⊕x = 1, and 0⊕x = x and
1 ⊕ x = x. Two XOR-constraints are equivalent, if they have exactly the same
set of solutions. We represent XOR-constraints by XOR-clauses, which are
just ordinary clauses C ∈ CL, but now under a different interpretation, namely
implicitly interpreting C as the XOR-constraints ⊕x∈Cx = 0. And instead of
systems of XOR-constraints we just handle XOR-clause-sets F , which are
sets of XOR-clauses, that is, ordinary clause-sets F ∈ CLS with a different
interpretation. So two XOR-clauses C,D are equivalent iff var(C) = var(D)
and the number of complements in C has the same parity as the number of
complements in D. That clauses are sets is justified by the commutativity of
XOR, while repetition of literals is not needed due to x⊕ x = 0. Clashing literal
pairs can be removed by x⊕x = 1 and 1⊕y = y, as long as there is still a literal
left. So every XOR-constraint can be represented by an XOR-clause except of
inconsistent XOR-constraints, where the simplest form is 0 = 1; we can represent
this by two XOR-clauses {v}, {v}. In our theoretical study we might even assume
that the case of an inconsistent XOR-clause-set is filtered out by preprocessing.

The appropriate theoretical background for XOR-constraints is the theory
of systems of linear equations over a field (here the two-element field). To an
XOR-clause-set F corresponds a system A(F) · v = b(F), using ordinary matrix
notation. To make this correspondence explicit we use n := n(F), m := c(F),
var(F) = {v1, . . . , vn}, and F = {C1, . . . , Cm}. Now F yields an m × n matrix
A(F) over Z2 together with a vector b(F) ∈ {0, 1}m, where the rows A(F)i,− of
A(F) correspond to the clauses Ci ∈ F , where a coefficient A(F)i,j of vj is 0 iff
vj /∈ var(Ci), and bi = 0 iff the number of complementations in Ci is even.

A partial assignment ϕ ∈ PASS satisfies an XOR-clause-set F iff var(ϕ) ⊇
var(F) and for every C ∈ F the number of x ∈ C with ϕ(x) = 1 is even. An
XOR-clause-set F implies an XOR-clause C if every satisfying partial assignment
ϕ for F is also a satisfying assignment for {C}. The satisfying total assignments
for an XOR-clause-set F correspond one-to-one to the solutions of A(F) · v = b
(as elements of {0, 1}n), while implication of XOR-clauses C by F correspond to
single equations c·v = d, which follow from the system, where c is an 1×n-matrix
over Z2, and d ∈ Z2. A CNF-representation of an XOR-clause-set F ∈ CLS
is a clause-set F ′ ∈ CLS with var(F) ⊆ var(F ′), such that the projections of the
satisfying total assignments for F ′ (as CNF-clause-set) to var(F) are precisely
the satisfying (total) assignments for F (as XOR-clause-set).

On SAT Representations of XOR Constraints 415

The resolution operation for CNF-clauses is the basic semantic operation, and
analogically for XOR-clauses we have the addition of clauses, which corresponds
to set-union, that is, from two XOR-clauses C,D follows C ∪ D. Since we do
not allow clashing literals, some rule is supposed here to translate C ∪ D into
an equivalent E ∈ CL in case the two clauses are not inconsistent together.
More generally, for an arbitrary XOR-clause-set F we can consider the sum,
written as ⊕F ∈ CL, which is defined as the reduction of

⋃

F to some clause
⊕F := E ∈ CL, assuming that the reduction does not end up in the situation
{v, v} for some variable v — in this case we say that ⊕F is inconsistent (which
is only possible for c(F) ≥ 2). The following fundamental lemma translates
witnessing of unsatisfiable systems of linear equations and derivation of implied
equations into the language of XOR-clause-sets; it is basically a result of linear
algebra, and the proof is provided in the underlying report [10].

Lemma 6. Consider an XOR-clause-set F ∈ CLS.

