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Abstract 1 

Understanding the effects of landscape change and environmental variability on ecological 2 

processes is important for evaluating resource management policies, such as the emulation of 3 

natural forest disturbances. We analyzed time-series of detection/nondetection data using 4 

hierarchical models in a Bayesian multi-model inference framework to decompose the dynamics 5 

of species distributions into responses to environmental variability, spatial variation in habitat 6 

conditions, and population dynamics and interspecific interactions, while correcting for 7 

observation errors and variation in sampling regimes. We modeled distribution dynamics of 14 8 

waterbird species (broadly defined, including wetland and riparian species) using data from two 9 

different breeding bird surveys collected in the Boreal Shield ecozone within Ontario, Canada. 10 

Temporal variation in species occupancy (2000 – 2006) was primarily driven by climatic 11 

variability. Only two species showed evidence of consistent temporal trends in distribution: ring-12 

necked duck (Aythya collaris) decreased and red-winged blackbird (Agelaius phoeniceus) 13 

increased. The models had good predictive ability on independent data over time (1997 – 1999). 14 

Spatial variation in species occupancy was strongly related to the distribution of specific land 15 

cover types and habitat disturbance: fire and forest harvesting influenced occupancy more than 16 

did roads, settlements or mines. Bioclimatic and habitat heterogeneity indices and geographic 17 

coordinates exerted negligible influence on most species distributions. Estimated habitat 18 

suitability indices had good predictive ability on spatially independent data (Hudson Bay 19 

Lowlands ecozone). Additionally, we detected effects of interspecific interactions. Species 20 

responses to fire and forest harvesting were similar for 13 of 14 species; thus, forest harvesting 21 

practices in Ontario generally appeared to emulate the effects of fire for waterbirds over time 22 

scales of 10-20 years. Extrapolating to all 84 waterbird species breeding on the Ontario shield, 23 
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however, suggested that up to 30 species may instead have altered (short-term) distribution 1 

dynamics due to forestry practices. Hence, natural disturbances are critical components of the 2 

ecology of the boreal forest and forest practices which aim to approximate them may succeed in 3 

allowing the maintenance of the associated species, but improved monitoring and modeling of 4 

large-scale boreal forest bird distribution dynamics is necessary to resolve existing uncertainties, 5 

especially on less-common species. 6 

 7 

Key-words: boreal forest; Canada; disturbance; forest management; habitat suitability; habitat 8 

use; natural disturbance emulation; occupancy; Ontario; species distribution models; species 9 

interactions; waterbirds. 10 
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Introduction 1 

Despite a large body of ecological research on landscape management and conservation, the 2 

existence and applicability of general guidelines for the ecological management of landscapes is 3 

often debated. A recent review (Lindenmayer et al. 2008) identified several directions for 4 

research, among which was a need for better understanding of the effects of large-scale 5 

disturbances on ecological processes (see also Turner 2010). Such knowledge is critical for 6 

implementing policies intended to manage natural resources sustainably (Crow and Perera 2004, 7 

Long 2009). Similarly, predicting species responses to climate change is increasingly important 8 

(Stenseth and Mysterud 2002, Van der Putten et al. 2010) yet challenging, given that future 9 

climate is projected not only to be warmer, but increasingly variable (Easterling et al. 2000) in a 10 

spatially complex way (Portmann et al. 2009). Thus, applications of ecological approaches to 11 

management require an explicit consideration of timescales (Hastings 2010). Furthermore, 12 

management questions typically require quick responses based on the simplest combination of 13 

data and models (Hilborn and Mangel 1997, Bunnefeld et al. 2007, Adkison 2009), thus 14 

challenging ecologists to derive the most efficient use of existing data (Rushton et al. 2004), to 15 

better test hypotheses about the effects of natural and anthropogenic change (Wintle et al. 2010), 16 

particularly at large scales of space and time. 17 

The successful emulation of natural disturbance regimes paradigm for forest management 18 

(ENDR, see Perera et al. 2004, Long 2009) depends on understanding the effects of large-scale 19 

disturbances on ecological processes. The use of ENDR is increasingly popular among 20 

managers, especially in areas where forest fires are common, and constitutes the basis of forest 21 

management policies in various jurisdictions across the Canadian boreal forest (e.g. Ontario 22 

Ministry of Natural Resources (OMNR) 2001, Alberta Sustainable Resource Development 23 
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(ASRD) 2006). Thus, understanding natural disturbance dynamics and developing methods to 1 

assess management outcomes at relevant spatial and temporal scales is increasingly important. 2 

To fully assess the efficacy of forest harvesting practices with respect to ENDR requires an 3 

assessment of responses by plant and animal communities to different disturbance regimes; 4 

research has focused on the distribution and community composition of forest birds (Kardynal et 5 

al. 2009, Kardynal et al. 2011), as well as arthropods (Buddle et al. 2006) and mammals (Nielsen 6 

et al. 2008, Zwolak 2009) in managed and naturally disturbed forests. Nonetheless, it remains 7 

unclear to what extent ENDR fosters conservation of birds (Van Wilgenburg and Hobson 2008). 8 

Large-scale studies, necessary to better evaluate the extent to which timber harvest and wildfire 9 

produce similar responses in animal communities, especially for broad-ranging mobile species 10 

(Fisher and Wilkinson 2005), are relatively rare, and few take into account multiple types of 11 

disturbances (Van Wilgenburg and Hobson 2008). Such large-scale studies are complicated 12 

because the effects of human disturbances on species’ distributions or community composition 13 

(Brawn et al. 2001) may be comparatively small next to effects of large-scale environmental 14 

gradients or other community attributes (Bunn et al. 2010, Gotelli et al. 2010). 15 

Previous studies used various species distribution models (SDMs, reviewed in Guisan 16 

and Thuiller 2005, Franklin 2010, Drew et al. 2011), or climate envelope models (reviewed in 17 

Heikkinen et al. 2006) to predict species responses to environmental variation. These models 18 

may however be insufficient to understand and predict species responses to environmental 19 

change (e.g. Pearson and Dawson 2004, Beale et al. 2008, Sinclair et al. 2010). In particular, 20 

short-term climate variability (weather) might be more influential than long-term climate 21 

averages (Reside et al. 2010) and species distributions may also be strongly influenced by the 22 

distribution of resources (e.g. landcover, Heikkinen et al. 2006). Furthermore, disturbances are a 23 
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fundamental ecological process causing large landscape modifications and maintaining spatio-1 

temporal variation in environmental conditions (Brawn et al. 2001, Bradstock et al. 2005). Hence 2 

SDMs need to explicitly include disturbances as potential predictors when predicting species 3 

distributions under future conditions (Vallecillo et al. 2009). Similarly, population dynamics 4 

(Guisan and Thuiller 2005, Gaston 2009) and biotic interactions (Guisan and Thuiller 2005, 5 

Brooker et al. 2007, Gotelli et al. 2010) may play a fundamental role in species distributions. 6 

Thus, SDMs need to be better rooted in ecological theory to identify ecologically relevant 7 

variables and to better model the dynamics of species distributions over multiple spatio-temporal 8 

scales (see also Rushton et al. 2004). Furthermore, robust analyses should use standardized 9 

modeling frameworks incorporating the effects of uncertainty and error (Guisan and Thuiller 10 

2005, Royle and Dorazio 2008). 11 

We developed an integrated approach to model dynamics of species’ distributions in 12 

response to environmental variability. We partitioned the effects of multiple disturbances 13 

(natural and human-made) over large spatial scales, while accounting for environmental 14 

gradients and population processes, and correcting for observation errors. We applied the 15 

approach to the boreal forest of Ontario, where fire and forest harvesting have been mapped at a 16 

fine resolution over very large areas comprised of industrially logged forests, as well as large 17 

tracts exposed mostly to natural disturbances, principally wildfire. Despite it being an important 18 

breeding ground in North America, there is a general lack of information about how waterbirds 19 

respond to environmental variation there (Blancher and Wells 2005). Thus we combined 20 

information from multiple types of surveys of breeding waterbird distributions (sensu lato, 21 

including waterfowl, wetland, and riparian species) and addressed three related questions: (i) 22 

Which spatial and temporal processes have the largest influence on boreal forest waterbird 23 



Börger et al. Modeling Distribution Dynamics 

  7 

distributions and at what spatio-temporal scales do they act? (ii) Is the distribution of boreal 1 

waterbirds similar between landscapes subjected to human or natural disturbance regimes, as 2 

predicted under the hypothesis that, at large spatial scales, human disturbance emulates natural 3 

disturbance? (iii) Are there general patterns in habitat suitability among groups of waterbird 4 

species, and is there evidence for interspecific interactions?  5 

The Conceptual Model 6 

Building the conceptual model - Building a conceptual model of the processes involved is 7 

the first step in developing species distribution models (Guisan and Thuiller 2005, see also 8 

Cushman and Huettmann 2010 chapter 1 for the importance to form strong links between theory, 9 

data, and inferential approaches). Species distribution dynamics at a given site and time are the 10 

outcome of many processes acting over several spatial and temporal scales (Figure 1; note that 11 

observed patterns may also be affected by the confounding effects of observer or sampling bias). 12 

A first distinction can be made between spatial and temporal components (in addition to 13 

interspecific interactions). One group of processes generating spatial variation in the suitability 14 

of sites for a species are stable habitat relationships with average climatic conditions 15 

