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Abstract 

This paper presents a cradle-to-grave comparative Life Cycle Assessment (LCA) of new gas 

atomized (GA) sponge nickel catalysts and evaluates their performance against the both cast 

and crush (CC) sponge nickel and platinum standards currently used in commercial alkaline 

fuel cells (AFC). The LCA takes into account the energy used and emissions throughout the 

entire life cycle of sponge nickel catalysts - ranging from the upstream production of 

materials (mainly aluminium and nickel), to the manufacturing, to the operation and finally to 

the recycling and disposal. Through this assessment it was found that the energy and 

emissions during the operational phase associated with a given catalyst considerably 

outweigh the primary production, manufacturing and recycling. Primary production of the 

nickel (and to a lesser extent dopant materials) also has a significant environmental impact 

but this is offset by operational energy savings over the electrode’s estimated lifetime and end 

of life recyclability. From the results it can be concluded that higher activity spongy nickel 

catalysts produced by gas atomization could have a significantly lower environmental impact 

than either CC nickel or platinum. Doped GA sponge nickel in particular showed comparable 

performance to that of the standard platinum electrode used in AFCs. 

 

Keywords: Sponge (Raney) nickel • Gas Atomization (GA) • Platinum electrode • Alkaline 

Fuel Cell (AFC) •Cast and Crush (CC) • Life Cycle Assessment (LCA) 
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List of abbreviations 

AD Abiotic Depletion 

AFC Alkaline Fuel Cell 

AP Acidification Potential (kg SO2 eq.) 

APU Auxiliary Power Units 

CC Cast and Crush 

CHP Combined Heat and Power System 

CML 2001 Institute of Environmental Sciences, Lieden 

EDIP97 Environmental Design of Industrial Products 

GA Gas Atomisation 

GABI Software by PE international for lifecycle assessment 

GER  Gross Energy Requirement (MJ) 

GHG Green House Gas 

GWP Global Warming Potential (kg CO2 eq.) 

LCA  Life Cycle Assessment 

PEM Polymer Electrolyte Membrane 

PSD  Powder Size Distribution 

SOFC Solid Oxide Fuel Cell 
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1. Introduction 

Over the past twenty years fuel cell technologies have come to be regarded as one of the most 

promising alternative power sources due to their potential for high efficiency electricity 

generation and low environmental impact [1-4]. However, more recently with increasing 

legislation and enhanced environmental awareness efforts have been made to subject various 

fuel cell systems and applications to life cycle assessment (LCA). These assessments have 

embraced a wide range of aspects including the systematic development of the necessary 

tools for life cycle assessment of fuel cell powered vehicles as demonstrated by Contadini et 

al. [5] who combined the Fuel Upstream Energy and Emission Model (FUEEM) with 

academic/manufacturer literature and the work of Pehnt [6, 7], which addressed both 

methodological and environmental aspects with regard to Solid Oxide Fuel Cells (SOFC). In 

addition, such investigations have also concerned themselves with the fundamental question 

of fuel sources for the next generation of automotive propulsion [8, 9] including various 

biofuels [10] as part of this holistic approach towards the environmental impact of fuel cell 

technologies. 

 

In contrast other researchers have focussed more on specific fuel cell types or applications 

including SOFC [11, 12], polymer electrolyte membrane, (PEM) [13] microbial [14] and 

fuel-cell based auxiliary power units (APUs) [15]. Alkaline Fuel Cell (AFC) type fuel cells 

have themselves been the subject of a comprehensive LCA by Staffell and Ingram [16] who 

assessed the impact of including an AFC fuel cell as part of a domestic combined heat and 

power (CHP) system. Their results showed that production of the AFC stack is relatively 

insignificant when compared to the other components of the CHP system, but that the biggest 

environmental impact was from the sulphur dioxide (and other generated respiratory 
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inorganics like particulates)  from the mining/refining of nickel and silver for the electrodes. 

Overall, it was concluded that improvements to the nickel catalysts used - in terms of 

increased activity and longevity – and better design to ease of disassembly and recycling are 

key to improving environmental performance of AFC and fuel cells in general. 

 

The use of Raney or Sponge nickel [17, 18] has been investigated in a number of fuel cell 

applications including as a basis for the electrodes in both AFC [19-21] and SOFC [22] and 

low temperature AFCs are attracting renewed interest [23] due to the potential of low 

material costs coupled with high system efficiencies. One of the driving factors is an 

economic benefit based on the potential to replace platinum and palladium by nickel-based 

electrodes. This has related environmental benefits, due to the scarcity of the noble metals in 

the Earth’s crust the energy requirements and emissions associated with their mining and 

concentration are orders of magnitude greater than those for nickel [24 - 26].  

 

A major drawback to the use of Raney nickel in alkaline fuel cell assemblies is its pyrophoric 

nature [27], which can lead to spontaneous ignition in oxygen containing atmospheres and to 

allow their use as an electrode material the Raney nickel catalyst is commonly stored in 

distilled water where its pyrophoric nature is controlled. Nevertheless, in order to locate the 

catalyst onto the supporting electrode structure a passivation process is carried out that 

typically entails the use of hydrogen peroxide leaching resulting in a thin layer modification 

of the surface. This process creates thin oxide layers which trap entrained hydrogen in the 

surface pores. Once the catalyst is in place on the anode, the passivation step is reversed and 

the material is reactivated by heating the electrode in a hydrogen atmosphere [28].  
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Another disadvantage that has prevented the more widespread use of Raney sponge nickel in 

fuel cells applications has been the unsatisfactory performance, particularly at higher 

electrical currents, and stabilities far below the 4000 hours which could typically be obtained 

from a platinum electrode, [24]. However, as can be seen in Fig. 1, electrodes manufactured 

by a gas atomization process demonstrate operational fuel cell voltages (OCV) that are 

comparable to that of a platinum electrode, for example, 440 mA cm-2 (Doped-Gas Atomised, 

Doped-GA) cf. 500 mA cm-2 (Pt) at a cell voltage of 750 mV. It is also worth noting that 

sponge nickel produced by gas atomization but without doping also offers increased levels of 

activity when compared to the more traditional methods of manufacture: 310 mA cm-2 (Gas 

Atomised, GA) cf. 190 mA cm-2 (Cast and Crush, CC) also at 750 mV. 