1. F is unsatisfiable if and only if there is F ′ ⊆ F such that ⊕F ′ is inconsistent.
2. Assume that F is satisfiable. Then for all F ′ ⊆ F the sum ⊕F ′ is defined,

and the set of all these clauses is modulo equivalence precisely the set of all
XOR-clauses which follow from F .

5 No Arc-Consistent Representations in General

We now show, if there were polynomial size arc-consistent representations of all
XOR-clause-sets, then all “monotone span programs” (msp’s) could be computed
by monotone boolean circuits, which is not possible by [1]. The first step here is
to translate msp’s into linear systems S. An msp computes a boolean function
f(x1, . . . , xn) ∈ {0, 1} (with xi ∈ {0, 1}), by using auxiliary boolean variables
y1, . . . , ym, and for each i ∈ {1, . . . , n} a linear system Ai · y = bi, where Ai is
an mi×m matrix over Z2. For the computation of f(x1, . . . , xn), a value xi = 0
means the system Ai · y = bi is active, while otherwise it is inactive; the value
of f is 0 if all the active systems together are unsatisfiable, and 1 otherwise.
Obviously f is monotonically increasing. The task is now to put that machinery
into a single system S of equations. The main idea is to “dope” each equation of
every Ai · y = bi with a dedicated new boolean variable added to the equation,
making that equation trivially satisfiable, independently of everything else; all
these new variables together are called z1, . . . , zN , where N =

∑n
i=1 mi is the

number of equations in S. If all the doping variable used for a system Ai · y = bi
are set to 0, then they disappear and the system is active, while if they are
not set, then the system is trivially satisfiable, and thus is deactivated. Now
consider an arc-consistent representation F of S. Note that the xi are not part
of F , but the variables of F are y1, . . . , ym together with z1, . . . , zN , where the
latter represent in a sense the x1, . . . , xn. Using F we can compute f by setting
the zj accordingly (if xi = 0, then all zj belonging to Ai · y = bi are set to 0,
if xi = 1, then these variables stay unassigned), running r1 on the system, and
output 0 iff the empty clause was produced by r1. By Theorem 6.1 in [10], based

416 M. Gwynne and O. Kullmann

on [2], finally from F we obtain a monotone circuit C computing f , whose size
is polynomial in �(F), where by [1] the size of C is NO(logN).

Theorem 7. There is no polynomial p s.t. for all XOR-clause-sets F ∈ CLS
there is a representation F ′ ∈ CLS with �(F ′) ≤ p(�(F)) and phdvar(F)(F ′) ≤ 1.

Proof. We consider representations of monotone boolean functions f : {0, 1}n →
{0, 1} (that is, x ≤ y ⇒ f(x) ≤ f(y)) by monotone span programs (msp’s). The
input variables are given by x1, . . . , xn. Additionally m ∈ N0 boolean variables
y1, . . . , ym can be used, where m is the dimension, which we can also be taken
as the size of the span program. For each i ∈ {1, . . . , n} there is a linear system
Ai · y = bi over Z2, where Ai is an mi × m matrix with mi ≤ m. For a total
assignment ϕ, i.e., ϕ ∈ PASS with var(ϕ) = {x1, . . . , xn}, the value f(ϕ) is 0
if and only if the linear systems given by ϕ(xi) = 0 together are unsatisfiable,
that is, {y ∈ {0, 1}m | ∀ i ∈ {1, . . . , n} : ϕ(xi) = 0 ⇒ Ai · y = bi} = ∅. W.l.o.g.
we assume that each system Ai · y = bi is satisfiable.

