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Embedding Retrieval of Articulated Geometry Models

Gary K.L. Tam, Member, IEEE, and Rynson W.H. Lau, Senior Member, IEEE

Abstract—Due to the popularity of computer games and animation, research on 3D articulated geometry model retrieval
is attracting a lot of attention in recent years. However, most existing works extract high dimensional features to represent
models and suffer from practical limitations. First, misalignment in high dimensional features may produce unreliable Euclidean
distances and affect retrieval accuracy. Second, the curse of dimensionality also degrades efficiency. In this paper, we propose
an embedding retrieval framework to improve the practicability of these methods. It is based on a manifold learning technique, the
Diffusion Map (DM). We project all pairwise distances onto a low dimensional space. This improves retrieval accuracy because
inter-cluster distances are exaggerated. Then we adapt the Density-Weighted Nystrém extension and further propose a novel
step to locally align the Nystrém embedding to the eigensolver embedding so as to reduce extension error and preserve retrieval
accuracy. Finally, we propose a heuristic to handle disconnected manifolds by augmenting the kernel matrix with multiple similarity
measures and shortcut edges, and further discuss the choice of DM parameters. We have incorporated two existing matching
algorithms for testing. Our experimental results show improvement in precision at high recalls and in speed. Our work provides

a robust retrieval framework for the matching of multimedia data that lie on manifolds.

Index Terms—geometry retrieval, articulated model retrieval, geometry analysis, geometry recognition.

1 INTRODUCTION

D geometry models are essential components in
many of the latest multimedia applications, in-
cluding 3D games, animation movies, virtual envi-
ronments and object recognition. With the increasing
number of geometry models available on the Web,
many geometry model retrieval methods have been
proposed to facilitate searching and resue of these
models. However, most of these methods can only
handle exact match, i.e., the retrieved models need to
be very similar in shape and pose to the input model.
This seriously affects the retrieval performance, as
these methods consider models of similar shape but
different poses as different models. To address this
limitation, recent research focus is moving towards
the development of geometry retrieval techniques that
consider the similarity of model shapes only and
tolerate different poses. However, tolerating different
poses turns out to be much more challenging than
simply performing an exact match. A number of
methods have been proposed for this purpose. The
main idea is to extract deformation invariant features
based on some kind of metric measures on the surface.
In this paper, we refer to models of similar shape but
different poses as articulated geometry models, models
of different objects but similar skeleton (e.g., wolf
and dog) as similar-skeleton models, and models of
dissimilar skeletons as dissimilar-skeleton models.
Recent development of retrieval techniques focus
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on defining distinctive geometric features [1], [2]. The
vast amount of features (over many hundreds in
dimension) have created two problems. First, in high
dimensional spaces, feature misalignment produces
large intra-cluster distances, leading to poor retrieval
performance if intra-cluster distances are greater than
inter-cluster distances. Second, the curse of dimen-
sionality results in large storage space and low re-
trieval efficiency. There are relatively few methods
that discuss how to build a fast retrieval system.

Our idea begins from the observation that most
articulated geometry models look somewhat similar.
When we put these models together, they can easily
be arranged to form an animation sequence. This
suggests that there are only a limited number of
parameters that govern shape and pose variations. If
we can effectively reduce the high-dimensionality of
these features, we may be able to improve retrieval ac-
curacy and speed. Hence, we propose in this paper an
unsupervised embedding retrieval framework for ar-
ticulated geometry models to tackle the two problems
discussed above. We first argue with evidence that
existing methods project data on separate manifolds.
We then apply a manifold learning technique, the
Diffusion Map (DM) [3], for dimension reduction. The
Diffusion Map differs from other manifold learning
techniques in that it is highly effective for compressing
data to arbitrary dimension [4]. By selecting appro-
priate DM parameters and defining a low output
dimension, we avoid the curse of dimensionality and
exaggerate the inter-cluster distances of model groups
in the induced embedding space.

One major problem of using DM, however, is that
it requires the use of Nystrom extension to unknown
queries. Although the quality of the extended embed-
ding improves as the number of landmarks (i.e., the
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number of selected reference samples for computing
Nystrom extension) increases, increasing the number
of landmarks hinders the retrieval speed. To overcome
this problem, we have adapted the Density-Weighted
Nystrom extension [5] for DM. We then propose a
novel step to locally align the Nystrom embedding
to the eigensolver embedding. This novel scheme is
able to effectively reduce both projection and retrieval
errors even when the number of landmarks are small.
Finally, we propose a heuristic method to handle the
situation when the data lies on separate manifolds.
We summarize our main contributions as follows:

1) To the best of our knowledge, this is the first
comprehensive empirical study to explore the
concept of applying manifold learning tech-
niques on the distance measure space of articulated
geometry models in the context of retrieval.