(bioclimate), specific landcover types (e.g. forest cover) and topography (Guisan and 16 

Zimmermann 2000, Holt and Barfield 2008, Holt 2009, Wiens et al. 2010). Spatial disturbance 17 

processes directly affect these stable habitat relationships (e.g. Vallecillo et al. 2009), modifying 18 

the suitability of an area by changing landcover types (e.g. burned forest) or by influencing or 19 

altering surrounding habitats (e.g. roads). Climate variability instead is a temporal process as it 20 

may alter local climatic conditions in a given year or season (Reside et al. 2010); over large 21 

landscapes this process may also vary spatially. Finally, population dynamics introduce 22 

consistent variation over time in species distribution patterns, e.g. increase in probability of 23 
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occupancy with an increase in abundance (Royle and Dorazio 2008); similarly, the presence or 1 

absence of a species may alter the probability of occupancy by another species (Heikkinen et al. 2 

2007).  3 

This conceptual scheme (Figure 1) aids in clarifying the different ways a given process 4 

may act (e.g. climate), in identifying different types of environmental predictors for a given 5 

process (e.g. climate indices vs. local climate variability measures for modeling climate 6 

variability), and in setting out a priori multiple competing hypotheses (e.g. climate envelope vs. 7 

habitat disturbance models) whose support from the data can be evaluated using multi-model 8 

selection techniques (Burnham and Anderson 2002, Link and Barker 2006). Specifically, for the 9 

aims of the current paper, we set out six competing models for boreal forest waterbird 10 

distribution dynamics (Table 1). 11 

Implementing the conceptual model – To model species distribution dynamics, we used 12 

time series data of species distributions (yearly time scale). We modeled the dynamics of 13 

waterbird (broadly defined, including wetland and riparian species ) occupancy patterns (note 14 

also that boreal birds are not dispersal limited). Modeling occupancy (the proportion of occupied 15 

sampling units) provides similar information to models of abundance with the benefit of reduced 16 

data collection costs (MacKenzie et al. 2006, Royle and Dorazio 2008), and thus may be a more 17 

attractive state variable for conservation management purposes (Guillera-Arroita et al. 2010).  18 

To compare the effects of timber harvest and fire on bird distributions, we used the boreal 19 

Shield ecozone of Ontario as it comprises industrially logged forests as well as large tracts 20 

exposed mostly to natural disturbances. Furthermore, multiple, large scale, annual bird surveys 21 

are available for this area (Figure 2). We used hierarchical models (McMahon and Diez 2007, 22 

Royle and Dorazio 2008) to decompose the observed variance in distribution dynamics into 23 
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different levels of variation and to obtain robust estimates of the effects of the predictor 1 

covariates, accounting for observation or sampling bias (as well as spatial autocorrelation).  2 

Methods 3 

Study area 4 

The study area coincided with the boreal Shield ecozone within the province of Ontario (about 5 

600000 km2; Figure 2). This ecozone is part of the Precambrian Shield and comprises two forest 6 

types, the Great Lakes St. Lawrence forest type in the south and Boreal Forest proper in the 7 

north. The area is mostly forested (64% forest cover older than 20 years), dominated by conifers 8 

in the north (black spruce Picea mariana, balsam fir Abies balsamea, jack pine Pinus banksiana, 9 

tamarack larch Larix lariciana), whereas deciduous species are more frequent in the south (white 10 

birch Betula papyrifera, trembling aspen Populus tremuloides, balsam poplar Populus 11 

balsamifera, sugar maple Acer saccharum, beech Fagus grandifolia), with an abundance of 12 

wetlands, rivers and lakes (13% open water; 11% wetland cover; see www.nrcan.gc.ca). A 13 

fundamental characteristic of the boreal forest is the dynamic disturbance regime caused 14 

predominantly by frequent forest fires. Human population density is low and industrial timber 15 

harvest and mining constitute the primary anthropogenic disturbances (overall, 10% of the 16 

landcover is regenerating forest after fire or forest harvesting; 1% grasslands or crops; 1% mines 17 

or settlements). Timber harvest is restricted to the southern region north of which the forest is not 18 

commercially harvested (Figure 2). The limit of commercial forest harvesting also marks the 19 

limit of the road network in Ontario.  20 

Bird Data sets 21 

Two large scale bird survey datasets cover the entire Ontario Shield ecozone: the Waterfowl 22 

Breeding Population and Habitat fixed-wing Survey (FWS) and the Ontario Breeding Bird Atlas 23 
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(OBBA2, the second to be conducted). To test the predictive ability over time of models 1 

developed using data from the latter survey, we also used point count data collected by the North 2 

American Breeding Bird Survey (BBS, see Sauer et al. 2008).  3 

Ontario Breeding Bird Atlas data (OBBA2) – We obtained point count data conducted by 4 

the Ontario Breeding Birds Atlas initiative (http://www.birdsontario.org/) and GIS layers of the 5 

sampled grids through Nature Counts, a node of the Avian Knowledge Network, Bird Studies 6 

Canada (http://www.naturecounts.ca/). The OBBA2 was designed by dividing the Province of 7 

Ontario into 47 regions (roughly coincident with municipal boundaries, varying from ~2000 to 8 

>100000 km2), each assigned to a regional coordinator who coordinated the data collection and 9 

assembled teams to ensure sufficient coverage by point counts within the region (Ontario 10 

Breeding Bird Atlas 2001). Point counts, recording all bird species seen or heard, lasted 5 11 

minutes and comprised both roadside and off-road locations (out of >30000 point count locations 12 

20% were located at >200m from any road), located within 10 x 10 km squares (a target was set 13 

at 25 point counts per square; see below for more information). Roadside locations were selected 14 

randomly a priori, off-road locations (>200m from roads) were selected proportional to the 15 

habitat composition of each square (e.g. 75% in forest interior, if 75% of the square was covered 16 

by forest, paying attention to consider all habitat types, including wetlands and the border of 17 

waterbodies) and at least 300m apart from each other. Point counts were collected by voluntary 18 

birders over 5 years in Ontario from 2001 throughout 2005 during the peak breeding season, 19 

between May 24 and July 10 for southern Ontario and June 1 and July 10 for northern Ontario, 20 

starting from sunrise to maximum five hours after. Due to logistical constraints in conducting 21 

point counts in the north (e.g. absence of roads), considerably more squares were covered in the 22 

southern section of the province, mostly by volunteer participants, whereas many squares in the 23 
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north were sampled by teams of professional biologists or very experienced observers arranged 1 

in teams to cover specific areas. 2 

Waterfowl Breeding Population and Habitat Survey data (FWS) - The Waterfowl 3 

Breeding Population and Habitat Survey is conducted every May over selected routes in North 4 

America using fixed wing aircraft by the U.S. Fish and Wildlife Service and the Canadian 5 

Wildlife Service (Smith 1995). In eastern Canada the survey has been conducted since 1990. The 6 

survey provides counts of breeding adult waterfowl (determined at the species or genus level), 7 

observed from a fixed-wing aircraft flying at a speed of 145–167 km/h and a height of 30–50 m 8 

above ground level. Waterfowl are counted by a crew of two, a pilot biologist and an observer. 9 

Transects lines are 400 m wide and are composed of a series of 28.8 km sections (referred to as 10 

‘segments’; each segment covers therefore an area of 11.5 km2); the length of transects varies 11 

from around 250 km to 850 km (hence transects cover an area of around 100 – 340 km2). 12 

Transects are grouped into strata (covering a total area of around 50000 to 250000 km2). Each 13 

crew decides the exact starting date for each stratum, based on the climate and phenology 14 

specific to each year and region; for our study area, all surveys were conducted between the end 15 

of May and early June. Given that it is important to account for detectability, including observer 16 

effects, but observer IDs were only available from the year 2000 onwards, we used data from 17 

2000 – 2006 for model training (i.e., parameter estimation and inference). 18 

Geographic Information Systems data 19 

Climate data. – We used four “climate envelope” variables (see Table A2) to quantify the 20 

spatial variation in climate across the study area (BIOCLIMATE) – annual mean temperature 21 

(accurate to 0.1 degrees Celsius), temperature seasonality (standard deviation x 100), maximum 22 

temperature of the warmest month (accurate to 0.1 degrees Celsius), and precipitation seasonality 23 
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(coefficient of variation). We derived climatic variables from publically available global gridded 1 

maps at 10 km resolution (Hengl 2009) downloaded from http://spatial-analyst.net/worldmaps/. 2 

Furthermore, we measured local climatic variability for each sampling unit (e.g., each segment 3 

of the FWS surveys) as deviation from the 30-year mean monthly value (“climate normals”) of 4 

temperature (˚Celsius), precipitation (mm), snowfall (cm), or hours of bright sunshine, 5 

respectively. These local values were derived by interpolating monthly climate normals data for 6 

May, June and July (corresponding to the bird survey months) downloaded from the National 7 

Climate Data and Information Archive (www.climate.weatheroffice.ec.gc.ca) for each year 8 

(1997-2006) and for each weather station with high quality data in Ontario, Quebec and 9 

Manitoba (weather stations from neighboring provinces were included to avoid boundary issues). 10 