 

Approximately 2.5% of primary nickel metal (a majority of which is in the form of sponge 

nickel) is used for catalytic purposes, which in 2001 - according to Larsen and Tyle [29] - 

was equivalent to ~2144 tonnes in Europe. Traditionally sponge nickel has been produced by 

the Cast and Crush (CC) method, which involves the casting of a mixed nickel-aluminium 

ingot (normally 50:50 wt. %). This ingot is then subject to a crushing process that produces a 

50-100 µm powder with the characteristic appearance shown in Fig.2a.  

 

An alternative method for the production of Ni-Al powder is to use the Gas Atomization 

(GA) method. GA has a number of advantages when compared to the Cast and Crush (CC) 

method, in particular the ability to produce smooth and spherical particles with extremely fine 

metallurgical microstructures that are much more refined than those produced by CC (Fig. 

2b) with diameters ranging from >5 µm to ~45 µm. The fine and spherical nature of the 

powder results from GA process where a high velocity gas flow is used to break up a stream 

of molten Ni-Al alloy emerging from a nozzle into a fine spray of liquid metal droplets, 
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which then rapid cool in the gas stream and solidification is extremely high (~106 Ks-1). The 

resulting powder – whether produced by CC or GA – is then subsequently leached with 

sodium hydroxide (caustic leaching) to produce the required nanoporous nickel structure by 

the removal of the aluminium alloy component. Powder size distributions (PSD) for leached 

powders were, for the gas atomisation D10–23.5 µm, D50–34.8 µm and D90–46.9 µm, and for 

the cast and crush, the PSD were D10–10.7 µm, D50–37.2 µm and D90–72.4 µm. 

 

Overall using the GA method to produce powder has distinct advantages when compared to 

CC:  

• Ingot crushing is avoided. 

• Particle size and distribution can be more tightly controlled reducing the need for 

intensive post-processing to recover required particle sizes. 

• Individual particle cooling rates can be controlled resulting in enhanced microstructures 

that subsequently - post-leaching - have higher surfaces areas, which increase catalytic 

activity. 

 

Depending on the cost and required functionality sponge-type catalysts can also be made 

from other metals like platinum and palladium or copper and cobalt also using the Raney 

process [30, 31]. In terms of functionality catalyst activity, selectivity, lifetime and surface 

area for the required reaction are the main considerations. The level of activity of the catalyst 

is a related to the amounts of hydrogen that can be absorbed on the catalyst’s micro-surfaces 

and which can reach levels between 25–100 ml of hydrogen per gram of nickel resulting in 

enhanced reaction. The more readily the hydrogen can be absorbed, the greater the resulting 

activity, though this level of catalytic activity reduces over time as a result of reactive site 
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blockage by e.g. nickel aluminate [32] or surface contamination [33] leading to catalytic 

poisoning and loss of catalyst integrity. Catalyst lifetime is also heavily influenced by the 

operational conditions of the fuel cell like temperature/pressure and cleanliness of the fuel 

source. 

 

The aim of this paper is to carry out a comparative Life Cycle Assessment (LCA) of new gas 

atomized sponge nickel catalysts and evaluate their performance as electrodes against both 

cast and crush sponge nickel and the platinum standard currently used in commercial alkaline 

fuel cell applications. The purpose is to determine whether the increases in catalytic 

activity/performance observed on the laboratory scale could lead to any significant 

environmental improvements over the standard  platinum electrode; with both un-doped and 

doped catalysts (where elements like Fe, Mo, Sn or Ti are added to further enhance catalytic 

activity) considered as part of this assessment. 

 

2.  Life Cycle Methodology 

Generally following ISO14040 guidelines, the objective of the LCA was defined as “to 

understand the environmental impact of the standard sponge-nickel catalyst over its lifetime 

as an electrode within an alkaline fuel cell and whether refinement of the standard catalyst 

could lower the overall impact”. The scope in this application of sponge nickel was limited to 

the effects of materials substitution of a single component within the fuel cell, specifically, 

the contribution made by the catalyst within the electrode, as opposed to the entire fuel cell. 

To this extent, it was decided to ignore additional materials used in its construction (e.g. 

conductive carbon or polymer binders) as similar quantities were used whether the catalyst 

was sponge nickel or platinum catalysts. Furthermore, as the electrodes are interchangeable 

regardless of the catalyst used, the overall materials used in the fuel cell (e.g. housing and 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

9 

cathode materials) also remain the same; thus, these were also ignored in the overall 

assessment.  

 

The compilation of inventory data for each of the steps in the process was done with the 

objective of prioritising process data which had itself been derived to ISO1040 standards. The 

benchmark standard catalyst chosen for comparison was one produced via the CC route, as 

opposed to the novel catalysts which were produced via the gas atomization route. The LCA 

was carried out from the perspective of the catalyst alone, i.e. it did not include the materials 

or life of the reactor itself and from a temporal perspective was based on the number of 

batches the catalyst would survive in a particular reactor. 