Consider for each i ∈ {1, . . . , n} an XOR-clause-set A′
i ∈ CLS representingAi ·

y = bi (so var(A′
i) ⊇ {y1, . . . , ym}), where, as always, new variables for different

A′
i are used, that is, for i �= j we have (var(A′

i)∩var(A′
j))\{y1, . . . , ym} = ∅ . We

use the process D : CLS → CLS of “doping”, as introduced in [11], where D(F) is
obtained from F by adding to each clause a new variable. Let A′′

i := D(A′
i), where

the doping variables for different i do not clash; we denote them (altogether) by
z1, . . . , zN . Let F :=

⋃n
i=1 A

′′
i . Consider a CNF-representation F ′ of the XOR-

clause-set F .
We have f(ϕ) = 0 iff ϕ′ ∗ F ′ ∈ USAT , where ϕ′ is a partial assignment

with ϕ′ assigning only doping variables zj, namely if ϕ(xi) = 0, then all the
doping variables used in D(A′

i) are set to 0, while if ϕ(xi) = 1, then nothing is
assigned here. The reason is that by setting the doping variables to 0 we obtain
the original system Ai · y = bi, while by leaving them in, this system becomes
satisfiable whatever the assignments to the y-variables are.

Now assume that we have phd{z1,...,zN}(F ′) ≤ 1. By Theorem 6.1 in [10] we
obtain from F ′ a monotone circuit C (using only and’s and or’s) of size polynomial
in �(F ′) with input variables z′1, z

′′
1 , . . . , z

′
N , z′′N , where

– z′j = z′′j = 1 means that zj has not been assigned,

– z′j = 1, z′′j = 0 means zj = 0,

– z′j = 0, z′′j = 1 means zj = 1,

– while z′j = 0, z′′j = 0 means “contradiction” (forcing the output of C to 0).

The value of C is 0 iff the corresponding partial assignment applied to F ′ yields
an unsatisfiable clause-set. In C we now replace the inputs zj by inputs xi, which
in case of xi = 0 sets z′j = 1, z′′j = 0 for all related j, while in case of xi = 1 all

related z′j , z
′′
j are set to 1.3 This is now a monotone circuit computing f . By [1],

Theorem 1.1, thus it is not possible that F ′ is of polynomial size in F . ��

3 In other words, for the j related to i always all z′j are set to 1, while z′′j = xi.

On SAT Representations of XOR Constraints 417

6 The Translations X0, X1

After having shown that there is no “small” arc-consistent representation of
arbitrary XOR-clause-sets F , the task is to find “good” CNF-representations
for special F . First we consider c(F) = 1, that is, a single XOR-clause C, to
which we often refer as “x1 ⊕ · · · ⊕ xn = 0”. There is precisely one equivalent
clause-set, i.e., there is exactly one representation without new variables, namely
X0(C) := prc0(x1 ⊕ · · · ⊕ xn = 0), the set of prime implicates of the underlying
boolean function, which is unique since these prime implicates are not resolvable.
X0(C) has 2n−1 clauses for n ≥ 1 (while for n = 0 we have X0(C) = �), namely
precisely those full clauses (containing all variables) over {var(x1), . . . , var(xn)}
where the parity of the number of complementations is different from the parity
of the number of complementations in C. Note that for two XOR-clauses C,D
we have X0(C) = X0(D) iff C,D are equivalent. More generally, we define
X0 : CLS → CLS, where the input is interpreted as XOR-clause-set and the
output as CNF-clause-set, by X0(F) :=

⋃

C∈F X0(C). By Theorem 4:

Lemma 8. If F ∈ CLS is acyclic, then X0(F) ∈ PC.
An early and influential example of unsatisfiable clause-sets are the “Tseitin
formulas” introduced in [26], which are obtained as applications of X0 to XOR-
clause-sets derived from graphs; see the underlying report [10] for various dis-
cussions. In [26] an exponential lower bound for regular resolution refutations of
(special) Tseitin clause-sets was shown, and thus unsatisfiable Tseitin clause-sets
in general have high hardness. This was extended in [27] to full resolution, and
thus unsatisfiable Tseitin clause-sets in general have also high “w-hardness” (see
[10]; as hardness captures tree-resolution, w-hardness captures dag-resolution).