To interpolate local values, we used thin plate regression spline GAM models where each 11 

climatic variable was modeled as a bivariate smooth function of the geographic coordinates, 12 

stratified by year (for details see Wood 2006 chapter 5). Overall, these GAM models fitted the 13 

weather data very well, accounting for 75% - 98% of the variability. Using the interpolated 14 

yearly maps, we obtained the predicted climate variability at each sample unit. We used May 15 

climate variability for all datasets, corresponding to the arrival of most migrants. For the OBBA2 16 

data, which were collected primarily in June (but also May and July), during the model screening 17 

step (see below), we compared models with May climate variability measures to models with 18 

measures of the climate variability during the month of data collection for each sampling unit.   19 

Landcover data. – We used detailed road maps for Ontario (National Road Network data; 20 

public roads, not forest roads) from the GeoBase portal (http://www.geobase.ca/geobase/en/) to 21 

derive road densities (km/km2) for each survey unit using ArcView 3.2 (year 2000; ESRI, 22 

Redlands, California). Landcover data were derived from the Ontario Provincial Landcover Data 23 



Börger et al. Modeling Distribution Dynamics 

  13 

Base (www.nrcan.gc.ca). The Ontario Land Cover Data Base was derived by the Ontario 1 

Ministry of Natural Resources (OMNR) from digital, multispectral LANDSAT Thematic 2 

Mapper data recorded circa 1990 (range 1986 - 1997). Forest cutover and burn cover classes 3 

were updated using 1996 coverage data for the Great Lakes St. Lawrence forest region and most 4 

of the Boreal forest region. Thus, each area cut or burned can be classified as Recent Cut (areas 5 

cut by forest harvesting within ten years prior to 1996), Recent Burn (areas burned within ten 6 

years prior to 1996), and an indistinguishable, post-early succession class, Old Cut or Burn 7 

(areas subjected to fire or forest disturbance between 1976-1986; areas disturbed before 1976 are 8 

classified again as forest). Given these time frames for forest disturbance/succession we modeled 9 

bird distribution dynamics until 2006 (i.e., until 10 years after 1996).  10 

Resolution of the landcover data was 25m. Data were classified into 28 landcover classes, 11 

which we grouped into 11 classes: open water, bogs & fens, marsh & swamps; coniferous forest; 12 

deciduous forest; grasslands & crops; recent burns; recent cuts; old cuts & burns; mines & 13 

settlements; bare areas and unclassified raster cells (the latter accounted for <1% of the area). For 14 

each bird sampling unit we calculated the proportion of the area covered by each of the 11 15 

landcover variables. Using the habitat proportion values we also calculated a habitat 16 

heterogeneity index, as in Gotelli et al. (2010), for each survey unit. The index ranges between 17 

zero (only one single habitat type present) and close to one (all habitat types equally present). 18 

Statistical Modeling 19 

All statistical modeling was done using the R environment for statistical computing (R 20 

Development Core Team 2010) version 2.11.1. An efficient approach to fit hierarchical models 21 

is to use mixed effects model techniques (Pinheiro and Bates 2000, Bolker et al. 2009) – for a 22 

recent example applied to large-scale bird distribution modeling see Rittenhouse et al. (2012). 23 
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Specifically, hierarchical logistic-regression models were developed using generalized mixed 1 

effects logistic regression models (GLMMs) with the lme4 library (Bates and Sarkar 2007). We 2 

used version 0.999375-35, with the associated Matrix package version 0.999375-43 (Bates and 3 

Maechler 2010). The lme4 library includes methods for fitting crossed random effects structures 4 

to large datasets using generalized mixed effects models (see also Austin 2010), which we 5 

ranked using multimodel inference (Burnham and Anderson 2002). Multimodel inference is a 6 

powerful tool that allows inference conditional on a model set and not only on a single selected 7 

model, thereby accounting for uncertainties associated with model choice (Link and Barker 8 

2006, Link and Barker 2009). Multimodel inference is comprised of two parts: model selection 9 

and model averaging (both preceded by the model building phase). 10 

Model building – For all models we included a common random effects structure with 11 

which to account for survey design and observer effects (Table 1). For the FWS data, the 12 

response was segment-year detection/non-detection data collected between 2000 and 2006 for 13 

the training data (N = 1752 for each species). We included four grouping factors as random 14 

intercepts, to allow the mean probability of occupancy to be different for each group from the 15 

overall population mean. Three of these random effects accounted for the sampling design: 16 

segment (252 unique IDs), transect (15 unique IDs), and the stratum-by-year interaction to 17 

account for differences in survey start dates mentioned above (26 unique IDs). The fourth 18 

random effect accounted for observer effects, with a unique ID associated with each observer-19 

pair combination (8 unique IDs for the data from year 2000 to 2006). To correct for consistent 20 

temporal trends (see Figure 1), we included year as fixed effect numerical covariate in all 21 

models. For each species, we evaluated the most appropriate polynomial parameterization for the 22 

year covariate – linear, quadratic or cubic  – using the BIC criterion (Schwarz 1978), selecting 23 
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the model with the minimum BIC value (see below for a justification for the use of the BIC 1 

criterion). This combination of random and fixed effects terms constituted the baseline model as 2 

well as the common model structure for all competing models (Table 1). 3 

For the OBBA2 point count data, the response was detection/non-detection data within 4 

each survey square-year combination collected between 2001 and 2005 for the training data (N = 5 

1966 for each species). A baseline structure similar to the FWS model was developed for the 6 

OBBA2 point count data: route (the 10 x 10 km squares; 1361 unique IDs), block (100 x 100 km 7 

blocks containing 10 squares; 99 unique IDs) and region (22 unique IDs) accounted for the 8 

spatial sampling design, whereas the observer ID (432 unique IDs) accounted for observer 9 

effects (many observers recorded point counts in multiple squares, which allowed separation of 10 

the random effects). Year was entered as numerical fixed effect, as a linear or polynomial term. 11 

Note that there was not sufficient information (i.e. only five different years) to enter year as 12 

random effect (variances are not reliably estimated with a limited number of levels). The number 13 

of point counts per square and year varied, as the aim was to spread the point counts over 14 

different days and years for each square (Ontario Breeding Bird Atlas 2001). To correct for 15 

unequal sampling effort among squares (median = 15 point counts per year, range 1 – 84) and 16 

estimate species-specific optimal sampling effort, we included the number of point counts as a 17 

numeric covariate fixed effect. For each species, we evaluated three different polynomial model 18 

structures for sampling effort – linear, quadratic or cubic – selecting the most appropriate based 19 

on the BIC criterion (in all cases a quadratic or cubic term had the lowest BIC value, indicating 20 

that detectability was leveling off with sampling effort). Finally, we included a 2-level dummy 21 

factor as a fixed effect to account for consistent differences between the southern and northern 22 

sections caused by the different sampling regimes. 23 
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To aid model convergence and the interpretation of effect sizes and parameter estimates, 1 

we mean-centered and standardized all numeric covariates (see Table A2 for the mean and SD 2 

values used); specifically, to facilitate comparison between numeric covariates and factors, we 3 

standardized the numeric covariates by dividing by two standard deviations (Gelman 2008, 4 

Schielzeth 2010). Landcover covariates were centered on the value of overall habitat availability 5 

for each cover type within the Ontario Boreal Shield ecozone (see Table A1); otherwise 6 

covariates were mean-centered before standardization. Standardizing covariates also alleviates 7 

the problem of multicollinearity between predictor variables (Zuur et al. 2010), but to further 8 

reduce this confounding effect, we excluded covariate combinations that were correlated at r>0.6 9 

(Spearman’s rank correlation). Instead of excluding one of the correlated variables, however, we 10 

selected the most appropriate one for each species using model comparison techniques in the 11 

model screening step (see below). Thus, to build the climate envelope model (Table 2), we 12 

evaluated five different parameterizations, each with only one of the five different climate 13 

envelope covariates included. Further, climate envelope covariates were also strongly correlated 14 

with latitude (r>0.9 in our system); the latter is often also correlated with the distribution of 15 

specific landcover types (e.g., deciduous cover). Hence, contrary to the common practice of 16 

including these covariates into the same model, we treated these as competing models (e.g., a 17 

climate envelope model vs. a geographic gradient model, see Table 1) and, using model 18 

averaging techniques, we could obtain a final model containing parameter estimates for 19 

correlated predictor variables (Anderson 2008). 20 

We avoided overfitting by limiting interactions to 2-way interactions for the segment-21 

level or square-level covariates (252 and 1361 distinct spatial units for the FWS and OBBA2 22 

data, respectively), whereas for the climate variability covariates, which varied between years 23 
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(1752 and 1966 presence/absence records in total for each species for FWS and OBBA2 data, 1 

respectively), 3-way interactions were included in the model-screening step (see below). We 2 

checked for residual spatial autocorrelation using variograms in the geoR library version 1.6-29 3 

(Ribeiro Jr and Diggle 2001); in all cases no residual autocorrelation was detected as random 4 

effects appeared to control spatial correlation (Betts et al. 2009, Zuur et al. 2009). 5 

Choice of model selection criteria – Different criteria can be used for model selection, 6 

but the choice must be carefully evaluated as results may differ and the issue is not resolved by 7 

statistical theory (see also Murtaugh 2009). Raffalovich et al. (2008) provided strong evidence 8 

that, for large sample sizes as in our case, BIC has the greatest ability to identify most of the 9 

generating processes, while AIC and other criteria (except stepwise selection) should be avoided 10 