 

In LCA methodology, there are global initiatives organised by the United Nations 

Environment Program (UNEP) and the Society for Environmental Toxicology and Chemistry 

(SETAC) which have resulted in the definition of relative weighting factors of emissions and 

their normalised contribution to environmental areas of impact such as the Global Warming 

Potential and Acidification Potential. These agreed values result in standardisation of 

practises and methodologies nominated according to the date and origin of the convention, 

such as CML2001 (Institute of Environmental Sciences, Leiden, Netherlands 2001), Eco-

indicator99 and EDIP97 (Danish Environmental Design of Industrial Products, 1997), for 

which more details can be found in Dreyer et al. [34]. The first two are so-called mid-point 

approaches, and the latter is an end-point approach. In this work we have primarily used the 

CML2001 approach (based on a 100 year timescale for assessing any effects), which is 

accepted as having a robust account of impact factors in the Climate Change impact category 

and is less susceptible to the differences between methodologies as are impact categories like 

Human Toxicity and Ecotoxicity. 
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Where the current LCA work departs from standard guidelines is due to the fact that key data 

in the lifecycle is predictive, as the catalysts being examined are still at the laboratory/pilot 

scale as opposed to mass production, and there has not been to date a complete LCA done by 

the catalyst producers for this particular catalyst. Furthermore, a high level of uncertainty for 

the data of some processes was unavoidable, and estimating parameters were very difficult to 

find in public domain sources particularly in the operational and recycling stages of the 

lifecycle. Another departure from the ISO14040 guidelines is that it has not been possible in 

this study to implement due process involving independent verification (via third parties and 

life-cycle inventory committees) of data measurements made at process level of production, 

waste, energy and emissions. In addition, argon is used in significant quantities (0.33 kg per 

kg NiAl) throughout the process at various points and from various sources but the impact 

has been simplified to a power input requirement equivalent to 0.13 kWh/kg [35]. 

 

Nevertheless, the results of this work should still be of significant interest to what is a large 

industrial sector. 

3. Life Cycle Assessment  

Sponge nickel catalyst life cycle phases, including the main process stages and key data 

requirements considered in the LCA are shown in Fig.3 and were implemented in GaBi 4.3 

(Software by PE International for lifecycle assessment) [36]. As outlined, all the stages 

require energy in numerous forms and from different sources, with each stage resulting in the 

production of emissions. In order to determine the inventory data and all primary 

material/consumable process information has been compiled from as wide a range of sources 

as possible and calculated Gross Energy Requirements (GER), are also scrutinised with 

referenced to the available literature as outlined in the work of Eaves [37].  
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3.1 System Boundaries 

Emissions were based on the assumption of global outputs and pre-existing ISO14040 life-

cycle inventory data were utilised where available like nickel [38]. It is understandable that a 

certain amount of deviation may occur when extrapolating global averages from European-

based production data, as highlighted by both the Nickel [38] and Aluminium Institutes’ [39] 

in their life-cycle assessments, and potentially the scale of these discrepancies could be 

substantial. Such deviations can be understood, for example, by considering aluminium 

production. The electrolysis process used in aluminium production is responsible for 

approximately 85% of the total energy requirement of manufacture and as such the difference 

in levels of emissions are large as result of whether the electricity source is a fossil fuelled 

power station or hydroelectric power plant. As a consequence the utilisation of available data 

should approached with caution as it often does not include information from countries like 

India, Russia and China - that have very different mixes of electrical power generation when 

compared to somewhere like Europe - often due a lack of comprehensive data. Moreover, 

additional information for catalyst production in the form of the supply chain and materials 

transport is often omitted, which could result in an additional 10-20% more Global Warming 

Potential (GWP) emissions. 

 

3.1.1 Alkaline Fuel Cell Electrode 

An alkaline fuel cell (AFC) generates electricity by converting of hydrogen and oxygen 

chemical energy into electrical current by the hydrogen oxidation reaction: 

 

H2 +2OH- → 2H2O + 2e-       

(1) 
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These types of fuel cells are known to offer highly efficient energy conversion (theoretically 

in the region of approximately 80%) and have a thermodynamic fuel cell voltage of 1.23V at 

25°C [40]. Although low temperature (25 to 75°C) AFC’s have preferentially used platinum 

and platinum group metals either separately or in combination, the use of Raney-nickel 

catalyst has been subject to increasing interest due to it being one of the most active non-

noble metal catalysts for the hydrogen oxidation reaction [41, 42]. 

 

The fuel cell chosen for this study was the HC-100 AFC of Oy Hydrocell, Finland (Fig. 4), 

which can use either a platinum/palladium or a sponge nickel electrode interchangeably, 

where all other parts, heat exchangers, casing etc. remain exactly the same. Thus, in this 

LCA, production of other materials such as plastics, steels and copper alloys, which are 

required in the manufacture of this product, were deemed outside the system boundary. 

However, the activity of the catalyst is directly related to the hydrogen consumption, thus 

details of the production method of hydrogen are critical in this application. To this extent, 

three methods were looked at, namely steam reforming, hydrocarbon cracking and 

electrolysis. 

 

3.1.2 Function and Functional Unit 

In the case of the LCA outlined here, the function of the sponge nickel is defined to be the 

production of 20Wh of electricity from the hydrogen fuel cell. The overall functional unit of 

the LCA has been chosen to be the weight of catalyst required in a single electrode within the 

alkaline fuel cell set-up. 
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3.2 Life Cycle Inventory Data 

3.2.1 Upstream Materials 

The extraction routes and metallurgical processes used to extract the primary metals like 

platinum and the aluminium/nickel used in sponge nickel are not within the scope of this 

paper and hence a full list of the inventory data is not included although some of this data is 

readily available [43 - 45]. Instead Table 1 is included as a summary of the overall Gross 

Energy Requirements (GER) in MJ/kg of product and an average of quoted greenhouse gases 

(GHG) in kg CO2-equivalents per kg of product and follows previous estimations detailed by 

Lavery et al. [46].  