In the following we refine X0 : CLS → CLS in various ways, by first trans-
forming an XOR-clause-set F into another XOR-clause-set F ′ representing F ,
and then using X0(F

′). If the XOR-clause-set F contains large clauses, then
X0(F) is not feasible, and the XOR-clauses of F have to be broken up into short
clauses, which we consider now. As we have defined how a CNF-clause-set can
represent an XOR-clause-set, we can define that an XOR-clause-set F ′ repre-
sents an XOR-clause-set F , namely if the satisfying assignments of F ′ projected
to the variables of F are precisely the satisfying assignments of F .

Definition 9. Consider an XOR-clause C = {x1, . . . , xn} ∈ CL. The natural
splitting of C is the XOR-clause-set F ′ obtained as follows, using n := |C|:

– If n ≤ 2, then F ′ := {C}.
– Otherwise choose pairwise different new variables y2, . . . , yn−1, and let F ′ :=

{x1 ⊕ x2 = y2} ∪ {yi−1 ⊕ xi = yi}i∈{3,...,n−1} ∪ {yn−1 ⊕ xn = 0}, (i.e.,
F ′ = {{x1, x2, y2}} ∪ {{yi−1, xi, yi}}i∈{3,...,n−1} ∪ {{yn−1, xn}}).

Then F ′ is, as XOR-clause-set, a representation of {C}. Let X1(C) := X0(F
′).

We have for F := X1(C): If n ≤ 2, then n(F) = c(F) = n, and �(F) = 2n−1 · n.
Otherwise n(F) = 2n− 2, c(F) = 4n− 6 and �(F) = 12n− 20. Corollary 5, Part
2, applies to F ′ from Definition 9, and thus:

418 M. Gwynne and O. Kullmann

Lemma 10. For C ∈ CL we have X1(C) ∈ PC.

We define X1 : CLS → CLS, where the input is interpreted as XOR-clause-set
and the output as CNF-clause-set, by X1(F) :=

⋃

C∈F X1(C) for F ∈ CLS,
where some choice for the new variables is used, so that the new variables for
different XOR-clauses do not overlap. By Theorem 4 and Lemma 10:

Theorem 11. If F ∈ CLS is acyclic, then X1(F) ∈ PC.

A precursor to Theorem 11 is found in Theorem 1 of [19], where it is stated that
tree-like XOR clause-sets are “UP-deducible”, which is precisely the assertion
that for acyclic F ∈ CLS the representation X1(F) is arc-consistent. We now
show that the problem of computing an arc-consistent CNF-representation for
an XOR-clause-set F is fixed-parameter tractable in the parameter c(F).

Theorem 12. Consider a satisfiable XOR-clause-set F ∈ CLS. Let F ∗ :=
{⊕F ′ : F ′ ⊆ F} ∈ CLS (recall Lemma 6); F ∗ is computable in time O(�(F) ·
2c(F)). Then X1(F

∗) is a CNF-representation of F with phdvar(F)(X1(F
∗)) ≤ 1.

Proof. Consider some partial assignment ϕ with var(ϕ) ⊆ var(F), let F ′ :=
r1(ϕ ∗ F ∗), and assume there is a forced literal x ∈ lit(F ′) for F ′. Then the
XOR-clause C := {y ∈ LIT : ϕ(y) = 0} ∪ {x} follows from F . By Lemma 6
there is F ′ ⊆ F with ⊕F ′ = C modulo equivalence of XOR-clauses. So we have
(modulo equivalence) X1(C) ⊆ F ∗, where due to X1(C) ∈ PC (Lemma 10) the
forced literal x for ϕ ∗X1(C) is set by r1, contradicting the assumption. ��

Theorem 4 in [22] yields the weaker bound O(4n(F)) for the number of clauses in
an arc-consistent representation of F (w.l.o.g. c(F) ≤ n(F)). In Conjecture 14 we
state our belief that we can strengthen Theorem 12 by establishing phd(F ′) ≤ 1
for an appropriate, more intelligent representation F ′ of F . We now turn to the
problem of understanding and refining the basic translation X1 for two clauses.