(see also Link and Barker 2006, Arnold 2010). We tested this using the FWS data. We ran 11 

occupancy models with and without an uninformative randomly distributed variable (generated 12 

using random number algorithms or by permutation of one of the predictor covariates) and 13 

compared them using BIC (for a similar approach see Whittingham et al. 2005). We repeated this 14 

procedure 1000 times, for different distributions of random covariates and for different species. 15 

In all cases, the BIC correctly excluded the random covariates, whereas AIC favored their 16 

inclusion (∆AIC <2). Thus, for our datasets we used BIC, excluding all covariates causing an 17 

increase in BIC of more than two units (note, ∆BIC <= 2 indicates similar support for keeping 18 

covariates in a model). 19 

Model screening step – To find the most appropriate parameterization of each of the six 20 

competing models (Table 1) for each species, we used a 2-step screening procedure of candidate 21 

models for each of the final six competing models. First, we found the most appropriate set of 22 

alternative covariates to include (e.g., choosing among correlated predictor covariates, see 23 
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above) and second, we found the most appropriate model complexity (note, all models included, 1 

in addition, the three covariates modeling forest harvesting and fire disturbance: Recent Cut, 2 

Recent Burn, Old Cut or Burn, see Table A2). For example, for the Disturbance model (Table 1), 3 

we first selected the most appropriate parameterization to model the effect of urban areas or 4 

mines. We compared two alternative parameterizations, a 2-level dummy factor to distinguish 5 

sampling units with or without urban areas or mines, or a numeric covariate (proportion of 6 

sampling unit covered by urban areas or mines). For the Climate Variability model, we chose 7 

between using deviations from the normal temperature and deviations from the normal snowfall 8 

(the two measures were correlated); hence, together with the previous two comparisons, this lead 9 

to four different parameterizations to evaluate for the Climate Variability model. Four additional 10 

different parameterizations were evaluated for the Climate Envelope models, to identify the most 11 

appropriate climate envelope covariate to include for each species. Last, for the Landcover 12 

model we considered four additional groups of covariates – open water, wetland, forest, and 13 

grasslands/crops – but, to avoid the unit-sum constraint of proportion data, we selected the most 14 

appropriate among the alternative combinations of three of the landcover covariates. To model 15 

the effects of wetland and forest cover, we also evaluated for each species whether it was more 16 

appropriate to allow for a difference in the response to marshlands vs. bogs and fens (similarly, 17 

for coniferous vs. deciduous cover). Thus, for the Landcover model, we selected the most 18 

appropriate among a total of 21 different covariate combinations. Candidate sets always included 19 

interaction terms and, if there were multiple models with ∆BIC <= 2, we selected the more 20 

complex model to retain biologically relevant covariates. Note that the screening procedure was 21 

repeated for each of the six competing model groups, in order to keep them independent. 22 
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Having selected the most appropriate covariates to include for each model, we used a 1 

backwards elimination procedure – an efficient alternative to all-subset comparisons (Sauerbrei 2 

et al. 2008) – to find the most parsimonious model structure for the fixed effects, with two 3 

constraints. First, each of the six models had to include at least one of the defining covariates 4 

(e.g. a landcover variable for the Landcover model). Second, the three covariates modeling forest 5 

harvesting and fire disturbance (Recent Cut, Recent Burn, Old Cut or Burn) were always left in, 6 

to allow a test of the natural disturbance emulation hypothesis. 7 

Testing the natural disturbance emulation hypothesis – We used BIC-based multi-model 8 

selection and model averaging procedures to evaluate the support for the predictions of the 9 

natural disturbance emulation paradigm (ENDR) of forest management. Observed bird species 10 

distributions might differ between areas subjected to forest disturbance and non-disturbed areas, 11 

and might vary over time with forest succession, but the patterns should not differ between areas 12 

disturbed by fire and areas disturbed by forest harvesting. Hence, we established four a priori 13 

models to evaluate these predictions: a model including separate parameter estimates for the 14 

response to recent burns and cuts; two models each including only one of the two covariates (this 15 

amounts to setting the parameter estimate to zero for the excluded covariate, see Burnham and 16 

Anderson 2002); a model with both covariates excluded (i.e. no response to either disturbance); a 17 

model including a covariate measuring the total area covered by both disturbances (Recent Cut 18 

and Burn). The last two models would be in agreement with the natural disturbance emulation 19 

hypothesis, whereas the others would falsify it. To estimate variation over time in the response to 20 

forest disturbance we also compared each of the four ENDR models to a model with the 21 

covariate Old Cut and Burn (i.e. areas cut or burned within 10 years) excluded, and we evaluated 22 

the support for a single covariate measuring the total extent of forest in re-growth (Regen; i.e., 23 



Börger et al. Modeling Distribution Dynamics 

  20 

forest disturbed after 1976). All six ENDR models were compared based on BIC values, as 1 

described previously. This model comparison was repeated for each of the five model groups 2 

which included disturbance covariates (i.e. except the baseline model, see Table 1), using the 3 

final model structure selected with the model screening step described previously. Support for 4 

the natural disturbance emulation hypothesis was then evaluated using model averaging as 5 

described below.  6 

Evaluating temporal variation – In the final step before model averaging, we evaluated 7 

the support for different covariates to model temporal variation. After the model screening step 8 

and the ENDR test, all six competing models (Table 1) retained ‘Year’ covariate (of linear or 9 

polynomial form, depending on the species). For each model, we then evaluated the support for 10 

the hypothesis that the population was stable (i.e. by excluding the year covariate) as well as for 11 

the hypothesis that temporal variation is driven by large-scale climate variability caused by the 12 

El Nino Southern Oscillation (ENSO) or the North Atlantic Oscillation (NAO). Specifically, for 13 

the latter, we did this by excluding the year covariate and including the ENSO and/or NAO 14 

covariate(s) (Table A2). To also evaluate the relative influences of large- versus local-scale 15 

climatic variability, we included the ENSO and NAO covariates in models with and without the 16 

covariates for local climate variability (the ‘deviation-from-climate-normals’ covariates; Table 17 

A2). Note that, given how we set up our competing models (Table 1) and the model screening 18 

procedure, all models up to this step always included at least one local climate variability 19 

covariate (except for the baseline model). 20 

Model averaging – Having selected the most adequate parameterization for each of the 21 

six competing models, after the model screening and the ENDR and temporal variation tests, we 22 

used Bayesian multimodel inference combined with the BIC criterion as a computationally 23 
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simple asymptotic approximation of the Bayes factor (for details see Link and Barker 2006, Link 1 

and Barker 2009) for inferential purposes. Using the BIC combined with uniform prior weights 2 

for the set of competing models, we obtained BIC weights, using the same formula as for AIC 3 

weights (Burnham and Anderson 2002). BIC weights are approximate posterior probabilities 4 

indicating the relative degree of support from the data for each model in the set. An appealing 5 

feature of model averaging procedures is that they generally provide more robust point estimates 6 

and more adequate standard errors for all parameters, as estimates are not any longer conditional 7 

on a single model but include the uncertainty associated with model selection. Furthermore, a 8 

measure of the relative importance of each covariate can be obtained by summing, for each 9 

covariate, the weights of all models where the covariate was included (Burnham and Anderson 10 

2002).  11 

Assessing the predictive ability – We assessed the predictive ability on temporally and 12 

spatially independent data by selecting data collected from 1997 – 2000 (1997 – 1999 for the 13 

FWS data) for the Ontario Shield ecozone (i.e., same area but different time) and data collected 14 

in 2000 – 2006 (2001 – 2005 for OBBA2 data) in the Hudson Bay Lowlands ecozone (i.e. same 15 

time but different area; see Figure 2); for the importance of using independent data for model 16 

validation see Wenger & Olden (2012). Given our interest in assessing the ecological relevance 17 

of the estimated environmental predictors of waterbird occupancy dynamics, and not in 18 

predictive ability per se, we assessed the predictive power of the model averaged fixed effects 19 

predictors (the Habitat Suitability Index, HSI), without including the additional variance 20 

accounted for by the random effects (where the latter account for sampling and observer effects). 21 

Measuring predictive ability is not trivial for binomial data, as the accuracy of estimation 22 

depends on overall prevalence, sample size and true degree of agreement (Liu et al. 2011), and 23 
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the traditionally used AUC and Kappa-statistics are potentially misleading (Lobo et al. 2008). 1 

Therefore, following recommendations provided by Liu et al. (2011), we provide sensitivity 2 

(sens) and specificity (spec) measures, which are conditional probabilities (conditional on the 3 

observations) that a known presence (or absence) site is correctly predicted. Second, we used the 4 

true-skill statistics (TSS, see Allouche et al. 2006), considered to be one of the best available 5 

measures (Liu et al. 2011). It is calculated from the sensitivity and specificity measures (TSS = 6 

sens + spec - 1); negative or zero values indicate that the predictive ability is not better than 7 

random, positive values (max = 1) indicate better-than-random predictions. TSS is a threshold–8 

dependent measure, but, as for all threshold-dependent measures, by systematically changing the 9 

threshold value it can be converted into a threshold-independent value (Liu et al. 2011). As 10 

optimization criterion we maximized TSS, which then corresponds to the value of the maximum 11 

vertical distance between the ROC curve and the diagonal (MVDr, see Liu et al. 2011).  We then 12 

used formula σ1 from Liu et al. (2011) to calculate confidence intervals for TSS. While 13 

sensitivity and specificity are probabilities conditional on the observations, there exist two 14 

counterparts, positive predictive value (PPV) and negative predictive value (NPV), which are 15 

conditional on the predictions (e.g., PPV gives the probability that a predicted presence site is 16 

also a true presence); hence, following Liu et al. (2011) we also provide these measures. Finally, 17 

we also calculated AUC values, using the somers2 function from the Hmisc package (Harrell Jr. 18 

