
 

Cronfa -  Swansea University Open Access Repository

   

_____________________________________________________________

   
This is an author produced version of a paper published in :

The Astrophysical Journal

                                      

   
Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa16947

_____________________________________________________________

 
Paper:

Friedmann, Y. & Piran, T. (2001).  A Model of Void Formation. The Astrophysical Journal, 548(1), 1-6.

http://dx.doi.org/10.1086/318652

 

 

 

 

 

 

 

 

_____________________________________________________________
  
This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the

terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions.

When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO

database to judge whether or not it is copyright safe to add this version of the paper to this repository. 

http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 

http://cronfa.swan.ac.uk/Record/cronfa16947
http://dx.doi.org/10.1086/318652
http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 


 
THE ASTROPHYSICAL JOURNAL, 548 :1È6, 2001 February 10
( 2001. The American Astronomical Society. All rights reserved. Printed in U.S.A.

A MODEL OF VOID FORMATION

YASMIN FRIEDMANN AND TSVI PIRAN

Racah Institute, The Hebrew University, Jerusalem, 91904, Israel ; yasmin=merger.Ðz.huji.ac.il ; tsvi=nikki.Ðz.huji.ac.il
Received 1999 December 6 ; accepted 2000 September 19

ABSTRACT
We introduce a simple model for the formation of voids. In this model the underdensity of galaxies in

voids is the product of two factors. The Ðrst arises from a gravitational expansion of the negative density
perturbation. The second is due to biasing : galaxies are less likely to form in an underdense region. One
feature of the model is an upper cuto† in void sizes. We calculate the volume-Ðlling factor of character-
istic voids for di†erent cold dark matter (CDM) models and Ðnd that our formation model points to
"CDM models as preferred models of the power spectrum. A natural consequence of our model is that
the underdensity of the dark matter inside voids is smaller than the galaxy underdensity.
Subject headings : cosmology : theory È large-scale structure of universe

1. INTRODUCTION

Visual inspection of redshift surveys has revealed (De
Lapparent, Geller, & Huchra 1986 ; Kirshner et al. 1987 ;
Geller & Huchra 1989 ; Da Costa et al. 1995 ; Geller et al.
1997 ; Shectman et al. 1996) that a large fraction of the
universe is made of ““ voids,ÏÏ regions in which the typical
galaxy density is signiÐcantly lower than the mean galaxy
density. Most galaxies tend to be found in two-dimensional
sheets that encompass these voids. Using the VOID-
FINDER algorithm, an automated algorithm that detects
voids in three-dimensional surveys and measures their
volume, El-Ad & Piran determined the sizes and depths of
voids in several surveys : the Southern Sky Redshift Survey
2 (SSRS2), IRAS, and Optical Redshift Survey (ORS) (El-
Ad & Piran 1997, 2000 ; El-Ad, Piran, & Da Costa 1997).
They found that the void distribution is remarkably stable
and that di†erent surveys that encompass the same regions
in the sky see the same voids. They also found that : (1) The
voids occupy B50% of the volume. (2) Void radii are in the
range 13È30 h~1 Mpc. There appears to be an upper cuto†
to the sizes of the voids. This upper limit does not depend
on the properties of a particular survey or on the e†ective
depth. This upper cuto† is also seen in visual inspection of
the deepest survey existing today, the Las Campanas Red-
shift Survey (LCRS; Shectman et al. 1996), whose e†ective
depth is 100 h~1 Mpc. (3) The density contrast of galaxies in
voids is in the range [[0.70, [ 0.95].

In current surveys, the sizes of observed structures are not
much smaller than the e†ective depth of the survey. There-
fore, only about a dozen voids have been identiÐed so far.
Hence, there are not enough data to produce a good sta-
tistics on the distribution of the voidsÏ sizes and depths. This
situation will change with the new generation of automated
redshift surveys, the Two-Degree Field (2dF; Lahav 1996)
and the Sloan Digital Sky Survey (SDSS; Loveday 1996).
With these surveys we will be able to identify dozens of
voids and to quantify their features. With this situation in
mind, we are beginning to set the ground here for analysis of
these properties and for a comparison of the observations
with a simple model for void formation.