7 Translating Two XOR-Clauses

The analysis of the translation X1({C,D}) for two XOR-clauses C,D in the
underlying report [10] shows, that this representation is very hard for tree-
resolution, but easy for full and for width-restricted resolution. So it might be
usable for (conflict-driven) SAT solvers. But indeed we can provide a represen-
tation in PC as follows; note that an XOR-clause-set {C,D} is unsatisfiable iff
|C ∩D| is odd and var(C) = var(D).

Theorem 13. Consider two XOR-clauses C,D ∈ CL. To simplify the presen-
tation, using V := var(C) ∩ var(D), we assume |V | ≥ 2, and |C| > |V | as
well as |D| > |V |. Thus w.l.o.g. |C ∩ D| = |V |. Let I := C ∩ D. Choose
s ∈ VA \ var({C,D}), and let I ′ := I ∪ {s}. Let C′ := (C \ I) ∪ {s} and
D′ := (D \ I)∪ {s}. Now {I ′, C′, D′} is an XOR-clause-set which represents the
XOR-clause-set {C,D}. Let X2(C,D) := X1({I ′, C′, D′}). Then X2(C,D) ∈
PC is a CNF-representation of the XOR-clause-set {C,D}.

On SAT Representations of XOR Constraints 419

Proof. That {I ′, C′, D′} represents {C,D} is obvious, since s is the sum of the
common part. {I ′, C′, D′} is acyclic (besides the common variable s the three
variable-sets are disjoint), and thus by Theorem 11 we get X2(C,D) ∈ PC. ��

Conjecture 14. We can combine a generalisation of Theorem 13 with Theorem
12 and obtain X∗ : CLS → PC, which computes for an XOR-clause-set F ∈ CLS
a CNF-representation X∗(F) such that �(X∗(F)) = 2O(c(F)) · �(F)O(1).

8 Open Problems and Future Research Directions

Regarding lower bounds, the main question for Theorem 7 is to obtain sharp
bounds on the size of shortest representations F ′ with phdvar(F)(F ′) ≤ 1. Turn-
ing to upper bounds, in Lemma 8, Theorem 11, and Theorem 13 we have es-
tablished methods to obtain representations in PC, while Conjecture 14 says,
that computing a representation in PC should be fixed-parameter tractable in
the number of XOR-clauses. See [10] for more open problems and conjectures.

References

1. Babai, L., Gál, A., Wigderson, A.: Superpolynomial lower bounds for monotone
span programs. Combinatorica 19(3), 301–319 (1999)

2. Bessiere, C., Katsirelos, G., Narodytska, N., Walsh, T.: Circuit complexity and de-
compositions of global constraints. In: Twenty-First International Joint Conference
on Artificial Intelligence (IJCAI 2009), pp. 412–418 (2009)

3. Biere, A., Heule, M.J., van Maaren, H., Walsh, T.: Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (February
2009)

4. Bordeaux, L., Marques-Silva, J.: Knowledge compilation with empowerment. In:
Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.)
SOFSEM 2012. LNCS, vol. 7147, pp. 612–624. Springer, Heidelberg (2012)

5. Courtois, N.T., Bard, G.V.: Algebraic cryptanalysis of the Data Encryption Stan-
dard. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887,
pp. 152–169. Springer, Heidelberg (2007)

6. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. Journal
on Satisfiability, Boolean Modeling and Computation 2, 1–26 (2006)

7. Gent, I.P.: Arc consistency in SAT. In: van Harmelen, F. (ed.) 15th European
Conference on Artificial Intelligence (ECAI 2002), pp. 121–125. IOS Press (2002)

8. Gwynne, M., Kullmann, O.: Generalising and unifying SLUR and unit-refutation
completeness. In: van Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J.,
Sack, H. (eds.) SOFSEM 2013. LNCS, vol. 7741, pp. 220–232. Springer, Heidelberg
(2013)