2) If the underlying similarity measures can sep-
arate data in different manifolds, we propose
a heuristic approach to find retrieval parame-
ters to improve retrieval accuracy. If these data
are not separable in manifolds, we propose to
augment the kernel matrix by combining differ-
ent similarity measures together and introduce
shortcut edges to improve the embedding dis-
tance and retrieval accuracy.

3) For the retrieval to be practical, we adapt the
Density-Weighted Nystrom extension for the
Diffusion Map with a distribution separation
step and align the Nystrom embedding to the
eigensolver embedding. The proposed retrieval
framework produces comparatively good qual-
ity of embedding with fast online query speed.

The rest of this paper is organized as follows.

Section 2 summarizes existing works on articulated
geometry model retrieval and embedding retrieval.
Section 3 justifies the use of manifold learning in our
work. Section 4 summarizes Diffusion Maps. Section 5
presents our retrieval framework in details. Section 6
evaluates the performance of our framework. Finally,
Section 7 briefly concludes this paper.

2 RELATED WORK
2.1 Articulated Geometry Model Retrieval

Geometry model retrieval is a challenging research
topic. The difficulty in matching and retrieving ge-
ometry models is due to the semantic gap between
human perception and feature representation, which
is always complicated by irregular shape, orienta-
tion, scale, and data format (e.g., triangle soup, point
clouds and meshes). Many successful methods have
been proposed for retrieving non-articulated geome-
try models [6], [7]. However, the analysis of articu-
lated geometry models is still in its infancy. It faces
not only the same challenges as for the non-articulated
models, but also the deformation and articulation of
shapes. In this section, we review the main works

on articulated geometry model retrieval. We refer the
reader to [8] for works on non-articulated one.
Articulated geometry model retrieval methods can
be roughly classified into two types based on feature
representation: a single feature vector and a bag of
features. The first type uses a single feature vector,
called shape descriptor, to represent the whole model.
Most of these methods construct histograms based
on metrics defined on the surface. Such metrics are
deformation invariant, including eccentricity [9] and
the part-aware metric [10]. Recently, the spectrum
(leading eigenvalues) of the Laplace-Beltrami operator
is also used as a descriptor [11], [12]. It corresponds
to the significant components (structure) of a surface.
[13] computes a feature vector by encoding a bag of
visual features and converting them into a histogram.
[14] computes the feature vector based on heat sig-
nature, while [15] further extracts spatial informa-
tion into the feature vector. The second type uses a
bag of scalars or vectors as features. Some methods
partition a model based on a metric on the surface
and arrange local features as graph structures. These
local features include area and length [1], volume,
cords and curvature [16], and spherical harmonic [17].
Graph matching techniques can then be used to match
these graphs. Other methods use bag-based matching
techniques like bipartite matching or Earth Mover
Distance [18] to avoid graph matching. These methods
include geodesic histogram [19], curvature, area and
thickness histogram [2], and stretching histogram [20].
We have two observations. First, both types of
methods are related to high dimensional Euclidean
distances. It is trivial for the single vector type of
methods because Euclidean distance is directly em-
ployed to define the similarity measure. In Section
3, we show that when comparing similar-skeleton
models, graph or bag-based matching also becomes
Euclidean distance. Euclidean distance, as explained
in [21], is not reliable under slight misalignment. It
leads to large intra-cluster variance in data, meaning
that these methods may not handle similar-skeleton
models well. Second, the practicability and scalability
of these methods on large databases have not been
explored. Most feature representations are high di-
mensional and suffer from the curse of dimensionality.
In addition, the dissimilarity measures for graph or
bag-based methods are usually non-metric. Hence,
traditional indexing techniques cannot be applied.
Some methods have been proposed to speed up the
matching process. In [22], [23], the matching process
is separated into two steps. The first step makes use of
graph spectrum to encode structure for fast pruning.
The second step applies a graph matching algorithm
to select models based on geometric similarity. This
scheme, however, still suffers if the database contains
a lot of similar-skeleton models (e.g., dog, wolf, lion),
as the first step cannot prune these models by struc-
tures, which leads to high computational cost in the
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second step. In [2], we have defined a metric measure
and used a distance-based indexing technique for fast
k-nearest neighbor search. This method works when k
(the number of retrieved models) is small. When k is
large (e.g., greater than 10), the indexing scheme soon
approaches brute-force. These two observations lead
us to consider ways to reduce dimensionality and to
develop this embedding retrieval framework.