The existence of signiÐcant inhomogeneities on the scale
of tens of Mpc should be an important clue to the formation
of large-scale structure, and can be useful in exploring the
power spectrum on this scale range. Indeed, positive Ñuc-
tuations on scales of 10 Mpc (clusters and superclusters)

provide a powerful tool for exploring the power spectrum
(see Bahcall & Fan 1998). However, voids have not been
used as yet, for several reasons. First, the present-day sky
surveys are not comprehensive enough to allow a full quan-
titative assessment of void sizes and of the distribution func-
tion of void sizes. Second, there is no simple theory for the
formation of voids.

A theory for the formation of voids should explain the
physical mechanisms that operate in the formation of the
voids. It should be able to explain qualitatively the appear-
ance of the apparent upper cuto† on their sizes. Using this
theory, one could compare the properties of voids (more
speciÐcally, voids sizes and Ðlling factor) that arise from
di†erent primordial perturbation spectra with the obser-
vations. Another goal of such a model is to predict the
underdensity of the dark matter within the voids and to
provide us with a prediction of the e†ective biasing factor
within the voids.

Blumenthal et al. (1992), Dubinski et al. (1993), and Piran
(1997) considered a purely gravitational scenario for the
formation of voids. Their model is based on the assumption
that light traces matter on the scale of voids. In this case, the
observed underdensity in the galaxy distribution corre-
sponds to a comparable underdensity in the dark matter.
According to this model, the observed voids today are pri-
mordial negative perturbations that grew gravitationally
and reached shell-crossing today. Shell-crossing happens
when the radius of the perturbation has grown by a factor
of 1.7, corresponding to a density contrast of [0.8.
However, at this stage the perturbation is highly nonlinear
(the corresponding linear amplitude would have been 2.7).
Such a large amplitude requires too much power on the
scale of voids and is inconsistent with the number density of
clusters and superclusters on slightly lower scales.

In this paper we suggest a new approach that can be used
as a formalism for analyzing voids. We present a simple
intuitive model that describes the formation of voids as due
to gravitational growth and biasing. We relax the assump-
tion that light traces matter on these large scales and claim
that the observed underdensity in the galaxy density is a
product of two factors. The Ðrst arises from a simple gravi-
tational expansion of the negative density perturbation. The
second factor arises due to biasing : galaxies are less likely to
form in an underdense region (see, e.g., Zeldovich & Shan-
darin 1982). We consider spherical underdensities. This is,

1



10
−2

10
−1

10
0

10
1

1

1.5

2

2.5

δ
L

η

2 FRIEDMANN & PIRAN Vol. 548

quite generally, a good approximation, since negative
density perturbations become more and more spherical as
they evolve (Icke 1984 ; Lin, Mestel, & Shu 1965). To esti-
mate the biasing factor, we use a simple peak biasing for-
malism developed by David & Blumenthal (1992) for the
calculation of biasing in clusters.

Our model explains why voids appear in a relatively
small range of sizes and in particular why there is an upper
limit to the sizes of the voids. We use it to calculate the
expected sizes and volume-Ðlling factor of voids in di†erent
cosmological models, and we compare our results with
current observations. The comparison is made to a simple
interpretation of the data : voids occupy 50% of the volume,
their radii are in the range of 13È30 h~1 Mpc, and the
typical underdensity in the galaxy distribution is taken to
be [0.8. This is a simpliÐed picture and should be modiÐed
in future when data from new surveys are available and
when we have a more reÐned model. Finally, we use our
model to calculate the expected dark matter underdensity
within the voids.

We Ðnd that cosmological models that agree with other
constraints on the power spectrum can in general produce
voids with properties as described above, even if not as
many as those observed. In particular, we Ðnd, in spite of
the crudeness of the model and the uncertainties in present-
day data, that Ñat "CDM with a current density parameter

is the most preferable model, in agreement0.25\)0\ 0.35
with other observations.

The paper is organized as follows. In ° 2 we present the
details of the model and a general calculation of the under-
density of galaxies inside voids. In ° 3 we calculate the
relative volume of the universe in the form of voids in uni-
verses characterized by di†erent cosmological parameters
and cold dark matter (CDM) power spectra. We discuss the
implication of our results in ° 4.

2. THE MODEL

We begin by calculating the dynamics of a negative
density perturbation in a general cosmology. Our goal is to
calculate g, the ratio of the comoving size of the pertur-
bation to its initial comoving size, in terms of the lineard

L
,

amplitude of the perturbation. The factor g~3[ 1 is the
underdensity due to gravitational growth. Because it is
expressed in terms of it can be calculated directly fromd

L
,

the linear power spectrum once the relevant scale is chosen.
Then we turn to calculate the underdensity of galaxies in a
larger scale negative density perturbation.