9. Gwynne, M., Kullmann, O.: Generalising unit-refutation completeness and SLUR
via nested input resolution. Journal of Automated Reasoning (2013) (to appear;
published online March 09, 2013),
http://link.springer.com/article/10.1007/s10817-013-9275-8

10. Gwynne, M., Kullmann, O.: On SAT representations of XOR constraints. Tech.
Rep. arXiv:1309.3060v4 [cs.CC], arXiv (December 2013)

420 M. Gwynne and O. Kullmann

11. Gwynne, M., Kullmann, O.: Trading inference effort versus size in CNF knowledge
compilation. Tech. Rep. arXiv:1310.5746v2 [cs.CC], arXiv (November 2013)

12. Haanpää, H., Järvisalo, M., Kaski, P., Niemelä, I.: Hard satisfiable clause sets for
benchmarking equivalence reasoning techniques. Journal of Satisfiability, Boolean
Modeling and Computation 2, 27–46 (2006)

13. Kleine Büning, H., Kullmann, O.: Minimal unsatisfiability and autarkies. In: Biere,
et al. (eds.) [3], ch. 11, pp. 339–401

14. Kullmann, O.: Investigating a general hierarchy of polynomially decidable classes of
CNF’s based on short tree-like resolution proofs. Tech. Rep. TR99-041, Electronic
Colloquium on Computational Complexity (ECCC) (October 1999)

15. Kullmann, O.: Upper and lower bounds on the complexity of generalised resolu-
tion and generalised constraint satisfaction problems. Annals of Mathematics and
Artificial Intelligence 40(3-4), 303–352 (2004)

16. Kullmann, O.: Hardness measures and resolution lower bounds. Tech. Rep.
arXiv:1310.7627v1 [cs.CC], arXiv (October 2013)

17. Laitinen, T., Junttila, T., Niemelä, I.: Extending clause learning DPLL with parity
reasoning. In: Coelho, H., Studer, R., Wooldridge, M. (eds.) ECAI 2010 – 19th
European Conference on Artificial Intelligence, pp. 21–26. IOS Press (2010)

18. Laitinen, T., Junttila, T., Niemelä, I.: Equivalence class based parity reasoning
with DPLL(XOR). In: ICTAI 2011 – 23rd International Conference on Tools with
Artificial Intelligence, pp. 649–658 (2011)

19. Laitinen, T., Junttila, T., Niemelä, I.: Classifying and propagating parity con-
straints. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 357–372. Springer,
Heidelberg (2012)

20. Laitinen, T., Junttila, T., Niemelä, I.: Conflict-driven XOR-clause learning. In:
Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 383–396.
Springer, Heidelberg (2012)

21. Laitinen, T., Junttila, T., Niemelä, I.: Extending clause learning SAT solvers with
complete parity reasoning. In: ICTAI 2012 – 24th International Conference on
Tools with Artificial Intelligence, pp. 65–72 (2012)

22. Laitinen, T., Junttila, T., Niemelä, I.: Simulating parity reasoning. In:McMillan, K.,
Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 568–583.
Springer, Heidelberg (2013)

23. Li, C.M.: Equivalency reasoning to solve a class of hard SAT problems. Information
Processing Letters 76, 75–81 (2000)

24. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming.
Foundations of Artificial Intelligence. Elsevier (2006)

25. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer,
Heidelberg (2009)

26. Tseitin, G.: On the complexity of derivation in propositional calculus. In: Seminars
in Mathematics, vol. 8. V.A. Steklov Mathematical Institute, Leningrad (1968);
English translation: Slisenko, A.O.(ed.) Studies in mathematics and mathematical
logic, Part II, pp. 115–125 (1970)

27. Urquhart, A.: Hard examples for resolution. Journal of the ACM 34, 209–219 (1987)