 

Platinum Platinum was the only metal required in this analysis for which LCA data was not 

readily available as ISO measured data – a difficulty also noted by Staffell and Ingram [16]. 

The Anglo-Platinum mining operation in South Africa was modelled from data by a paper by 

Jacobs [47], however, the energy calculated here includes that used to obtain co-products (Ni, 

Cu, Os, Pd) and no allocation was used for these by-products, so this energy is expected to be 

on the high side. 

 

Nickel Primary nickel data was taken from the  Nickel Institute LCI report [38], with the 

production of >99%Ni (Class 1) nickel standard chosen as the benchmark in contrast to 

nickel oxide or ferronickel manufacture. The LCA data, from 2000, contains information on 

approximately 56 to 64% of the total annual world production of nickel, but excludes any 

specific details of Chinese or Russian production. As nickel processing routes can vary 

depending on the type of ore used (whether sulfidic or oxidic) the data is based on an average 

of both pyrometallurgical and hydrometallurgical extraction routes.  
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Aluminium Primary aluminium ingot data came from Saur’s International Institute of 

Aluminium LCA report [39]. Bauxite mining data represents information from approximately 

49% of worldwide operations (10 mines), data for alumina refining from 59% of world-wide 

operations (24 refineries) and electrolytic aluminium production information is based on 55% 

of world-wide operations (75 electrolysis plants), but the report excludes any Chinese 

production data. In this work, the Bayer process for alumina production, followed by Hall-

Heroult electrolysis for the alumina reduction to aluminium and finally casting of the 

aluminium into an ingot was chosen as the representative aluminium production process.  

 

Dopants (Mo, Ti, Sn, Fe) In order to boost catalytic efficiency dopants can be added in the 

order of 1-3 wt.% and usually comprise of tin and transition metals like molybdenum, 

titanium and iron. Information for tin (Sn)  was taken from data that was part of the existing 

GaBi Lean Database, and cross referenced with the Tin Institute’s (ITRI)  life-cycle inventory 

data [48]. Landfield Grieg’s [49] LCI report for the International Molybdenum Association 

(IMoA) only contains data on the production of technical grade molybdenum trioxide 

(MoO3), so additional processes in the form of a sublimation phase to obtain pure MoO3 and 

a reduction stage to obtain pure Mo powder were required. Implemented data for titanium 

production via the Kroll process was obtained from Norgate et al. [50, 51]. A representative 

data inventory for iron was also assembled based on data from Norgate et al. [52] for the 

production of pig iron in a blast furnace. The inclusion of dopants is for the sake of 

completeness as they only contribute a relatively small environmental GWP burden, their 

presence does however have a significant impact in terms of recycling and disposal as 

outlined in more detail below. 
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Consumable Materials The remaining required inventory data for hydrogen, sodium 

hydroxide (caustic soda) and industrial water (both processed and pure) was obtained from 

information readily available in literature and from the GaBi Lean Database [53, 54]. The 

exception to this was Argon, which is consumed in significant amounts during the gas 

atomization process and for which there was no data. Nevertheless, according to the literature 

[35, 55, 56], a value of 0.13 kWh/kg is required to produce argon by cryogenic fractional 

distillation, resulting in a 7% increase in embodied GHG emissions over the standard cast and 

crush Ra-Ni. 

3.3 Manufacturing 

3.3.1. Gas Atomized (GA) Powder Production Route 

Table 2 presents inventory data extracted from a number of papers available in the literature 

[55, 57 - 59]. The gas atomizers used in this study were assumed to feature induction melting 

methods, which offer efficiency in the region of 50% and this was subsequently used to 

determine an estimate for the practical melting energy.  In addition, out-of-range particles 

produced by gas atomization can be recycled via collection and re-melting in the following 

run which results in an overall process efficiency of ~95%.  The theoretical energy 

requirements for melting were calculated by using thermodynamic properties including latent 

heat and specific heat capacity. Overall, these melting energy requirement values were 

compared to those detailed in the work of Dunkley and Aderhold [60] and they showed a 

good correlation. The levels of alloy loss were assumed to be insignificant (< 0.1%) as the 

whole melting process is performed under an argon atmosphere and any material that is lost 

due to volatilisation is collected by cyclone filters, which can be later recycled.  All 

measurements detailed in this paper were performed on a small pilot scale gas atomizer 

without the addition of an expensive gas recycling component. This means that the system 

utilised was unable to recycle the argon gas, which would have increased the efficiency of the 
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whole process by lowering the argon demand. If adopted on a scaled-up version such a 

system could reduce argon use to < 0.007 kg/kg Ni-Al alloy.   

 

3.3.2 Cast and Crush (CC) Powder Production Route 

As the name suggests the production route comprises of two distinct steps, melting (casting) 

and crushing (i.e. milling/grinding/attrition). As with the GA process, melting was assumed 

to occur under an argon blanket with a 50% efficiency and known NiAl thermodynamic 

properties allowed energies to be estimated at between 0.60-0.8 kWh/kg. From the work of 

Pourghahramani [58], the grinding/crushing step - based on the average energy required for 

the mechanical alloying of all materials to different sized particles - was deemed to be 0.044 

kWh/kg. This value, however, may be an overestimation as Ni-Al material is brittle in nature 

and as such needs lower than average energies of attrition.  