2.1. Gravitational Growth of Voids
During the linear phase, perturbations grow in amplitude

but not in comoving size. As the perturbations become non-
linear, their comoving radius begins to grow. To Ðnd g we
solve the di†erential equation that governs the evolution of
a spherical shell surrounding a negative density region. At
some initial time, (at a redshift the shell is expanding att

i
z
i
),

the same rate as the background (that is, we have an initial
density perturbation). The initial small (negative) density
contrast is and the initial radius of the shell is Thed

i
, R

i
.

background evolution is characterized by the present values
of the Hubble constant the density parameter andH0, )0,the cosmological constant ". For convenience, we deÐne

As long as there is no shell-crossing, the massj0\"/3H02.inside the shell remains constant and energy conservation
yields a di†erential equation for R, the shellÏs radius (Lahav

et al. 1991) :

R0 2\ H02[[)0(1] z
i
)3R

i
2 d

i
[ ()0] j0[ 1)(1] z

i
)2R

i
2

])0(1] z
i
)3R

i
3(1] d

i
)/R] j0 R2] . (1)

We combine this equation with the equation for the back-
groundÏs redshift :

1
1 ] z

d(1] z)
dt

\ [H0P(z) , (2)

where

P(z) \ )0(1] z)3[ ()0 ] j0[ 1)(1] z)2] j0 , (3)

to obtain an equation for dR/dz. We solve this equation
numerically and obtain the radius R as a function of the
redshift. Since the comoving radius increases as 1/(1] z),
we Ðnd that g \ [R(z)(1 ] z)]/[R

i
(1 ] z

i
)].

The growing solution of the linear perturbation equation
is given by Heath (1977) :

d
L
`\ CP1@2(z)

P
z

= (u ] 1)du
P(u)3@2 . (4)

The constant C depends on the initial conditions. Since we
have considered earlier an initial density perturbation, d

i
,

the corresponding initial density contrast of the growing
mode is 3d

i
/5.

We can now obtain the growth factor as a function of d
L(we drop the superscript ““ ] ÏÏ hereafter). Figure 1 depicts g

as a function of for three cases : an EinsteinÈde Sitterd
Luniverse h \ 0.5, an open low-density uni-()0\ 1, j0\ 0),

verse without a cosmological constant ()0\ 0.37, j0\ 0),
and a Ñat low-density model with cosmological constant

The function is practically inde-()0\ 0.37, j0\ 0.63). g(d
L
)

pendent of the cosmological parameters, and the di†erent
curves overlap each other. For very small values of whend

L
,

the perturbations are still linear, the growth factor g is very
close to 1. This is expected, since in the linear theory pertur-
bations grow in amplitude only. Here g increases only as the
perturbation becomes nonlinear.

2.2. Biased Galaxy Formation in Voids
We turn now to the statistical determination of the

underdensity of galaxies within voids. Following David &

FIG. 1.ÈGrowth factor, g, of a spherical perturbation as a function of
the corresponding linear amplitude for three cases : an open uni-)0\ 1
verse, and a Ñat universe with)0] j0\ 1, j0\ 0.
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Blumenthal (1992), we consider a simple model in which
galaxies form in peaks that exceed a global galaxy forma-
tion threshold. We deÐne the ““ efficiency ÏÏ of galaxy forma-
tion in some volume V , vV, as the fractional volume of V
that is contained in galaxies,

vV \ Vgal
Vtot

(5)

To determine vV, we use the conditional probability
of Ðnding a galaxy-size Ñuctuation with a relativef (l

g
, l

v
)

overdensity within a void-size Ñuctuation with al
g
\ d

g
/p

grelative underdensity Here and are the rmsl
v
\ d

v
/p

v
. p

g
p
vmass Ñuctuations Ðltered on galaxy and void scales, respec-

tively. The scale of a galaxy, is related to its mass,R
g
, M

g(including the dark matter), through M
g
\ (4n/3)R

g
3SoT.