2.2 Embedding Retrieval

Applying manifold learning techniques to analyze 3D
articulated geometry models is not new. For example,
[11], [12] study the Laplace-Beltrami operator, and
[14], [15] study the Diffusion Kernel. All these meth-
ods use manifold learning techniques to study the
geometry and obtain a signature for each 3D model.
The novelty of our work is that we investigate the
application of manifold learning techniques to obtain
a better embedding distance space, so as to improve
retrieval accuracy. As far as we know, [13] is most rele-
vant to our work. It uses distance learning techniques
to adjust distances with manifold ranking. However,
it requires the re-computation of nearest neighbors for
all models in the database on every query. It is unclear
if it is applicable to large databases.

There are many manifold learning techniques in
the literature, such as Laplacian eigenmaps (LE) [24],
ISOMAP [25], Locally Linear Embedding (LLE) [26],
Locality Preserving Projections (LPP) [27] and Diffu-
sion Maps (DM) [3]. The use of manifold learning
techniques in other media has been successful. For
example, LLE, ISOMAP, Multi-Dimensional Scaling
[28], and LPP have been applied to various image re-
trieval works, e.g., image clustering [29] and relevancy
feedback [27]. The success of these methods depends
on the assumption that visual perception is better
represented by nonlinear distance than its original
distance. As will be shown in the next section, this
assumption can also be applied to geometry model
features as they also lie on manifolds.

In our context, we choose to apply the Diffusion
Map here as it is able to handle the non-uniform
distribution of data [3] and effective in reducing the
dimension by diffusion, which ensures that the mani-
fold is properly smoothed with important information
retained. Hence, it differs from other techniques that
simply discard useful higher dimensions [4]. Recently,
DM has also been applied to image databases as
a transductive relevancy feedback tool [30]. There
are also supervised learning methods, referred to as
Metric Learning, that exaggerate the distances among
data so that the metric produces small distances for
objects within the same category and large distances
for those of different categories [31]. Our method,
however, focuses more on dimension reduction.

In embedding retrieval literature, it is popular to
use Nystrom extension to approximate embedding

of large datasets. General embedding retrieval algo-
rithms like FastMap, MetricMap and Landmark MDS
are all based on similar ideas [32]. It is well-known
that projecting both the database and queries using a
few landmark objects leads to large approximation er-
rors and causes a degradation on the overall retrieval
accuracy. This problem becomes more severe when
more dimensions are required. To improve Nystrém
extension, [33] uses a matrix completion view to
approximate full kernel matrix, and [5] incorporates
density into the computation. We adapt ideas from
these two works in our retrieval framework to im-
prove the quality of the embedding.

3 MANIFOLDS IN FEATURE SPACE
3.1 Limitations of Existing Approaches

When similar-skeleton models are matched, the best
way to tell them apart is by using geometric features
as the skeletal and topological features are likely
similar. A general idea is to use more geometric
features for comparison. To study the performance of
these methods, we have created a database of 1,020
articulated geometry models. In order for the database
to contain models with large span of gestures, we
output the geometry models every five frames of an
animation sequence. It ensures that all models are
different from each other and gives a fairer evaluation
than simply rotating or scaling the models as in
[2]. After obtaining this database, we compute and
embed all distances using Multi-Dimensional Scaling
(MDS) [28], which is a popular visualization tool for
preserving all pairwise distances.

We have tried two methods on our database, (Multi-
resolution Reeb Graph) MRG [1] and (Topological
Point Ring) TPR [2]. They use very high numbers
of geometric features (approximately 800 and 900,
respectively). MRG builds a multi-resolution tree by
partitioning a 3D mesh into multiple intervals. The
distance measure is defined by matching all graph
nodes from top to bottom between two trees in a
greedy manner. TPR defines a bag of features — a set
of points and rings, where points are protrusion tips
and rings are segment boundaries. Each point or ring
is associated with three histograms (curvature, area
and thickness) to describe surface details. The his-
togram is constructed by partitioning the mesh using
geodesic. It employs Earth Mover Distance (EMD) [18]
as a dissimilarity measure. Both methods are reliable
towards small noise; for MRG, the partition function
is an integral and for TPR, it inherits the robustness
from EMD.

Fig. 1 shows our experimental results. We have
two observations here. First, these models form many
nearby manifolds in the embedding space. Second, the
intra-cluster variances among similar-skeleton mod-
els are all larger than the inter-cluster distances. To
explain these, we may analyze the features used in
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Fig. 1. MDS visualization of MRG (left), a Graph-based
method, and TPR (right), a bag-based method. Similar-
skeleton models may not form separable clusters.

these methods. Both MRG and TPR capture features
that adapt to the underlying topology and hence
deformation. When two similar-skeleton models are
matched, the similarity measure is like high dimen-
sion Euclidean distance as graph matching and EMD
are designed in a way to find feature correspondences
of two models. Euclidean distance can be considered
as a distance in a very high dimension (nm, with
n being the number of nodes in the MRG tree or
number of features in TPR, and m being the number
of scalars in the MRG tree or number of bins in each
TPR histogram).