 

3.3.3 Caustic Leaching 

Caustic leaching is a batch process that is used for Ni-Al powders produced by both CC and 

GA, which uses a 20 to 30 wt. % aqueous sodium hydroxide (NaOH) solution to almost 

totally remove the aluminium to leave sponge nickel and a sodium aluminate (NaAlO2) by-

product as described by Devred et al [59, 61] and outlined in Eq. (2):  

( ) )(2)(4)()(2)()( 3)(22622 gaqslaqs HOHAlNiOHOHAlNi ++→++− −−

 

(2)
 

This procedure can be used to process up to a tonne of material at once and this leaching 

removes almost all of the aluminium from the powder leaving a porous structure with a very 

high surface area, which is linked to the catalytic activity of the powder [62]. The sodium 

aluminate solution can be removed from the solution and is typically sold for use in paper 

manufacturing or water treatment. Recovery of aluminium from the solution is also possible 
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but is currently not deemed to be economic in the catalyst manufacturing sector. In addition, 

the reaction of sodium hydroxide with the Ni-Al powder is highly exothermic which allows 

the desirable process temperature of 80°C for the solution to be maintained by the controlled 

addition of NaOH and the process of leaching takes about 3 hours to complete. Once leaching 

is complete, the sponge nickel can then be rinsed and stored in distilled water until required. 

In reality, higher concentrations of NaOH solution are used in an effort to reduce 

precipitation of aluminium hydroxide (AlOH3) that can cause pore blockage in the sponge 

nickel and thus affect ensuing catalytic functionality. 

 

 3.3.4 Alkaline Fuel Cell Electrodes 

The typical platinum loading of the electrode in the Hydrocell Oy AFC fuel cell is 0.4 g 

compared to that for 1.5 g of sponge nickel loading, as measured by Eaves [37]. The activity 

of the different catalysts can be directly related to the consumption of hydrogen and in the 

current work, a constant power output of 20W was used as the benchmark for the application 

of the fuel cell [37]. The respective hydrogen consumption for this power requirement for the 

platinum electrode, the gas atomized sponge-Ni electrode and the cast and crush sponge-Ni 

electrode, respectively in shown in Fig. 5. 

 

Three electrode types were considered: a Platinum electrode (PTE), a sponge nickel electrode 

produced by gas atomization (Ra-Ni-GA) and a sponge nickel electrode produced by the cast 

and crush process (Ra-Ni-CC) with a typical electrode lifetime defined as up to 3900 hours. 

In terms of hydrogen (H2) requirements for the lifetime of the electrode, the activity 

differences of the catalyst lead to a difference in lifetime consumptions of hydrogen, based on 

the measured consumptions. Thus, over the lifetime of 3900 hours of the fuel cell, the PTE 

required of 3.2 kg H2; the Ra-Ni-GA electrode required 3.91 kg H2 and the Ra-Ni-CC 
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electrode required 6.57 kg H2. For the current life-cycle modelling, three different hydrogen 

production routes were considered for the life cycle assessment, namely steam reformation 

(89.22 MJ/kg), hydrocarbon cracking (71.84 MJ/kg) and electrolysis (16.07 MJ/kg), all of 

which are readily available as inventory data from the European Plastics Association and are 

provided within the GaBi software [63-65], and for which up-to-date production energy and 

emissions are documented in an LCA by Cetinkaya et al [66]. The GER and GWP values 

used in this analysis are given in Table 1. The values outlined are average (Gross) calorific 

energy requirements for the production of 1kg hydrogen at standard pressure, and account for 

average efficiencies which can be obtained by the various processes. It should be noted 

however that net calorific energy requirements from the electrical input will vary depending 

on the local source of electricity mix. 

 

It has been previously found by Jarvis and Voss [67] that gas atomized powder sponge nickel 

has enhanced activity when compared to that produced by the standard CC method. This 

increased catalytic activity leads to reductions in hydrogen fuel consumption and a reciprocal 

increase power output (as seen in Fig. 5). These changes in relative activity were used as a 

basis to approximate the levels of hydrogen fuel reduction possible with sponge nickel (with 

and without the addition of a dopant), when compared to both the standard industrial 

platinum catalyst and CC sponge nickel. However it needs to be stressed that such estimates 

are based on limited literature sources that need further validation. Over time the catalyst 

material becomes contaminated and degrades, which leads to a reduction in performance and 

a subsequent replacement of the catalyst. There are a number of reasons that affect catalyst 

lifetime like operating temperature and pressure within the fuel cell, purity of the hydrogen 

gas source and presence of competing hydrogenation reactions. 
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3.4 Recycling 

3.4.1 Regeneration of Spent Catalysts 

In 2002 non-precious catalyst use in Germany alone was approximately to 9000 t/year [68], 

of which, only a tiny proportion was being recycled. This was primarily due to the expensive 

recycling costs when compared to the cheaper alternative of waste treatment (to prevent the 

leaching of heavy metals into the soil followed by landfill. In addition work by Marafi and 

Stanislaus [69] estimated that for a Hydrotreating process the levels of have spent catalyst 

doubled over a decade (1996 to 2007) from 87,500 to 170,000 t/year. 

 

Over the last decade a combination of high metal prices, increased landfill costs (primarily 

due to increasing regulations related to hazardous material disposal), increased spent catalyst 

availability and improvements in recovery methods means that spent catalysts now have the 

status of useful commodity with a positive net value, especially those with vanadium and 

molybdenum constituents. It is now common for catalyst producers to offer catalyst life cycle 

management where the catalyst is regenerated “ex-situ” by a specialist company 

 

Spent catalyst recycling can be achieved by using hydrometallurgical or pyrometallurgical 

methods with the attained levels of regenerated catalytic activity being as high as 70 to 80% 

and a cost of 50% when compared to fresh catalyst. These regenerated catalysts are generally 

used in combination with fresh catalyst in ratios up to 50% and in terms of sponge nickel the 

regeneration recovery rate is approximately 90% with the associated energy consumption 

about 10 MJ/kg cf. 200 MJ/kg for primary Ni production [70]. 
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3.4.2 Disposal 

The amount of spent sponge nickel catalyst that is dumped in landfill by European 

manufacturers is unknown as such disposal is expensive due to the toxicity to humans of 

metals like chromium, nickel and molybdenum highlighted by McLaughlin [71]. In the 

absence of such verifiable yearly data the inclusion of heavy metal water contamination from 

disposal of spent catalyst in landfill has not been possible.  