Then

f (l
g
, l

v
)\ 1

2nJ1 [ r2

] exp
C
[ 1

2J1 [ r2
(l

g
2] l

v
2] 2rl

g
l
v
)
D

, (6)

where r is the correlation coefficient between the two scales,
given by wherep

gv
2 /p

g
p
v
,

p
gv
2 \ 1

(2n)3
P

d3k o d
k
o 2W (kR

g
)W (kR

v
) , (7)

and W (kR) is a window function. We choose a top-hat
window function,

W (kR)\ 3(sin kR[ kR cos kR)
(kR)3 . (8)

We use a single typical galaxy mass of M
g
\ 1.2] 1012

which is the median of the galaxyM
_

(M/L )/(100 M
_
/L

_
),

luminosity function. This is clearly an approximation, and
possibly the crudest one we make in this work. The scale
related to this mass, varies according to the cosmo-R

g
,

logical parameters of the model. Assuming that only the
peaks that exceed a global threshold become luminouslthgalaxies, the efficiency of galaxy formation in voids of a
given radius R and with a given isl

v

vvoid(l
v
, R)\ /lth= f (l

g
, l

v
)dl

g
/~== f (l

g
, l

v
)dl

g
\ 1

2
erfc

C lth] rl
v

J2(1 [ r2)
D

. (9)

The galaxy formation threshold, is calculated using thelth,global efficiency of galaxy formation,

vbg \ vvoid(R
v
\ O)\ 1

2
erfc

lth
J2

. (10)

Empirically, one possible way of determining the fraction
of mass residing in galaxies is to divide the mass-to-light
ratio of a typical galaxy by the mass-to-light ratio of the
universe. Following Bahcall, Lubin, & Dorman (1995), we
take the M/L ratio of the universe to be and that1350)0h,
of a typical galaxy to be 100h. Now we have

1
2

erfc
lth
J2

\ (M/L )gal
1350)0 h

. (11)

Using equation (11) we can determine, for any given the)0,global galaxy formation threshold.

2.3. T he Combined Underdensity
The current underdensity of galaxies in voids, isdgal,

1 ] dgal \
ogalvoid
ogalbg \ vvoid

vbgg3 (12)

where is the density of galaxies in the void, and isogalvoid ogalbg
their average density in the background universe. The
second equality holds once the growth factor of the void is
taken into account, and all the galaxies are taken to be of
the same typical scale (B1 h~1 Mpc).

3. THE VOID CONTENT OF THE UNIVERSE IN DIFFERENT

CDM MODELS

Given the model described above, we now calculate the
expected sizes and the volume-Ðlling factors of voids in dif-
ferent cosmological models. We also calculate the dark
matter underdensity in voids in these models. Our aim is to
Ðnd the dependency of the Ðlling factor on cosmological
parameters. A second goal is to predict the dark matter
underdensity in voids and through this to learn the biasing
between dark and luminous matter on these large scales.

We consider Ðrst the SCDM model ()0\ 1, h0\ 0.5,
"\ 0, n \ 1, h~2). It is already established)

b
\ 0.0125

that this is not a valid model of the universe ; it does not
agree simultaneously with COBE and with cluster abun-
dance data. However, because of the simplicity of the
SCDM model, we use it as a tool to demonstrate how the
void content of the universe changes with the normalization
of the power spectrum. We use the transfer function calcu-
lated by Bardeen et al. (1986) as the shape of the dark
matter power spectrum. For the normalization we consider
two possibilities : COBE normalization as calculated by
Bunn & White (1997) and cluster abundance(p8\ 1.27)
normalization as given by Pen (1998) (p8\ 0.53).

We present contour lines of constant galaxy underdensity
as a function of the radius of the voids today, R, and the
relative underdensity in the dark matter, l. Figure 2 depicts
several contour lines for the cluster-normalized SCDM
model. If we look at constant l, we Ðnd that there are

FIG. 2.ÈContours of constant displayed as a function of the radiusdgalof the voids today, R, and the relative underdensity of the dark matter, l
v
,

in a standard CDM model that is cluster-normalized. We can see that the
typical voids (R\ 20 h~1 Mpc are 3 p objects, i.e., they aredgal \ [0.8)
produced very rarely.