2010) version 3.8-2,  and the overall accuracy (total proportion of correct predictions). Liu et al. 19 

(2011) also recommended using simulations or randomizations to provide statistical tests, thus 20 

for all major accuracy measures used, we evaluated if the estimated value was outside the 21 

confidence interval of values obtained by random predictions (N = 10000 repetitions; α = 0.05). 22 

Specifically, for binomial data there is a direct relationship between overall accuracy of random 23 
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predictions and prevalence (Fielding 2002). Hence, for each species validation dataset, we 1 

generated random presence/absence data with the same prevalence as the test data and calculated 2 

the resulting accuracy measures, to obtain a confidence interval for each accuracy measure.  3 

Evaluating interspecific niche overlap and effects of heterospecific presence – The model 4 

averaged predictors (i.e. the habitat suitability indices) were the best estimates of the distribution 5 

of single species in relation to environmental variation, after correcting for sampling bias and 6 

observer differences. Hence, we used Spearman ranked correlations between predicted habitat 7 

suitability indices (i.e., probabilities of occupancy) to measure congruence (or difference) of 8 

responses by different species to environmental variation (hence, the term “niche overlap”). To 9 

evaluate whether the presence of conspecifics explained further variance in species distributions, 10 

in addition to the effects of the other spatio-temporal predictors, we took the residuals from the 11 

best fitting model for each species and included those as predictors in the best fitting model of 12 

the other species and compared the models using BIC. 13 

Finally, many of the cavity nesting waterfowl should have indirect interactions with 14 

cavity excavating woodpeckers (assuming that they are at least in some part nest site limited). 15 

Thus, we used the OBBA2 Atlas data (specifically, the 5-year breeding evidence data, not the 16 

yearly point counts, as the former are more reliable for species that generally breed earlier in the 17 

season such as woodpeckers) to generate an index of cavity excavator presence (i.e., at least one 18 

woodpecker species recorded as breeding in the area; we repeated this analysis both using all 19 

woodpecker species as well as by including only species that excavate cavities large enough for 20 

waterfowl – Pileated Woodpecker Dryocopus pileatus and Northern Flicker Colaptes auratus) 21 

and included it as an additional covariate for all FWS segments that crossed at least one sampled 22 

OBBA2 square. To test for indirect interactions acting through the effects on forest cover, we 23 
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allowed also for interactions with the covariates for forest cover, recent burn, recent cut, old 1 

cut/burn. 2 

Results 3 

Which spatial and temporal processes have the largest influence on boreal forest waterbird 4 

distributions and at what spatio-temporal scales do they act?  5 

For the Ontario Breeding Bird Atlas point count data (OBBA2), most of the variance in breeding 6 

season waterbird occupancy patterns was associated with differences among observers (Figure 7 

3), even after correcting for differences in the number of point counts (Figure A1) and 8 

differences between the northern and southern sampling unit sections (see Figure 3). Importantly, 9 

responses were species-specific (Figure A1), i.e. some observers were better able to spot a 10 

certain species, but not so other species. After controlling for observer bias, most of the variance 11 

was associated with the smallest sampling unit (100 km2 squares, see Figure 3). Specifically, 12 

only for the Common Yellowthroat (Geothlypis trichas), the largest variance was not attributed 13 

to observer effects but was associated with the 10x10km squares; for the Northern Waterthrush 14 

(Parkesia noveboracensis) differences between the northern and southern sampling regions were 15 

even more influential, whereas for the remaining species (Alder Flycatcher Empidonax alnorum, 16 

Swamp Sparrow Melospiza georgiana, Red-winged Blackbird Agelaius phoeniceus, Common 17 

Loon Gavia immer) the largest variance was attributed to observer effects. In contrast, observer 18 

effects accounted for a smaller part of the variance than variation between sampling units for the 19 

FWS data. For the FWS data, the largest proportion of the variance was associated with the 20 

smallest spatial scale (the segment level, corresponding to scales of 11.5 km2; see Figure 3), 21 

except for American Black Duck (Anas rubripes) and Canada Goose (Branta canadensis), 22 

species for which more variation was associated with the transect level. However, a non-23 
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negligible amount of variation was due to observer effects (Figure 3) for all species, except 1 

Canada Goose. Specifically, differences between pairs of observers accounted for a large part of 2 

the variance for Green-winged teal (Anas crecca) and Common Goldeneye (Bucephala 3 

clangula), less, but still influential for Mallard (Anas platyrhynchos), even less for Bufflehead 4 

(Bucephala albeola) and American Black Duck, and only a small amount of variation for Ring-5 

necked Duck (Aythya collaris) and Mergansers (Mergus sp. and Lophodytes cucullatus). 6 

Interestingly, the conditional modes (or BLUPs – Best Linear Unbiased Predictors) associated 7 

with the eight different pairs of observers showed large differences in probabilities of detecting 8 

individuals between observers (e.g., over 30% differences in prevalence for Goldeneye), but 9 

interestingly differences between observers were not consistent for different species. 10 

To evaluate the variance explained by the fixed effects covariates, we compared the 11 

estimated variance associated with the random effects in models with and without including the 12 

fixed effects (Pinheiro and Bates 2000). This showed that a large part of the variance associated 13 

with the random effects (over 90%, except the variance due to observer effects) could be 14 

explained by the fixed effects covariates. Specifically, most of the variance in occupancy was 15 

explained by habitat selection, with a similar influence of habitat disturbance and habitat 16 

distribution (Figure 4A). The latter was mostly determined by differences in local habitat 17 

availability of specific landcover types (Figure 4B). Climatic niche, habitat heterogeneity and/or 18 

consistent geographic gradients were markedly less influential for most species (Figure 4B). 19 

Most of the temporal variance was determined by year-to-year climate variability (i.e., weather; 20 

Fig, 4A); a consistent temporal trend was detected for only two species, Ring-necked Ducks and 21 

Red-winged Blackbirds (Figure 4): the model-averaged predicted probability of occupancy 22 
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decreased from about 65% in 2000 to 55% in 2006 for Ring-necked Duck, whereas for Red-1 

winged Blackbird it increased from ca. 30% in 2001 to 60% in 2005 (Figure A2). 2 

Is the distribution of boreal waterbirds similar between landscapes subjected to anthropogenic 3 

and natural disturbances, as predicted by the natural disturbance emulation hypothesis?  4 

Fire and timber harvest affected the probability of occupancy of ten of the fourteen waterbird 5 

species (Figure 5). Notably, the response varied over time with forest succession and among 6 

species: six species responded only to forest disturbances less than 10 years prior to 1996, and 7 

not to forest disturbances older than 10; three species responded only to the availability of areas 8 

in re-growth greater than 10 years old (Figure 5). Specifically, only the Common Loon 9 

responded similarly (positive response) to recent and older forest disturbances as well as to older 10 

forest cover; occupancy instead differed depending on availability of open water, as areas with 11 

open water and regenerating forest were twice as likely to be occupied compared to areas with 12 

open water and mature forest (Table A13). Two other diving species, Goldeneye and Ring-13 

necked Duck, showed evidence for responding similarly to older disturbances and mature forest 14 

(but not to recently disturbed forests). Mallard and American Black Duck, instead, avoided 15 

recently disturbed as well as mature forest areas, but not successional forests 10 – 20 years post 16 

disturbance; the negative response of Mallards was stronger if combined with urban or mining 17 

areas (Table A9). Canada Goose and Swamp Sparrow avoided recently burned or logged areas, 18 

Red-winged Blackbirds avoided forests older than 20 years. Alder Flycatcher and Common 19 

Yellowthroat strongly preferred early successional forests, with Alder Flycatcher also avoiding 20 

mature forest. Responses to fire and timber harvest differed for only one species, the Canada 21 

Goose, with a larger negative response to recently harvested sites which, however, disappeared 22 

after 10 years (Figure 5). 23 
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Road density affected the distribution of six waterbird species, whereas only two 1 

responded to the presence of urban areas or mines (Figure 5). Synanthropic species such as 2 

Mallard and Canada Goose occurred more frequently in urban or mining areas or areas with 3 

higher road densities (but, for Mallard, not in combination with regenerating forest, Table A9), 4 

whereas Common Loon strongly avoided areas with higher road density (Table A13; note that 5 

the presence or absence of mines or urbanized areas had no additional or interacting effect). 6 

Interestingly, Swamp Sparrows preferred landcover associated with mines or urban areas but 7 

avoided areas with higher road density, suggesting that the preference is mainly for microhabitats 8 

created in association with mining activities, such as ponds and borrow pits. There were no clear 9 

patterns associated with climate variability covariates: large-scale climate indices (mainly El 10 

Nino) and local measures of climate variability had similar effect sizes, affecting the same 11 

number of species, and for some species (Mergansers, Mallard and Goldeneye) both large-scale 12 

climate and local climate variability affected probability of occupancy (Figure 5). 13 