3.2 Justifications for Manifold Learning

The main limitation of Euclidean distance is that it is
very sensitive to even slight misalignment. As pointed
out in [21] (Chapter 2), Euclidean distance is not a
smooth function with respect to natural parameters
(deformation in our concern). To illustrate this, we
consider the four model signatures shown in Fig.
2. These histograms are obtained based on geodesic
partitioning of a feature extracted from one of the
legs of each animal. We see that the histograms of
all dog models have a sharp peak while that of
the wolf model has a round peak. The two dogs
on the left are close to each other while the right
dog (especially the peak) is slightly misaligned due
to articulation change. We have also compared the
Euclidean histograms of the four models. The distance
between the left and the middle dogs is only 0.2271.
The distance between the left and right dogs is 0.7285,
while the distance between the left dog and the wolf
is 0.5853. In other words, though the histogram shape
of the right dog is similar to that of the left dog,
the wolf has a smaller Euclidean distance instead.
This shows that the misalignment of histograms may
easily lead to a large intra-cluster variance. When
the variance is greater than the inter-cluster distance,
retrieval accuracy will be affected.

There is another justification for using manifold
learning. It is the high dimensionality of the features
itself. Each 3D model can be considered as a point
in the high dimensional space. As the number of
dimensions increases, these points spread on a surface

Fig. 2. Feature histograms of 4 different models (from
left: wolf, dog, dog, dog).

(manifold structure) and any analysis will depend
on the surrounding neighborhood (edge effect) of
these points [34]. This corresponds well to the notion
of manifold learning techniques. Therefore, though
we validate the hypothesis on two methods (Multi-
resolution Reeb Graph) MRG [1] and (Topological
Point Ring) TPR [2], we believe that our study is
equally applicable to many other methods for artic-
ulated geometry model retrieval.

Our idea of improving retrieval accuracy (Sections
5.5 and 5.6), in an unsupervised manner, is to find a
new embedding such that the inter-cluster distances
among different manifolds may be exaggerated. Man-
ifold learning has been applied to some other media
applications, including image segmentation [35] and
mesh clustering [36]. The reason that these segmen-
tation and clustering algorithms work is evidenced
by the Polarization Theorem. As discussed in [37]
(Theorem 5.6), the angles between eigenvectors be-
come polarized when the projected dimensionality is
reduced. In other words, when a data representation is
projected onto leading eigenvectors (i.e., a low dimen-
sional embedding space), the embedding distances
among data items are exaggerated, which enhance
the clustering structure of the data representation.
Although our work is based on the Diffusion Map, we
expect that other manifold learning techniques should
be equally applicable.

4 THE DIFFUSION MAP (DM)

To summarize the Diffusion Map (DM) [21], suppose
O is a set of n data points approximately lying along a
submanifold €. (In our case, O is the set of all objects
in the database.) When n approaches oo, the random
walk on this discrete graph of O converges to the
random walk (diffusion process) on the continuous
space §1. In real applications, however, the number of
data points is finite, and the DM provides a discrete
approximation of the underlying diffusion process.
Let z,y € O be two models, and W(z, y) be an entry
of the pairwise distance matrix W, which is obtained
by a graph-based / bag-based method. We compute

2
exp (—W), where ¢ is a

a kernel Ky (z,y) =
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parameter that defines the local scale of the neigh-
borhood. The use of an exponential function suggests
that small distances are more important than large
ones. This is essential to learning manifolds as they
are defined by local neighborhoods. Since these data
may have different distributions, it is best to separate
distribution from the geometry so that the embed-
ding is not affected by local factors. [21] estimates
the distribution by letting pw(z) = >_, o Kw(z,y).
K (z,y), which has the distribution separated from the
geometry, is defined as:

K
K(I,y) _ W(‘T7y)
pw(z)pw (y)
However, kernel K(z,y) is not symmetric and the

symmetric anisotropic transition kernel P(z,y) of
Markov chain on O is usually considered. Let ¢(z) =

Zyeo K(:L‘, y)/

)

P(z,y) = @)
The diffusion distance Dy(z,y) of the embedding
space is defined as:

Di(w,y) = Y (P'(w,u) = P!y, ) /n(w) ()

u€O
where 7(u) = q(u)/3,c0 q(z) and P* are the station-
ary distribution and the " time step of Markov chain,
respectively. Let d be the dimension of the embedding
space. The diffusion distance can be elipproximated

as Dy, y) = (S0 02 (i(w) = i(y))*) ", where 1.4
and A 4 are the d eigenvectors and eigenvalues of
P(z,y). The DM ¥, (x) : O — R% embeds all geometry
models into a Euclidean space:

W) = (Moo (), Notba (@), s Ntha() T (4)

In this space, inter-cluster distances among different
manifolds are exaggerated. Since it is a Euclidean
space, we can apply a spatial indexing method (e.g.,
the kd-tree) for fast retrieval. To extend DM to out-of-
sample data, [21] uses Nystrom Extension:

9@) = o= 3 Pl y)o) ©

yeO

such that the diffusion coordinate ¢)(z) of sample z
can be extrapolated from coordinates ¥ (y) of all n
models in O, weighted by P.