4 FRIEDMANN & PIRAN Vol. 548

relatively more galaxies in larger voids. This is due in part
to the statistical properties of the Ñuctuations and in part to
the gravitational expansion of the underdensities. At larger
scales the amplitude of the perturbations is smaller, so to
form a galaxy in a larger underdensity we need galaxy-size
perturbations of smaller amplitude. These will be more
abundant because the distribution function of the Ñuctua-
tions is a Gaussian. Thus, there will be more galaxies in
larger voids, and the relative underdensity of the galaxies
will decrease. The gravitational expansion factor does not
compensate for this ; in fact, it becomes less important
because of the underdensities decreases as R grows (seed

LFig. 1). If we look at voids of constant radius, we see that
there are relatively fewer galaxies at larger l. The contribu-
tion to this behavior is also twofold. Negative perturbations
of higher l correspond to deeper voids ; In such voids we
need galaxy-size perturbations of larger amplitude to form
galaxies. These are less abundant and therefore the relative
underdensity of the galaxies is larger in deeper voids. To
this we add the fact that negative perturbations of higher l
are of higher and for these the gravitational factor isd

L
,

larger. Thus, the volume of the void will grow and the rela-
tive underdensity in the galaxy distribution will be even
greater.

An important feature to notice in this Ðgure is that for a
given underdensity of the galaxy distribution inside a void,
larger voids are produced exponentially more rarely, since
they require large and hence extremely rare initial pertur-
bations. Thus, there is a sharp upper limit to the sizes of
voids.

To compare with observations, we calculate the Ðlling
factor of the voids. We calculate the fraction of the universe
that is composed of spherical and isolated negative density
perturbations that are large enough and deep enough to
produce voids of radii 13È30 h~1 Mpc. The number of
spherical inhomogeneities of a radius R and an amplitude in
the range [d, d ] dd] inside the horizon is

N(R, d)dd \ c3H0~3
R3

1
(2np

R
2)1@2 e~d2@2pR2dd . (13)

Clearly, the isolated spherical approximation would break
down at low l values, and it might be violated around the
lower limits (lD 1.5) of our integration. We expect it to
hold at higher values. The total volume of the correspond-
ing voids is (gR)3N(R, d), and the relative volume is

f (R, d)dd \ g3
(2np

R
2)1@2 e~d2@2pR2dd . (14)

The voids with radii 13È30 h~1 Mpc correspond to initial
Ñuctuations of sizes of about 10È25 h~1 Mpc, depending on
the model. Thus, to obtain the overall Ðlling factor, denoted
by f, we integrate equation (14) along the contour of dgal \[0.8 in the appropriate range. This method of counting
might be complicated by the possibility of overcounting : a
void of a certain radius and amplitude might be counted
again as a void of larger radius and smaller amplitude. This
cannot happen if the underdensity d increases with R, since
the larger void would be deeper. We therefore checked the
behavior of d, and found that it increases monotonically
with R.

We have carried out this calculation for two CDM
models with di†erent normalizations. The contour lines of

of the two models are presented in Figure 3.dgal\ [0.8

FIG. 3.ÈTwo contours of one for cluster-abundanceÈdgal\ [0.8 :
normalized SCDM (dashed line), the other for COBE-normalized SCDM.
The e†ect of the di†erent normalizations is very obvious : when the power
on the scale of voids is higher (COBE), the observed voids are much more
frequent.

The di†erence between the two models is very pronounced :
the model with more power on the scale of the voids (COBE
normalized) yields more voids. This can be explained as
follows : when the power on the scale of the voids is larger,
the amplitude needed to produce the voids that we see
today is reached by Ñuctuations with lower l, which are
therefore more frequent. In models with less power on void
scales, the same amplitude of underdensities requires higher
l values and are therefore less frequent. This is reÑected in
the calculated values of the Ðlling factors of f \ 33% for the
COBE-normalized model, and only 11% for the cluster-
normalized model.

However, neither of these CDM models is an acceptable
model of the universe. We now estimate the void content of
the universe in the context of power spectra that are com-
patible with observations. We consider open CDM and Ñat
"CDM models. The transfer function used is as above
(Bardeen et al. 1986). The normalization is according to the
4 yr COBE DMR experiment, as calculated by Bunn &
White (1997). To determine the modelsÏ parameters, we Ðrst
set then choose a tilt such that the model is also cluster)0,normalized. This is done by calculating and Ðnding a tiltp8such that the normalization condition given by Pen (1998),

p8\ (0.53^ 0.05))0~0.45 (15)

for open models and

p8\ (0.53^ 0.05))0~0.53 (16)

for Ñat models, is satisÐed. We take HubbleÏs constant to be
km s~1 Mpc~1, in agreement with recent resultsH0\ 65

from the Hubble Space Telescope (HST ) Key project (H0 \
71 ^ 6 km s~1 Mpc~1 ; see Mould et al. 2000) and measure-
ments of the time delay between multiple images of gravita-
tional lens systems km s~1 Mpc~1 ; see Biggs(H0\ 69~19`13
et al. 1999) ; in all models. The models are)

b
h~2 \ 0.015

described in Table 1. Columns (1) and (2) of the table give
and n. In column (3) we list the amplitude of mass)0 p8,