The availability of specific landcover types (e.g. open water cover) had the highest effect 14 

sizes and affected most species (Figure 5). Generally, diving and cavity nesting species strongly 15 

favored forest and open water cover (and/or avoided wetlands), whereas availability of 16 

grasslands or agricultural areas affected only Canada Goose (a positive response, consistent with 17 

the fact that this is the only grazing species among the set of modeled species). Most species did 18 

not respond differently to forest dominated by coniferous versus deciduous trees, except 19 

American Black Duck which showed strong avoidance of coniferous forest (Table A4), and 20 

Green-winged Teal and Ring-necked Duck which both showed some evidence of a preference 21 

for deciduous cover (Tables A5, A11). Two aerial and shrub-associated species, Common 22 

Yellowthroat and Alder Flycatcher, strongly avoided forests and open water bodies. Most species 23 
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did not respond differently to availability of bogs and fens, nor marshes and swamps, except 1 

Bufflehead and Merganser (both avoided bogs and fens, but not areas with marshes; Tables S6, 2 

S10), whereas Northern Waterthrush was more likely to be found in areas with open water, bogs 3 

and fens, or marshes and swamps, but less so in areas with marshes and abundant water cover 4 

(Table A15). Bioclimatic covariates or habitat heterogeneity had little or no effects on waterbird 5 

distributions, except for Red-winged Blackbirds which had a higher probability of occurrence in 6 

areas with higher habitat heterogeneity and, especially, with higher average annual mean 7 

temperature (see Figure 5).  8 

The model averaged fixed-effects covariates (i.e. the habitat suitability estimates, Tables 9 

A4 – A17) not only accounted well for the observed distribution patterns but had also good 10 

predictive ability on independent data over time (years 1997-2000) and space (Hudson Bay 11 

Lowlands ecozone; see Table A18). Thus reasonable and ecologically relevant habitat suitability 12 

models were obtained for boreal forest waterbird species. 13 

Are there general patterns in habitat suitability between groups of waterbird species and, after 14 

controlling for habitat effects, is there evidence for interspecific interactions?  15 

There were strong similarities between habitat preferences of waterfowl as well as among the 16 

other waterbirds (Figure 6 A+B); interestingly, only Canada Goose showed strong evidence for 17 

different preferences of habitat suitability from all other waterfowl species (i.e., always negative 18 

correlations; Table A19A), in accordance with the observed differences in habitat parameter 19 

estimates (Figure 5). Green-winged Teal showed some evidence (albeit less consistently than 20 

Canada Goose) for a general difference in habitat suitability (although most covariates poorly 21 

explained Green-winged Teal occupancy patterns, see Table A21). Notably, no strong or 22 

consistent correlations between species could be detected using the raw detection/nondetection 23 
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data (not shown), because patterns were strongly masked by sampling and detectability biases. 1 

After controlling for habitat suitability, strong evidence was found that waterbird occupancy 2 

dynamics might also be affected by the presence of other species (Figure 6 C+D). Importantly, 3 

all habitat suitability parameter estimates were essentially unaffected when including the 4 

presence of other species as predictors in the model (not shown). Finally, following the 5 

suggestion from a reviewer, we tested the hypothesis that cavity nesting waterfowl might 6 

(in)directly be affected by cavity excavating woodpeckers (assuming that the former are at least 7 

in some parts nest site limited). In total 289 FWS segments crossed at least one sampled OBBA2 8 

square, 115 without and 174 with one or more recorded breeding excavating species (for a total 9 

of 1213 segment-year records). We refitted the selected best models for cavity nesting waterfowl 10 

(Bufflehead, Goldeneye, and Merganser) with and without the excavator-species index (we 11 

allowed also for interactions with the proportion of forest cover or of recent/old cut/burned areas, 12 

to test for indirect effects) and compared the BIC statistics. The data showed no support for an 13 

additional effect of an interaction with excavator species (∆BIC >= 4). The same results was 14 

obtained considering only large woodpecker species (Pileated Woodpecker and Northern 15 

Flicker). 16 

Discussion 17 

Species distributions are dynamic patterns continuously re-shaped by ecological processes acting 18 

across various levels of organization (Holt 2003, Struve et al. 2010) and an explicit consideration 19 

of time scales is essential for understanding the underlying mechanisms (Hastings 2010). We 20 

showed that species distributions are as affected by climate variability (weather) and habitat 21 

disturbance as they are by stable species-habitat relationships. Modeling time series of species 22 

occurrences allows a more nuanced understanding of species responses to forest management as 23 
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well as of species interactions, but reliable results also required accounting for the sampling 1 

effort and observer bias. 2 

 Temporal variation 3 

Temporal variability was mainly due to year-to-year variation in probability of occupancy. Only 4 

two species showed evidence for consistent trends, and were similarly influenced by habitat 5 

distribution and by disturbance (Figure 4; note that the trend for Red-winged Blackbirds is 6 

consistent with BBS trend data for Ontario). Model selection results (Figure 5), supported also 7 

by evidence of predictive ability over time (Table A18A), suggest that the underlying process 8 

may be a response to yearly variation in springtime weather (especially related to variation in 9 

local precipitation, temperature, or snow fall, or to large-scale variations such as the El Nino 10 

Southern Oscillation). Accordingly, the FWS pilots reported empirical observations on the 11 

effects of weather on the availability of water bodies and wetlands (i.e. wet or dry years), as well 12 

as on plant phenology, and hence on the distribution of waterbirds (U.S. Fish and Wildlife 13 

Service 2010). Indeed, Heikkinen et al. (2006) suggested that using only spatial variation in 14 

long-term climatic conditions, as modeled by long-term climate covariates (e.g. annual mean 15 

temperature), may be insufficient to understand the role of climate in species distribution 16 

dynamics and Reside et al. (2010) provided evidence that shifts in vagile desert bird species 17 

distributions may be better explained as a response to weather than to average climatic 18 

conditions. Here we showed that this may apply also to boreal forest waterbirds and we propose 19 

that our approach of using deviations from climate normals as measure of climate 20 

variability/weather allows better separation of responses to average climate conditions versus 21 

weather than the approach used by Reside et al (2010).  22 
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Current climate change scenarios (Easterling et al. 2000, Portmann et al. 2009) predict 1 

increased climatic variability, thus including this process in species distribution models may 2 

provide important insights. For some species, this may be achieved by using readily available 3 

large-scale climate indices, especially the El Nino index (Figure 5). Local weather conditions, 4 

however, may vary greatly, a pattern not captured by large-scale climate indices (but see Hallett 5 

et al. 2004), and indeed several species responded also (or only) to local-scale climate variability 6 

(e.g. Bufflehead, Ring-necked Duck and Goldeneye; Figure 5). The results suggest also that 7 

species distribution models based on data collected over a single time period may provide a 8 

rather incomplete representation of the determinants of species distributions and may be 9 

therefore inadequate to predict future responses to environmental change. 10 

Spatial variation — habitat associations 11 

Spatial variation in species distributions was predominantly affected by local-scale spatial 12 

processes, mainly variation in habitat conditions related to habitat disturbance and the 13 

distribution of specific land cover types; variation in habitat heterogeneity or in bioclimatic 14 

conditions were markedly less influential on species occupancy (Figures 3 & 4). These results 15 

strongly suggest that species distribution models excluding more specific land cover information 16 

(e.g. Gotelli et al. 2010) may be missing some of the most important environmental drivers of 17 

species distributions and raises concerns on resulting claims of evidence of species interactions 18 

(see below). We obtained robust habitat suitability estimates, as demonstrated by good predictive 19 

ability on independent data from the Hudson Bay Lowlands ecozone (Figure 2) and the modeled 20 

species-habitat relationships (Figure 5; Tables A4-A17) are in agreement with current knowledge 21 

on the better-studied boreal forest waterbird species; it also constitutes some of the first large-22 

scale information for the less-studied ones (Poole 2005). This result is especially important from 23 
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a management perspective, as we used satellite land cover maps and broad habitat 1 

categorizations (Figure 5), facilitating analyses at scales relevant to forest management.  2 

Satellite maps suffer from known inaccuracies (Maxie et al. 2010), but our results are in 3 

agreement with Thompson et al. (2007) who demonstrated that even marked inaccuracies in 4 

habitat maps may not substantially affect the quality of derived habitat suitability estimates. For 5 

example, we showed that Swamp Sparrows preferred wetlands associated with mines or urban 6 

areas, but avoided areas with higher road density, in accordance with the observation that this 7 

species has in the last decades started to colonize small water bodies or wetland areas associated 8 

with mines (Poole 2005). Similarly, Canada Goose are correctly identified as a species with a 9 

distinct ecology from the other waterfowl species, whereas dabbling or diving species show 10 

strong similarities in habitat associations (Figures 5 & 6). 11 

Spatial variation — habitat disturbances 12 

As expected for species living in the boreal forest, disturbance caused by fire or forest harvesting 13 

had a large effect on species distribution patterns (Figure 4). The effects were species-specific 14 

and changed over time with forest succession (Figure 5), in accordance with the suggestion that 15 

it is important to closely consider the underlying generating processes (Vallecillo et al. 2009) to 16 

predict bird distributions in response to land cover change. For example, Alder Flycatcher are 17 

known to nest in dense shrubs whereas Canada Goose avoid areas without clear visibility around 18 

the nest (Poole 2005) and, accordingly, the two species preferred or avoided, respectively, 19 

recently disturbed sites, but not areas disturbed more than ten years previously (Figure 5). 20 