 

3.5 Inventory Data Analysis 

It is essential to highlight the dissimilitude between data quality utilised in the context of the 

LCA outlined here. For the two main constituent metals (nickel and aluminium) used in the 

catalyst manufacture there is a wealth of high quality data available from both the Nickel [38] 

and Aluminium Institute’s [39], full ISO14040 LCA of the respective elements. For 

consumable materials used there is a distinct variation in standards varying from the good for 

water, sodium hydroxide and hydrogen (which are all part of the GaBi lean database) to low 

quality for argon where only the energy of production is considered [35, 55]. A similar 

situation is true for the doping materials where there is a broad range of standards from good 

as in the case of molybdenum (IoMA LCA, [49] to intermediate (tin data from the GaBi lean 

database) to poor for iron and titanium, where the LCA data is assembled from sub-models 

based on various sources. However, as the process has the most emphasis on the primary 

metals –nickel and aluminium – rather than consumables doping materials it can be 

considered that the overall quality of the upstream data is relatively good and is a suitable 

basis for the comparison of the standard industrial catalyst and the gas atomized sponge 

nickel.  
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The primary source of the manufacturing data was from direct measurements of energy and 

materials consumption measured by partners in the LCA project and thus it can be regarded 

as being of an acceptable quality. This data does, nonetheless, have a bias towards the use of 

electrical energy and thus is more suitable for “carbon footprint” analysis, which – as 

previously discussed by Laurent et al. [72] - is a poor indicator of other environmental 

impacts.  

 

The recycling and disposal phase contains the lowest quality of inventory data and it is here 

that a very high (99%) recovery rate is assumed, which is broken down into 50% recovery for 

catalytic applications; 49% downgraded; 1% lost/disposed of. As the emphasis of the LCA is 

catalyst comparison, the 1% loss is deemed to be an insignificant change when comparing 

one catalyst with another, thus would not affect the final outcome and understanding.  

 

4. Results and Discussion 

To achieve a similar level of functionality, the electrode for the alkaline fuel cell requires 

different weights (loadings) of platinum and Raney nickel catalyst of 0.4g and 1.5g, 

respectively [37]. The required loading of the sponge nickel catalyst was much higher 50-100 

mg/cm-2 than the platinum loading of 2-5 mg/cm-2. By using data from the raw materials and 

manufacturing process it is possible to calculate the total energy of production for the 

different electrode materials and the results of which are shown in Fig.6. As can be seen, for 

the materials investigated, platinum mining and electrode fabrication has by far the largest 

demand for energy during the whole extraction and production process requiring an estimated 

total calorific energy of 9.3 MJ when compared to 1.25 MJ for GA sponge nickel and 0.45 

MJ for CC produced sponge nickel. As can be expected these differing levels energy 

consumption have differing amounts of associated Global Warming Potential (GWP) varying 
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from 0.84 kg CO2-Equivalents for platinum to 0.06 kg CO2-Equivalents for CC sponge nickel 

as shown in Fig. 6. 

 

An overview of the results for the entire lifecycle energies (Gross Energy Requirement, GER) 

and emissions (Global Warming Potential, GWP and Acidification Potential, AP), are 

summarised in Tables 3, 4, and 5, allowing upstream production energies to be compared to 

the “in-service” energy usage which is in proportion to the energy used by the hydrogen 

production process used over the lifetime of the fuel cell. The hydrogen production processes 

considered are steam reformation, electrolytic and thermal cracking, as previously outlined 

by Cetinkaya et al. [66]. The overall consumption of hydrogen over a 3900 hour time-span is 

based on measured hydrogen consumption as outlined in Fig. 5. Also, indication of the 

catalytic mass activity was calculated from the experimental data which varied from 100 A/g 

for the platinum catalyst to 24 A/g for the doped Ra-Ni catalyst and to 10 A/g for the standard 

CC Ra-Ni catalyst. Highlighted in bold in each table are emissions from the gas-atomised and 

doped catalyst which invariably (regardless of hydrogen source) has the lowest 

environmental impact. 

 

What is clear from the overview tables is that the upstream extraction and manufacturing 

emissions of the platinum is a considerable lifetime contributor to overall emissions. While 

the lifetime emissions of the fuel cell are, and should be dominated by the use of 

consumables, mainly hydrogen, it is clear that as the production of hydrogen moves towards a 

more sustainable sources (electrolytic-renewable energy), as opposed to fossil fuel (steam 

reformation – gas source), so that the production of hydrogen has minimal GHG emissions, 

so the upstream back-pack of emissions becomes most important. Platinum electrodes have 

an order of magnitude greater emission than nickel catalysts in production, and this would 
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result in a longer payback time of the fuel cell with respect to the emissions. Further work is 

required from the perspective of quantifying the long term recycling and re-useage issues, but 

this was not covered in the current lab-scale work and is an area best undertaken with better 

knowledge of pilot or larger-scale production volumes. 

 

Fig. 7 and Fig. 8 show summary results from the LCA implementation in GaBi, where the 

inventory data described in the overview tables has been scaled to a central European output 

scale as determined by the CML2001 LCA methodology. What is not so clear from the 

presentation of the results is that rarity and low percentile occurrence of platinum in the 

earth results in its high price and it also being a contributor to abiotic depletion categories of 

the life cycle analysis. 

 

The overall lifetime (accounts for both primary production and operational phases) reduction 

in GER energy, GWP and AP emissions is summarised in Table 6. This shows that for a 3900 

hour lifetime of the electrode, there can be between 13-43% reduction in overall GER energy 

usage, between 40-74% reduction in GHG emissions, and a reduction of 64-85% in AP. 