Ñuctuations in spheres of radius 8 h~1 Mpc. All arep8within the ranges allowed by the cluster normalization. As
another check on the validity of our models, we show that
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TABLE 1

LIST OF THE MODELS CONSIDERED

f
Model )0 n p8 ! (%) dDM

(1) (2) (3) (4) (5) (6) (7)

Open CDM

1 . . . . . . . 0.3 1.3 0.92 0.18 19 [0.56
2 . . . . . . . 0.35 1.17 0.85 0.21 18 [0.53
3 . . . . . . . 0.4 1.07 0.81 0.24 18 [0.52
4 . . . . . . . 0.45 0.98 0.76 0.27 18 [0.49

"CDM (Ñat)

5 . . . . . . . 0.2 1.2 1.2 0.11 31 [0.60
6 . . . . . . . 0.25 1.1 1.11 0.15 29 [0.56
7 . . . . . . . 0.3 1 0.95 0.18 25 [0.53
8 . . . . . . . 0.35 0.96 0.93 0.21 25 [0.52
9 . . . . . . . 0.4 0.91 0.86 0.24 24 [0.50
10 . . . . . . 0.45 0.88 0.83 0.27 22 [0.49

the shape parameter ! of each of the models is within the
limits (0.15\ ! \ 0.3) allowed by measurements of the
angular correlation function from the Automated Plate
Measuring (APM) galaxy survey (Efstathiou, Bond, &
White 1992). The values of ! are listed in column (4).
Finally, column (5) gives the calculated Ðlling factor, and
column (6) lists the calculated dark matter underdensity.

As before, we present the results as contour lines of con-
stant as a function of the radius of the voids today, R,dgaland as a function of their relative underdensity in the dark
matter, l. The contour lines for the open and "CDM
models are presented in Figures 4 and 5, respectively. We
note Ðrst that all the models show a common behavior,
which was also manifested in the SCDM models : larger
voids of are produced exponentially moredgal \ [0.8
rarely. The sharp upper limit to the sizes of voids exists in
all CDM models.

Figure 4 describes voids of in open CDMdgal \ [0.8
models. It is clear that the void distribution does not
depend strongly on The Ðlling factor is almost constant,)0.

FIG. 4.ÈContours of in the four open CDM modelsdgal \[0.8
checked, displayed as a function of the radius of the voids today, R, and
relative underdensity, l. It is clear that in open models, the distribution of
the voids is not a function of This can be explained by the fact that the)0.power spectra for these models are almost the same on all scales.

FIG. 5.ÈContours of in the six "CDM models as adgal(l, R)\ [0.8
function of the radius of the voids today, R, and of the relative under-
density of the void, l. Here we see a stronger dependence on and we)0,also see that voids are more frequent in these models than in the open
models.

having values of 18%È19%. Figure 5 describes the same
voids in Ñat "CDM models. Here there is a stronger depen-
dence of the void distribution function on and the Ðlling)0,factor is larger than in the open models. It is in the range
22%È31%, decreasing with )0.We have also calculated the expected underdensity of the
dark matter. This underdensity is given simply by dDM\
g~3[ 1. It is listed, for 20 h~1 Mpc voids in the di†erent
models, in column (6) of Table 1. The underdensities are in
the range [[0.5, [0.6] for all the models. These typical
values are a factor of 1.3È1.6 smaller than the galaxy under-
density, indicating this factor as the biasing between gal-
axies and dark matter perturbations on the 20 h~1 Mpc
scale within the voids.

4. DISCUSSION

We have presented here a model for the formation of
voids. In this model voids arise from initial negative density
perturbations. Such underdensities grow in comoving
volume, and this growth increases the underdensities of
both the galaxies and the dark matter within the voids. The
galaxy underdensity is enhanced further because positive
galaxy-size perturbations are less frequent within negative
void-size perturbations. This mechanism inhibits the forma-
tion of galaxies within the voids. In our model, both mecha-
nisms contribute comparable factors to the overall galaxy
underdensity.