Waterbirds also responded to roads and mines/settlements, albeit less frequently and with smaller 21 

effect sizes, although it must be considered that the study area was generally characterized by 22 

very low densities of roads or mines/settlements. In general, modeled responses were as 23 
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expected, with a positive response by synanthropic species (Mallard, Canada Goose) and 1 

avoidance of roads by less-tolerant species such as the Common Loon, in accordance with a 2 

recent long-term study in New Hampshire – USA (Kuhn et al. 2011).  3 

Understanding species distribution responses to habitat disturbance is also crucially 4 

needed for implementing and monitoring the efficacy of natural resource management policies 5 

(Crow and Perera 2004, Nitschke 2005, Fenton et al. 2009, Long 2009) but large landscape-scale 6 

studies, especially studies comparing multiple disturbance types, are lacking (Van Wilgenburg 7 

and Hobson 2008). We undertook one of the first of such large scale investigations and our 8 

results (Figure 5) provide strong evidence that the premises of the natural disturbance emulation 9 

paradigm, as the basis of Ontario’s forest management policy, are supported, at least for 10 

waterbirds, as most waterbird species responded similarly to fire and forest harvesting 11 

disturbance. However, we modeled the 14 most common species, out of at least 84 waterbird 12 

species breeding in the boreal forest of Ontario (based on data from 2001 to 2005 from the 13 

Ontario Breeding Bird Atlas). Extrapolating the result that one species (Canada Goose) out of 14 

fourteen responded differently to landscapes disturbed by forest harvesting or fire could suggest 15 

that the objective of current forest management policies may not be met for up to 30 waterbird 16 

species (mean = 6 species; 95% CI 1 – 30 species; 1-sample proportions test with continuity 17 

correction), in accordance with some research on forest birds (Van Wilgenburg and Hobson 18 

2008) and especially on riparian birds in boreal shoreline forest and riparian areas (Kardynal et 19 

al. 2009), but in disagreement with other studies on forest birds (Wyshynski and Nudds 2009). 20 

Interestingly, Lemelin et al. (2007) detected a short-term (~ 4 years) and small-scale (2 km) 21 

positive response to forest harvesting by Canada Goose and Green-winged Teal in Quebec, 22 

contrary to our findings at larger/longer scales in Ontario, and no response by other waterfowl 23 
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species and hence claimed that boreal forest waterfowl exhibit some resilience to disturbance. A 1 

crucial shortcoming of that study, however, was not to correct for the confounding effects of 2 

population increases caused by other factors. In fact, Canada Goose increased markedly during 3 

the study period analyzed by the authors (see Fig. 2 in Lemelin et al. 2007) strongly suggesting 4 

that the apparent positive response to forest harvesting might be a spurious relationship. This 5 

highlights the importance of our approach, which allows correction for the effects of 6 

confounding variables.  7 

Disagreements between research findings regarding responses to timber harvest have 8 

been found for other groups such as mammals (Fisher and Wilkinson 2005, Nielsen et al. 2008, 9 

Zwolak 2009) and arthropods (Buddle et al. 2006, Work et al. 2010). Differences in the response 10 

may be especially marked for resident bird species or become evident after multiple forest 11 

harvesting events (Imbeau et al. 2001) and will be strongly affected by specific forest harvesting 12 

procedures (Drever et al. 2006, Van Wilgenburg and Hobson 2008, Work et al. 2010), such as 13 

the maintenance of non-harvested buffer zones around water bodies and in-block residual tree 14 

retention. This debate suggests that experimental tests of model predictions would be desirable, 15 

as recently initiated by Kardynal et al. (2009, 2011). Our model predictions (Tables A4-A17) are 16 

ideally suited for this objective, providing quantitative and time-varying predictions for different 17 

areas over large spatial scales, hence allowing the selection of a convenient set of experimental 18 

sites. Similarly, it will be important to continue recording species responses to forest 19 

management to allow a refinement of modeling results as well as forest management policies in 20 

an adaptive management context. However, the detailed land cover data mapping of forest 21 

harvesting and fire disturbances across the Boreal forest of Ontario that allowed us to obtain 22 

relevant results are no longer available – the last update being in 2000. In this latter update, the 23 
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distinction between less-than-ten-year-old disturbances and those between 10 and 20 years has 1 

also been dropped (Spectranalysis Inc. 2000), yet our results demonstrate the relevance of this 2 

temporal distinction in understanding differences in species responses (Figure 5). 3 

Interspecific interactions 4 

Obtaining robust habitat suitability estimates for each species allowed us to highlight strong 5 

commonalities between waterbird species, to identify species with different ecological 6 

requirements like the Canada Goose (Figure 6), and to highlight interspecific interactions 7 

affecting species distribution patterns (Figure 6). The absence of expected interactions (e.g., 8 

between Mallard and Black Duck) and the observed correlations, however, could also result if 9 

there are unmeasured habitat relationships not included in the models confounding estimation of 10 

interspecific interactions; or, alternatively, if species interactions occur at finer spatial scales 11 

such as the wetland or local wetland complex scales. Consequently, our results highlight the need 12 

to exert caution when examining evidence for apparent interspecific interactions from survey 13 

data, as the results may be biased by unmeasured habitat relationships (Guisan and Thuiller 14 

2005) and scale effects. Our approach is a straightforward and easy way to investigate this issue, 15 

and it might be extended to include less-common species using Bayesian multivariate logistic 16 

regression models (Sebastián-González et al. 2010, Ovaskainen and Soininen 2011). 17 

Furthermore, we investigated if the data provided evidence for the expectation that cavity nesting 18 

waterfowl should respond to the presence of cavity excavating woodpeckers. Contrary to this 19 

expectation, but in accordance with Lemelin et al. (2007), the data did not provide any support 20 

for an effect of cavity excavating species. A cautionary note, however, is that the waterfowl and 21 

woodpecker data had been collected by two different surveys (FWS and OBBA2, respectively) 22 
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using different spatial sampling scales. Our results should therefore be further evaluated using 1 

specifically designed surveys. 2 

Observer effects and monitoring design 3 

Management questions often require the most efficient use of existing data (e.g. survey data) 4 

even if originally collected for different purposes (Rushton et al. 2004), to avoid time-consuming 5 

and costly new data collection. We demonstrated that the FWS fixed-wing survey and OBBA2 6 

point count data can be used to obtain robust and management-relevant inferences on waterbird 7 

distribution dynamics and ecology in the boreal forest, although both surveys were developed for 8 

different purposes and for analyses at larger resolution (e.g. see Smith 1995). For the point count 9 

data, waterbirds are generally excluded from the analyses, due to the lower detectability 10 

compared to landbirds. We provided a robust model-based approach to solve these issues, using 11 

hierarchical models efficiently fitted using GLMM modeling methods. For example, our results 12 

indicate that future OBBA2 point counts should collect at least 40 point counts (Figure A1), 13 

spread over a set of years to allow modeling of temporal variation. Similarly, observer IDs 14 

should always be provided together with the FWS data (contrary to current practice). 15 

Management implications 16 

We showed that by including the effects of climate variability and natural and anthropogenic 17 

disturbances into species distribution models, as well as population dynamics, considerably more 18 

management relevant information can be obtained from existing large-scale monitoring data. 19 

Focusing on boreal forest waterbirds, we found that species responses to fire and forest 20 

harvesting were similar for 13 of the 14 most common species; thus, forest harvesting practices 21 

in Ontario generally appeared to emulate the effects of fire for waterbirds over time scales of 10-22 

20 years. Extrapolating to all 84 waterbird species breeding on the Ontario shield, however, 23 
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suggested that up to 30 species may instead have altered (short-term) distribution dynamics due 1 

to forestry practices. Hence, natural disturbances are critical components of the ecology of the 2 

boreal forest and forest practices which aim to approximate them may succeed in allowing the 3 

maintenance of the associated species, but improved monitoring and modeling of large-scale 4 

boreal forest bird distribution dynamics will be necessary to resolve existing uncertainties, 5 

especially for less-common species. Also, the impact of specific forestry practices, such as mean 6 

cutblock size and residual retention, as well as of biotic interactions, will need to be evaluated, 7 

using more fine scale and detailed data. Model predictions should be tested with independent 8 

data. In addition, the marked responses to climate variability indicates a need to consider the 9 

likely effects of climate-change on waterbird distribution dynamics. Finally, while we applied 10 

our modeling approach to the Boreal Forest, it should prove of general utility for many other 11 

study systems addressing similar questions. 12 
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Ecological Archives material 1 

SUPPLEMENTAL MATERIAL 2 

Appendix 1  3 

Supplemental tables and figures with landcover composition of the study area, a description of the 4 

environmental covariates used, information on the modeled waterbird species, tables with parameter 5 

estimates and model performance measures, and supplemental figures of estimated model predictions 6 

and bird distribution maps. 7 

 8 
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Table 1. Six competing models of Boreal forest waterbird occupancy in relation to forestry and fire 1 

disturbance in Ontario (Canada). 2 

Model Covariates (fixed effects only) 