 

Whether one looks at the tabulated data (Tables 3 - 6), or the figures (Fig. 7 and 8), common 

results can be summarised as: 

• Relatively small differences in activity of the catalyst can lead to large savings in 

hydrogen and energy use over the lifetime of the electrode. 

• Although the gas atomisation route for manufacture of Raney-nickel requires more 

energy input than the industry standard cast and crush process, the overall production 

energy and emissions for an equivalent mass of Ra-Ni catalyst in the electrode are an 

order of magnitude lower than those required for a platinum-based electrode. 
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• Gas atomised and doped catalysts (e.g. with iron, tin or molybdenum) greatly increase 

the activity and stability of the catalyst, at relatively little upstream energy and 

emission costs. In the electrode, the best gas atomised doped catalyst can give 

equivalent power outputs to a platinum based one. 

• Even though platinum tends to have a higher mass catalytic activity than Raney 

nickel, longer lifetime payback times are required to overcome the upstream 

extraction and production, from the perspective of energy and overall emissions. 

• This is particularly the case if hydrogen is produced via electrolysis using electricity 

from low carbon energy sources, as opposed to a fossil fuel-based production route 

such as steam reforming. In the former case, the emissions required in primary and 

manufacturing of the platinum (9 kg CO2-eq.) are 3 times greater than the lifetime 

emissions associated with the production of the hydrogen itself (3.1 kg CO2-eq.). 

 

5. Conclusions 

From the results of the comparative LCA it can be concluded that although the production of 

1kg of sponge nickel catalyst by a Gas Atomization (GA) route requires only 13.5% of the 

energy when compared to that of the production of 1 kg of Platinum (but twice as much as 

standard Cast and Crush (CC) sponge nickel), doped GA sponge nickel offers a comparable 

catalytic activity. It is this catalytic behaviour that - based on the estimates outlined in this 

paper – have the potential to offer a reduction of the overall energy consumption, and a 

significant decrease in GHG emissions and hence an associated decrease in the Global 

Warming Potential (GWP) of the fuel cell over the complete lifetime of the sponge nickel 

catalyst when compared to the current industry standard.  
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Figure Captions 

 

Fig. 1 Comparison of the Operation Fuel Cell Voltages (OCV) achievable for the different 

types of alkaline fuel cell (AFC) electrodes.  

 

Fig. 2 SEM images of nickel-aluminide powder produced by (a) the Cast and Crush (CC) and 

(b) Gas Atomization (GA) methods. 

 

Fig. 3 Overview of the LCA processes for the production and use of sponge nickel. 

 

Fig. 4 (a) Schematic outlining the components of a typical alkaline fuel cell and (b) a picture 

of the fuel cell used for LCA. 

 

Fig. 5 Amount of hydrogen gas consumption for a constant 20W/h output by (a) platinum 

electrode, (b) GA sponge-Ni electrode and (c) CC sponge-Ni electrode, respectively. 

 

Fig. 6 Energy and Global Warming Potential (GWP) for the upstream production of materials 

and manufacturing of fuel cell electrodes. 

 

Fig. 7 Overall energy requirements over the lifetime of alkaline fuel cells (AFC) with various 

electrodes and hydrogen production routes. 

 

Fig. 8 Impact categories for all processes of alkaline fuel cell electrodes manufacture and 

operation. Inset: Expanded results for the AFC’s using electrolysis derived hydrogen. 
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Table Captions 

Table 1 – Material Gross Energy Requirements (GER) and Global Warming Potential 

(GWP). 

 

Table 2 – Manufacturing process inventories. 

 

Table 3 – Lifetime energy and emissions when hydrogen production route is by steam 

reformation. 

 

Table 4 – Lifetime energy and emissions when hydrogen production route is by electrolysis. 

 

Table 5 – Lifetime energy and emissions when hydrogen production route is by thermal 

cracking. 

 

Table 6 – Overall reductions in emissions for different hydrogen manufacturing processes 

when comparing the total lifetime energy use and emissions for the best doped GA based 

catalyst compared to the platinum catalyst. 
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Highlights: 

• Emissions during catalyst use greatly outweigh those of manufacture and recycling  

• Gas Atomised spongy nickel catalysts can have a markedly lower environmental impact  

• Doped Gas Atomised sponge nickel shows behaviour similar to a normal AFC Pt electrode 
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Table 1. 

Principal product 
Method of 

Production  

GER 

(MJ/kg 

per kg 

product) 

GWP 

(kg CO2-eq. 

per kg-

product) 

AP 

(kg SO2-eq. 

per kg-

product) 

References 

Primary Metals      

Platinum (Pt) Smelting/refining 
102,213-

179,779 

24,600-

43,303 
104-183 [37],[47],[48] 

Nickel (Ni) 
Pressure leaching 

Smelting/refining 
114-239 11.4 0.130 [44, 45] 

Aluminium (Al) 
Bayer, 

Hall Heroult 
180-211 22.4 0.131 

[43][51] 

[23-25] 

Dopants      

Iron (Fe) 
Blast Furnace / 

Pig Iron 
22 2.3 0.02 [24] 

Tin (Sn) Smelting/Refining 200 17 0.5 [48] 

Molybdenum (Mo) Roasting 175-203 11-13 0.32 [48] 

Titanium (Ti) Becher and Kroll 361 35.7 0.23 [49] 

Gases      

Hydrogen (H2) Reformed steam 89.22 4.20 0.07 [53, 63] 

 
Water electrolysis 

(Grid/Wind) 
16.07 0.95 0.003 [53, 64] 

 Thermo-Cracking 71-74 1.20 0.002 [53, 65] 

Argon (Ar) 

Cryogenic 

distillation/Air 

separation 

0.32-0.48 0.0654 0.000157 [35, 55] 

Other 

consumables 
     

Sodium hydroxide 
Electrolysis 

(Chloralkali) 
21 1.2 0.001 [54] 
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Table 2. 