5 OUR RETRIEVAL FRAMEWORK

Multimedia retrieval usually involves high dimen-
sional features and large datasets containing thou-
sands to millions of records. Manifold learning tech-
niques can be used to find a subspace that preserves
the distances among the manifolds of data. Given a
continuous diffusion process, the discrete finite eigen-
functions of the diffusion operator usually provide a

Eigensolver

Dog
*x Wolf :
¥ Landmarks

Fig. 3. Using eigensolver and Nystrdom Extension for
retrieval. K is the kernel distance matrix. A, B and C,
which are submatrices of K, are the distance matri-
ces among landmarks, between landmarks and non-
landmarks, and among non-landmarks, respectively.
The hatched white regions are the distance matrices
between the new query and the rest of the matrices.
Embedding at upper right is obtained from eigensolver
(true embedding). Embedding at lower right is obtained
from Nystrém (approximated embedding).

good approximation of the manifold. However, solv-
ing eigen-decomposition directly for online queries is
not practical due to its high computational cost. Hence
further approximation is usually sought.

Nystrom extension, as shown in Fig. 3, is a popular
technique for finding numerical approximations to
the eigenproblem. As discussed in Section 4, it can
also be used to extrapolate DM to out-of-sample data.
However, in Eq. 5, the embedding of out-of-sample
data is assumed to be extrapolated using all samples
from the database. This is not practical for large
databases. The latest Nystrom technique is to draw a
few samples (called landmarks) from the database and
extrapolate the computed eigenfunctions using the
quadrature rule [33]. [5] further takes into account that
different landmarks should have different weights
and proposes a Density-Weighted Nystrom technique.
Our framework has adopted this idea.

Fig. 4 left shows the general flow diagram of exist-
ing embedding retrieval methods that use Nystrom
extension to compute embedding for both the
database (offline) and the queries (online). However,
as will be shown in Section 5.3 (and the lower part of
Fig. 3), using Nystrom extension for both the database
and the queries causes projection errors, which distort
pairwise distances in the embedding space and thus
affect retrieval accuracy. The problem becomes more
severe when the number of landmarks is small while
the dimension is high.

As we have observed that eigensolver embedding
and Nystrom embedding are both approximation of
the underlying continuous diffusion process and are
highly similar, we propose to obtain a true embedding
(eigensolver embedding) for the database (offline)
based on full eigen-decomposition as shown in Fig.
4 right. Dotted boxes indicate blocks that differ from
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Embedding Retrieval
Offline Process Online Query

Proposed Framework
Offline Process Online Query

compute distance compute query compute distance compute query
matrix W distance to matrix W distance to
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obtain landmarks l Ir compute -i i
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i compute approx parameters and | I compute approx |

true embedding ||| query coordinate |
using sparse | | using Nystrom |
L _Eigensolver | L _ extension |
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buidindexing | v | | | landmarks | dinate to
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approx embedding| | ~approx query L _embedding _|
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structure using true| knn-search using
embedding ™ query coodinate in
(e.g kd-tree) true embedding

Fig. 4. Retrieval Framework. Left: Nystrém extension
used in existing work. Right: Our proposed framework
using both eigensolver and Nystrom extension embed-
dings. Dotted boxes indicate the differences.

existing works. To compute the query coordinate (on-
line), we also use Nystrom extension, but we project
the approximated query coordinate back to the true
embedding using correspondence analysis during on-
line query search. This gives us a more accurate query
coordinate for fast and reliable retrieval.

In the following subsections, we present our frame-
work in detail. Section 5.1 presents a reliable weighted
Nystrom Extension particularly for DM by separating
distribution from the geometry. Section 5.2 discusses
how to speed up Nystrom for online query search.
Section 5.3 discusses how to obtain a true query
coordinate by landmark correspondences. Section 5.4
presents an algorithm for selecting landmarks auto-
matically. Section 5.5 discusses how to augment the
kernel by one or more similarity measures in the form
of shortcut edges. Section 5.6 discusses a heuristic
algorithm to compute parameters for DM.