Baseline 

model 

YEAR 

TRENDS 

+ 

SAMPLING* 

    

      

Disturbance 

model 

YEAR 

TRENDS 

+ 

SAMPLING* 

+ HABITAT 

DISTURBANCE 

   

      

Climate 

Variability 

model 

YEAR 

TRENDS 

+ 

SAMPLING* 

+ HABITAT 

DISTURBANCE 

+ CLIMATE 

VARIABILITY 

  

      

Geographic 

model 

YEAR 

TRENDS 

+ 

SAMPLING* 

+ HABITAT 

DISTURBANCE 

+ CLIMATE 

VARIABILITY 

+ HABITAT 

HETEROGENEITY 

+ 

GEOGRAPHIC 

GRADIENT 

      

Bioclimate YEAR + HABITAT + CLIMATE + HABITAT + 
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model TRENDS 

+ 

SAMPLING* 

DISTURBANCE VARIABILITY HETEROGENEITY BIOCLIMATE 

      

Landcover 

model 

YEAR 

TRENDS 

+ 

SAMPLING* 

+ HABITAT 

DISTURBANCE 

+ CLIMATE 

VARIABILITY 

+ HABITAT 

HETEROGENEITY 

+ LOCAL 

HABITAT 

Notes: All models shared the same random effects structure, which modeled the data collection 1 

sampling design (e.g. segments, transects and strata for the USFWS fixed winged data) and corrected 2 

for Observer and Year effects (the latter modeled as linear or polynomial term, but allowed to simplify 3 

to a constant intercept in case the data did not support a consistent year trend). See Table A2 for the 4 

covariates used and methods for further details. * Bird Atlas point count data (OBBA2) only; sampling 5 

intensity is modeled as a polynomial function of the number of point counts per sampling square and 6 

year. 7 
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Figure legends 1 

Figure 1: Conceptual modeling approach. Bird distribution patterns at a given site and time are 2 

the outcome of processes acting over multiple spatial and temporal scales, including bias 3 

introduced by the observation process (however, here we focus on the biological part). Whilst 4 

often interconnected we suggest to separate these processes first into (predominantly) temporal 5 

or spatial components. Temporal variation in observed bird distributions is determined by long-6 

scale processes acting on the population dynamics of a species over its entire annual cycle, 7 

whereas variation around these trends is affected by the response of individuals to climate 8 

variability (note that population  dynamics may also be linked to spatial variation via dispersal 9 

dynamics). Spatial variation is governed by the distribution of the physical conditions and 10 

biological resources allowing an individual to occupy a given area (“Habitat distribution”); these 11 

stable associations may be perturbed by natural or human-induced disturbances (“Habitat 12 

disturbance”; note that interspecific interactions are not considered here). This conceptual 13 

subdivision clarifies the different ways a given process may act (e.g., note the distinction 14 

between spatial - “Bioclimate” - and temporal components - “Climate variability” - of the effects 15 

of climate), which in turn aids in selecting the most appropriate covariates (“Covariates”) to use 16 

for modeling (see text for further details). 17 

 18 

Figure. 2: Study area extent and distribution of bird survey data in Ontario (Canada): the study 19 

area (shaded in grey) coincides with the Ontario Shield ecozone; the northern limit of 20 

commercial forest harvesting (dotted black line) marks also the limit of the road network in 21 

Ontario. The two insets on the right show the distribution in the study area of the  May Breeding 22 

Waterfowl fixed-wing Surveys (FWS), of the Ontario Breeding Bird Atlas (OBBA) point counts 23 
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(bottom map), and of the Black Duck Joint Venture helicopter plots and the BBS roadside point 1 

count data (top map). The inset on top left shows the distribution of recent cut areas (light grey), 2 

recent fires (black) and the FWS transects (grey lines) and OBBA2 point counts (open circles). 3 

Survey data from the Hudson Bay Lowlands ecozone (FWS & OBBA2) were used for model 4 

validation (see Text). 5 

 6 

Figure 3: Scales of variation of  breeding-season probability of occupancy of 14 boreal forest 7 

waterbird species in the Ontario Shield ecozone – eight waterfowl taxa monitored by fixed-wing 8 

surveys (FWS) between 2000 - 2006; six other waterbird species monitored by Ontario Breeding 9 

Atlas point counts (OBBA2) between 2001 – 2005. Variance estimates were obtained from 10 

generalized mixed effects logistic models and standardized for each species (to facilitate 11 

comparisons) by dividing by the maximum variance value for each species. In all cases, the 12 

baseline model (see Table 1) was used to decompose the observed variance into contributions 13 

from different scales: the 10 – 100 km2 scale, corresponding to the smallest sampling unit 14 

(“Level1” - segment or square for the FWS or OBBA2 data, respectively); the 10000 km2 or 250 15 

– 850 km2 scale at the second level (Blocks or Transects for OBBA2 or FWS data, respectively) 16 

and the 50000–250000 km scale at the third level (Strata for FWS). In addition, in all cases 17 

observer effects were modeled using additional random effects terms (“Observer” and 18 

“RegionID”, the latter only for OBBA2, accounting for differences between regions supervised 19 

by different regional coordinators). Note the strong impact of observer effects as well as the 20 

similarities in the patterns of scale dependency between the two sets of waterbird species. See 21 

Methods and Results for further explanations. 22 

 23 
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Figure 4: Relative importance of spatio-temporal processes acting on the breeding-season 1 

probability of occupancy of 14 boreal forest waterbird species in the Ontario Shield ecozone 2 

(variable-importance estimates were obtained using multimodel inference). A) Spatial processes 3 

(Habitat distribution and habitat disturbance) strongly affected most species; the occupancy of 4 

many species was also strongly affected by climate variability, whereas only Red-winged 5 

Blackbirds (RWBL) and Ring-necked Ducks (RNDU) showed evidence for consistent multi-year 6 

trends of occupancy. B) Habitat distribution was modeled in four different ways and the local 7 

distribution of specific landcover types (“Local habitat”) predominantly affected the occupancy 8 

of waterbirds, whereas habitat heterogeneity was important only for three species (Red-winged 9 

Blackbird, Mallard (MALL) and Ring-necked Duck); similarly, larger-scale spatial processes 10 

correlated with bioclimate or geographic coordinates had a minor or negligible relative influence 11 

for most species, except bioclimate for red-winged blackbird and a consistent geographic trend, 12 

not well explained by the other spatial covariates, for the Northern Waterthrush (NOWA). 13 

 14 

Figure 5: Effects of environmental disturbances and resource distribution on the breeding season 15 

probability of occurrence of 14 Boreal forest waterbird taxa in the Ontario Shield ecozone 16 

(Canada). Model-averaged effect size and confidence intervals were obtained using GLMMs 17 

(covariates were centred and standardized by 2 sd). Forest disturbance was modeled as the 18 

proportion of the survey area cut (RecCut) or burned (RecBurn) within the last 10 years, or 19 

cut/burned between 10 – 20 years ago (OldCutBurn), or as density of roads (RoadDens) or 20 

proportion of area occupied by settlements or minings (Mining/ Settlements). Climate variability 21 

was modeled using large scale indices (ENSO, NAO) as well as yearly local deviations from 30-22 

year climate normals of average monthly temperature (Tdev), snowfall (Sdev), precipitation 23 
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(Pdev). Bird survey data were obtained from yearly (2000-2006) fixed-wing waterfowl surveys 1 

for American Black Duck (abdu), Green-winged teal (agwt), Bufflehead (buff), Canada goose 2 

(cago), Goldeneye (gold), Mallard (mall), mergansers (merg) and Ring-necked duck (rndu), and 3 

from point counts (2001-2005) from the Ontario Breeding Bird Atlas for Alder flycatcher (alfl), 4 

Common loon (colo), Common yellowthroat (coye), Northern waterthrush (nowa), Red-winged 5 

blackbird (rwbl) and Swamp sparrow (swsp). All taxa are ordered according to foraging life-6 

history (Table 1). See Methods for further detail. 7 

 8 

Figure 6: Niche similarity and interspecific co-occurrence effects on waterbird occupancy 9 

patterns in the boreal forest in the Ontario Shield ecozone (Canada). Niche similarity is defined 10 

as the Spearman-rank correlation between species-specific occupancy estimates obtained from 11 

model-averaged habitat suitability indices (controlling for the sampling design, observer effects 12 

and sampling effort using a logistic regression generalized mixed effects framework; only values 13 

of ρ > abs(0.30) are shown; for full results see Tables S1-S3); effects of heterospecific presences 14 

were evaluated after controlling for shared responses to environmental conditions and observer 15 

effects or sampling bias. A) Similarity between occupancy estimates of waterfowl, based on 16 

FWS fixed-wing survey data (years 2000 – 2007); note that only for Canada goose the 17 

correlation was always negative. B) Similarity between occupancy estimates of waterbirds based 18 

on Ontario Breeding Atlas point count data (years 2001-2005); contrary to waterfowl, the 19 

correlations were always positive between these six species. C) Heterospecific presence effects 20 

on waterfowl occupancy; note that only for Canada goose the probability of occupancy was not 21 

affected by any of the other seven species analyzed. D) Heterospecific presence effects for the 22 
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other six waterbird species; note that, contrary to waterfowl, also negative effects were detected. 1 

See text for additional explanations and species acronyms. 2 
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