Process 
 

Major inputs/outputs 
 

Value 
 

Functional Units 
 

References 
 

Gas Atomization 

 
Melt Alloy: Ni-Al (+dopant Fe, Mo, Sn, 

Cr) 
 

1 kg Calculated 

 
Electrical energy to melt  

(+200 °C superheat) 
 

0.7-0.8 kWh/kg Ni-Al [57] 

 
Argon gas 

 
0.333 kg/ kg Ni-Al [55] 

 
100µm powder yield 

 
95% of Ni-Al alloy  

 
Ni-Al losses 

(dry cyclone filter collection) 
 

0.01% of Ni-Al alloy  

 
Output: 100µm Ni-Al powder 

 
0.95 kg/kg Ni-Al  

     

Cast and Crush 

 
Melting: Electrical energy 

(+200 °C superheat) 
 

0.7-0.8 kWh/kg Ni-Al Calculated 

 
Crushing: Electrical energy 

(1m-2cm) 
 

0.001 kWh/kg Ni-Al [58] 

 
Grinding: Electrical energy 

 (2cm-200µm) 
 

0.01 kWh/kg Ni-Al [58] 

 
Milling: Electrical energy 

(200µm-10µm) 
 

0.033 kWh/kg Ni-Al [58] 

 
100µm powder yield 

 
100% of Ni-Al alloy  

 
Ni-Al losses (filter collection) 

 
0.01% of Ni-Al alloy Estimated 

 
Output: 100µm Ni-Al powder 

 
0.99 kg/ kg Ni-Al Calculated 

     

Caustic Leaching 
 

100µm Ni-Al powder 
 

1 kg  

 
NaOH 

(20-30wt.% Sodium Hydroxide) 
 

3-4.5 kg/kg Ni-Al powder [59] 

 
Leaching water (distilled) 

 
15 l/kg Ni-Al powder [59] 

 
Heating for 3 hours at 80°C  

(electrical energy) 
 

0 
kWh/kg Ni-Al 

powder 
Exothermic 

 
Storage water (distilled)  

 
50 l/kg Ni-Al powder [59] 

 
Output: Sponge-Nickel (Dry) 

 
0.5-0.3 kg/kg Ni-Al powder Calculated 
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Table 3. 

 Energy MJ / GHG kg CO2-eq. / AP kg SO2-eq. A/g Litres 

Catalyst material 
Primary and 

Manufacturing 
Operational Totals 

Mass 

Activity 

Total H2 

use 

Cast and Crush Ra-Ni 1.00 / 0.018 / 0.000 
585.76 / 27.57 / 

0.045 

586.76 / 27.59 / 

0.046 
10.00 78,390 

Gas atomised Ra-Ni 

undoped 
1.27 / 0.037 / 0.001 

317.65 / 14.95 / 

0.025 

318.93 / 14.99 / 

0.025 
13.33 42,510 

Gas atomised Ra-Ni 

doped 
1.28 / 0.041 / 0.001 

288.51 / 13.58 / 

0.022 

289.79 / 13.62 / 

0.023 
23.33 38,610 

Platinum 40.89 / 9.000 / 0.042 
291.42 / 13.72 / 

0.023 

332.31 / 22.72 / 

0.065 
100 39,000 
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Table 4. 

 Energy MJ / GHG kg CO2-eq. / AP kg SO2-eq. A/g Litres 

Catalyst material 
Primary and 

Manufacturing 
Operational Totals 

Mass 

Activity 

Total H2 

use 

Cast and Crush Ra-Ni 1.00 / 0.018 / 0.000 
105.5 / 6.24 / 

0.021 

106.51 / 6.26 / 

0.021 
10.00 78,390 

Gas atomised Ra-Ni 

undoped 
1.27 / 0.037 / 0.001 

57.21 / 3.38 / 

0.011 

58.49 / 3.42 / 

0.012 
13.33 42,510 

Gas atomised Ra-Ni 

doped 
1.28 / 0.041 / 0.001 

51.97 / 3.07 / 

0.01 

53.25 / 3.61 / 

0.011 
23.33 38,610 

Platinum 40.89 / 9.000 / 0.042 
52.49 / 3.10 / 

0.01 

93.38 / 12.10 / 

0.052 
100 39,000 
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Table 5. 

 Energy MJ / GHG kg CO2-eq. / AP kg SO2-eq. A/g Litres 

Catalyst material 
Primary and 

Manufacturing 
Operational Totals 

Mass 

Activity 

Total H2 

use 

Cast and Crush Ra-Ni 1.00 / 0.018 / 0.000 
471.7 / 7.88 / 

0.013 

472.66 / 7.90 / 

0.014 
10.00 78,390 

Gas atomised Ra-Ni 

undoped 
1.27 / 0.037 / 0.001 

255.7 / 4.27 / 

0.007 

257.05 / 4.31 / 

0.008 
13.33 42,510 

Gas atomised Ra-Ni 

doped 
1.28 / 0.041 / 0.001 

232.3 / 3.88 / 

0.006 

233.59 / 3.92 / 

0.007 
23.33 38,610 

Platinum 40.89 / 9.000 / 0.042 
234.7 / 3.92 / 

0.007 

275.5 / 12.92 / 

0.049 
100 39,000 
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1 

Table 6. 

Hydrogen manufacturing process GER GWP AP 

Hydrogen by steam reforming 13% 40% 64% 

Hydrogen by thermal cracking 15% 70% 85% 

Hydrogen by electrolysis 43% 74% 78% 
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