5.1

Since we want to reduce the number of landmarks in
retrieval applications, we have adapted the Density-
Weighted Nystrom technique here. [5] solves the nor-
malized cut eigenproblem:

K(z,y)
DY/2(x)D1/2(y)

with the following Nystrom equation by taking den-
sity of landmarks S(y) into account:

p() = 5 32 D7 2K (@,9)S) D )iy) )

where K is the kernel similarity matrix and D is
diagonal degree matrix. Eq. 7 extrapolates eigenvec-
tors (embedding) U(y) computed on a subset Oco,
called landmarks, to the whole database O by us-
ing density-adjusted distances K (x,y)S(y) from z to
all landmarks y as weights. This Density-Weighted
Nystrom technique was original designed for Kernel

Principal Component Analysis.

Nystrom Extension for the Diffusion Map

U(y) = 2(y) (6)

Before we can use Eq. 7 to solve the eigenproblem of
Eq. 2, we need to obtain K. Recall that K is the kernel
matrix obtained from Ky with distribution separated
from the geometry. K is required to compute 1,
D(z) = 3 ,K(z,y) and the extension. Separating
distribution from the geometry is an essential step
for DM to obtain a true Laplace-Beltrami operator
and to analyze the underlying manifold. To obtain
K, we need to compute pw(z) = > o Kw(z,y),
which involves the whole matrix Ky . In our retrieval
application, we usually have submatrices Ay and By,

Aw  Bw

To obtain distribution separated K from Ky effi-
ciently without requiring the full matrix of Ky as
inspired by [33], we first follow the derivation in [5]
by considering the following eigenproblem:

/ Kw (2,1)S(4)$(y)dy = nxi(x) (8)

where Ky is a symmetric kernel. Using Kw (z,y)S(y)
instead of Ky (z,y) takes density S(y) of landmarks
into account. Since Ky (z,y)S(y) is not symmetric, we
let ¢(y) = S(y)~2u(y) and convert the eigenproblem
into:

} only.

/ S(@) 2 K (2, 9)S ()2 p(w)dy = nhaly)  ©)

where S ()2 Ky (x,y)S(y)'/? is symmetric. This sug-
gests the following Nystrom approximation scheme if
we want to eigendecompose Ky :

. 1 -
d(a) = - 3 Kwlz, 9)Sw)d )
The Nystrom approximated eigenvectors can be

A‘}V} SUA~!, where
By

AW = KW(-’L',y) for T,y € O/ By = KW(J?,y) for
2€0—-—0,ye€0,U =1, and A = n\. As ¢ are the
approximated leading eigenvectors of Ky, we have:

Ky ~ AT = {g% SUAT*UTST [Aw  Bw] (11)

(10)

rewritten in matrix form: 1/3 = [

Let u = SY/2U. As S1/? Ay, S*/? is symmetric, we have
(Sl/QAWLSvl/Q)—} _ (MAHT)—I _ Sl/QUA—lUT and,
Ayt = SUATTUT ST, By substituting it to Eq. 11:

- A _
v (12)
_|Aw Bw
- [ sp )

This derivation shows that the Density-Weighted
Nystrom has the same matrix completion view as
general Nystrom [33]. Suppose that we now want to
solve the following eigenproblem:

[ E@sww - mswwmy
— (o) .
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where pw(z) = >, Kw(z,y), and since we do not
have the full matrix Ky, we approximate py (z) ~
pw(z) =>_, Kw(z,y) as follows:
ﬁW’::[ z:yth($7y)+_§:%l%V($7y)
>y Biv(z,y) + Bl Ay 32, Bw (x,y)
To compute K from Ky, we compute submatrices
Aand B of K = [A B} as:

(14)

BT C
AW(I7y) A
Az _— T
( 7y) - ﬁVV(x)ﬁVV(y)’ W< o (15)
B(z,y) + _BW<_’y) , 1€0-0,y€0
pw (2)pw ()

After obtaining A and B, we can use the Density-
Weighted Nystrom extension of Eq. 7 to solve graph
normalization and extrapolate eigenfunctions to the
whole database. We avoid computing the huge sub-
matrix C, which is the distance matrix among non-
landmarks, to gain speed up.