We use the model to investigate the void content of the
universe for di†erent power spectra that are in agreement
with COBE and cluster abundance data. Qualitatively, we
found in all the cosmological models we tested that the
probability of Ðnding voids of a certain falls exponen-dgaltially with the radius. This behavior may explain the
observed upper limit of the radii of voids.

In order to quantitatively test our model, we have calcu-
lated the Ðlling factor of the observed voids (R

v
½ [13È30]

h~1 Mpc, We Ðnd that in all the models thatdgal\ [0.8).
we considered, the observed voids Ðll only half the expected
volume. However, there is a clear trend toward higher Ðlling
factors in "CDM models, where the relevant voids appear
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more frequently and Ðll a larger fraction of the universe. We
also found that in the open models that we have tried, since
the power spectra were very similar, the distribution of the
void sizes and the Ðlling factor did not change with )0.However, in "CDM models, as grows the relevant voids)0become less frequent and the void content of the universe
decreases. This can be explained by the fact that as we
increase the amplitude of Ñuctuations on the scale of)0,voids is decreased. The most preferable models are the
"CDM models with these comply with0.25\)0\ 0.35 ;
all the constraints and have the highest void-Ðlling factors.
Still, even these values fall short of the observations by a
factor of B1.4.

We suspect that the small Ðlling factor is due in part to
the oversimpliÐed model of galaxy formation that we have
used. A more realistic model should allow for a range of
galaxy masses and a more elaborate biasing mechanism
between the dark matter and galaxies. This will be the next
step toward a more reliable model. Note also that, as
already mentioned, another important assumption of our
model is spherically symmetric isolated evolution. We have
assumed that the underdensities are spherical and isolated
when calculating the gravitational growth and the Ðlling
factor, ignoring possible mergers between neighboring
voids and the inÑuence of positive overdensities on nearby
underdensities. Void mergers might lead to the disap-
pearance of smaller voids with deeper underdensities along-
side the appearance of larger asymmetric voids. Positive
nearby overdensities could exert forces on matter inside
underdensities and increase their growth rate. Both e†ects
could increase the Ðlling factor of voids.

Finally, we have computed the underdensity of dark
matter in typical voids of radius 20 h~1 Mpc. While the
dark matter is inÑuenced only by the gravitational expan-
sion of the negative density perturbations, the number of
galaxies is also inÑuenced by the biasing factor. For this
reason, we have The expected dark matterÂ dDM Â\ Â dgal Â .underdensities that we Ðnd are about a factor of 1.3È1.6
lower than the underdensities of the galaxy density. These
values should be regarded only as an upper limit to the real
underdensity expected in nature. Since real voids are more
frequent, they must correspond to lower l values, and their

gravitational growth factor would be smaller. This will
result in a less negative dark matter density contrast. This
prediction should be compared with estimates of the dark
matter density in voids from N-body simulations and with
future measurements of the dark matter underdensity
within the voids.

It will be interesting to apply our model to account for
the evolution of void sizes and abundances as a function of
redshift. We suspect that in critical-density universes, the
evolution of voids will be stronger than in low-density uni-
verses ; we have shown in ° 2 that the growth of the radius of
the void depends only on the linear amplitude of the pertur-
bation and not on cosmological parameters. Thus, in a uni-
verse with where the linear amplitude grows like the)0\ 1,
scale factor, the radius of the void will grow constantly.
However, in models where matter ceases to dominate, such
as open models that become curvature-dominated at small
z or Ñat models with a cosmological constant that begins to
dominate at late times, the linear amplitude reaches a con-
stant value and stops growing. In such cases, the comoving
radius of the voids will also stop growing at late times.
Thus, we could use the model to predict the change in
comoving radius of voids as a function of z in di†erent
cosmological models, and by comparing to the next gener-
ation of deep sky surveys discriminate between low- and
critical-density models (for example, in critical-density uni-
verses, older voids will be smaller in radius, and the galaxy
underdensity in them will also be smaller).

Upcoming sky surveys, such as the Sloan Digital Sky
Survey, will increase the available galaxy distribution data
by several orders of magnitude. In particular, such surveys
will include more voids, and we hope enough voids to
obtain the distribution and evolution of the void sizes. That
would allow us to compare our model with observations in
a more accurate way and constrain and other cosmo-)0logical parameters using the void distribution.
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