5.2 Nystrom Speed-up for Retrieval

Nystrom extension both avoids the expensive eigen-
solver on large matrices and reduces computing the
expensive similarity measures. Given an unknown
query, it is sufficient to evaluate the distances be-
tween the new query and the landmarks (the hatched
regions of the lower matrix in Fig. 3) to obtain the
query embedding coordinate. Since the coordinate
is Euclidean, a spatial indexing technique, such as
kd-tree, can be used. This is very attractive because
graph- / bag-based methods are usually slow and
non-metric. Nystrom extension thus provides a way
to scale these algorithms to large databases.
To compute a query coordinate, we construct:

Bte)  [Buty) oo (-LEE)] g

where 2 € O — O. W(q,y) is the distance between
new query ¢ and landmark y € O. To further speed
up online query search, we may precompute eigen-
decomposition. We note that eigen-decomposition of
submatrix A depends on our proposed distribution
separation step. Given a new query, distribution py
can be written as:

Y, Aw(z,y) + 32, Bw(x,y) ]
>, Bl (x,9) + B Agt Y, B (a,y)
3, Awlw,y) + 32, By (@) + exp (— 22 )
>, Bl (x,9) + B Apt Y, B (2,y)
- [ >y Aw(z,y) + Q%Bw(x,y) }
>y Biv(2,y) + By Ay 3°, Bw(2,y) W)

The last step is a good approximation since the

addition of exp (—M) is negligible for large

o

%%% Offline precomputation %$%%

Aw_inv = pinv (Aw) ;

% precompute distribution

bar_pl = sum([Aw; Bw'], 1);

% separate distribution from geometry
A = Aw./ (bar_pl+bar_pl');

% eigen decomposition

d_Az_si = diag(l./sqgrt (sum(AxS,2)));
[V E] = eig(d_Az_si* (AxS)*d_Az_si);

10 [V,E] = SortEigen(V,E);

11 % precomputed result

12 product_VE = d_Az_sixVxpinv (E);

Eq.17
Eq.15

Eq.9

coo

1 %$%% Online query extension %%%

2 % append query to landmarks distance to B
3 hat_Bw = [Bw W]; FEq.16
4 % distribution adjustment

5 pl=sum([Aw;hat_Bw'],1); Eq.17
6 p2=sum(hat_Bw,1)+sum(hat_Bw',1)*Aw_inv+hat_Bw;
7 bar_p = 1./[pl p2]1';

8 A = Aw.x (bar_p(l:n)+bar_p(l:n)"'); Eq.15
9 hat_B=hat_Bw.x (bar_p(l:n)x*bar_p(n+(l:m))");

10 % weighted Nystrom

11 d_Ax = sum([A;hat_B']*S,2);

12 d_Ax_si = diag(l./sqgrt (d_Ax));
13 d_pi = d_Ax ./ sum(d_Ax);

14 % extension by precomputation

15 V_ex=d_Ax_si* ([A;hat_B']«*S)xproduct_VE;
16 % diffusion map embedding

17 for i=l:size(V_ex,2)

18 V_left(:,1) = V_ex(:,1)./sqrt(d_pi);
19 end

Eq.7

Eq.7

Eq.3

Fig. 5. Example MATLAB code for computing Diffusion
Map using distribution adjustment, density-weighted
Nystrém extension and heuristic precomputation. A
and B are submatrices of K.

databases. The eigenproblem then solely depends on
A and S and can be precomputed offline. It is thus
sufficient to extrapolate the embedding for all objects
(databases and queries) by simple matrix multiplica-
tion during online query search. It gives significant
speedup especially for large databases.

Fig. 5 shows some Matlab codes, with correspond-
ing equation numbers listed on the right. We sepa-
rate offline precomputation from online query exten-
sion. In the online section, a simple multiplication
of [A;hat_B']*S with the precomputed eigenvector
matrix product_VE is required to extrapolate all
coordinates including the database and query objects.

5.3 Query Alignment

Although Nystrom embedding is generally assumed
to give best approximation, its effect on retrieval accu-
racy is rarely discussed. We have tested Nystrom and
our Density-Weighted Nystrom algorithms to obtain
the diffusion embedding for a toy example of Swiss
Roll, shown in Fig. 6(a). Distortions are observed in
Fig. 6(b)-6(c). When applied to some other models, as
shown in the right hand side of Fig. 3, the quality of
Nystrom embedding is not good since some coordi-
nates of Dog are closer to those of Wolf. When we
apply the nearest neighbor search on the Nystrém
embedding, retrieval accuracy degrades. This is a
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practical limitation of Nystrom extension. Although
increasing the number of landmarks can improve the
quality of embedding, it also increases the compu-
tational cost due to the increase in the number of
expensive similarity comparisons of landmarks.

Our proposed solution is based on the understand-
ing that eigensolver (computed from O C ) and
Nystrom (computed from O C O) embeddings are
both approximations of the continuous diffusion pro-
cess on () and are highly similar. If we can align the
query Nystrom coordinate to the eigensolver one as
in Fig. 6(d)-6(e), we may conduct the nearest neighbor
search by building a spatial indexing tree on the eigen-
solver embedding. This results in a fast (Nystrom) and
accurate (eigensolver) retrieval scheme.

Aligning two embeddings from two different
sources and establishing correspondences between
them is a difficult problem. [38] establishes correspon-
dences for extrinsic geometry of 3D non-rigid shapes
by aligning their intrinsic geodesic embeddings. Three
subproblems are factored: eigenmode switching — the
switching order of eigenvectors when corresponding
eigenvalues are close, sign flip — the arbitrary deter-
mination of signs by the numerical eigensolver, and
non-rigid alignment — the misalignment is due to the
distortion of the embedding processes, the use of
geodesic for distance approximation and the sampling
issue. The first two subproblems are practical issues
of the numerical eigensolver, and can be handled by
exhaustive pairing and evaluating the leading eigen-
vectors. [38] handles the third by Iterative Closest Point
(ICP) and Thin Plate Spline (TPS).

Inspired by [38], we adopt a similar approach
but ours is much simpler because our embeddings
are based on the same underlying diffusion process.

(d) Alignment

(e) TPS aligned embedding

Fig. 6. A test example: (a) Swiss Roll. (b) Embed-
ding obtained from Nystrém extension. (c) Embedding
obtained from Density-Weighted Nystrém. (d) Embed-
ding obtained after eigenvector swapping and sign
change. (e) Embedding obtained after TPS transforma-
tion (green) using landmark correspondences (black
lines) with (d) (red). Embedding overlaps nicely with
eigensolver embedding (blue).

Algorithm 1 Aligning Eigenmode-Switched and Sign-
Flipped Embeddings.

Require:ﬁl.\_d, 1[)1__,5, d, s
Ensure: ¥,1ign, 4
1: define a set J < 1..s
2: fori < 1 to d do
3. find the eigenpair with largest [|¢; - 1;]|, j € J
4 if t;-1; <0 then
5: ’(;j — —1x 1;]'
6: end if
7 S\
8: q/jali,gni — d}j
9: end for

To handle eigenmode switching and sign flip, we
propose to perform a greedy search on s leading
eigenvectors, as shown in Algorithm 1. We find that
setting s = 3d, where d is the dimension, generally
performs well. Instead of evaluating the Euclidean
distance between two whole sets of embedding, we
maximize the value: argmax ), v; - Yalign,;, Where 1)
Valign

is the eigensolver and ¢ is the Nystrém embeddings.
@ is the aligned embedding of 4. The larger its
value, the better the alignment is between the two
sets of embedding. Simple dot product is sufficient
here as 1 and 1[) are very similar to each other.

After finding the best eigenpairs, we project the
query coordinate onto the eigensolver embedding.
Contrary to [38], our method does not require ICP to
establish correspondences. We use TPS to transform
Nystrom to the eigensolver embedding through land-
mark correspondences O, as shown in Fig. 6(e). TPS is
a coordinate transform method [39]. Given some cor-
respondence anchors (z;,y;), TPS finds the function f
that passes through them with minimal error. f can
then be used to interpolate the transformed coordinate
of an arbitrary query.

EU?=Z]W@H—ﬂ%W+U

O*f O*f 0*f
I = [[(55)°+2 *+ 5)%dxd
1= [[ Gk + 25+ Gk Pdady
Following [40], we compute the transformation pa-
rameters (D, w) by minimizing Eq. 18, which is equiv-
alent to solving the following linear equation:

r—1 xT[w] [v

X 0||D] |0
where X and Y are (d + 1) homogeneous dimension
coordinates of Nystrom and eigensolver embeddings

of landmarks O. I is an identity matrix. D is a
(d+ 1) x (d + 1) affine transform matrix. w is a

(18)

(19)

matrix of [O| x (d + 1) warping coefficients. I';; =
—1og|[Yatign () = Yatign ()|l = 7j(atign(x:)). Once
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the landmarks are fixed, D and w can be precomputed
offline. Given an online query, the aligned query co-
ordinate can be computed from Nystrém coordinate:

F (Batign(@), Dy w) = Gatign(q) - D + 7 (Vatign) - w.

5.4 Choosing Landmarks

As in [5], we first generate the set of landmarks using
K-means clustering, with random sampling as initial-
ization. We compute the density of each cluster and
the Nystrom embedding, and then align the Nystrom
embedding to the eigensolver embedding. The pre-
viously defined dot-product (Algorithm 1, line 3) can
then be used for fast pruning of poor embedding. The
higher the score, the better the quality of the Nystrom
embedding is. We repeat the whole step a few times
(20 in our implementation) simply because K-means
is initialized by random parameters. Once we get the
best set of landmarks of a given k, we check if the
score is good enough for retrieval. We compute the
Precision and Recall (PR) using such embedding and
compare this PR with that of the true embedding. This
error is defined as: |[true_pr — nystrom_pr||, where
true_pr(i) and nystrom_pr(i) are the i'" precision
values of the average PR curves of the true and
Nystrom embeddings. If this error is less than a
certain threshold, the algorithm outputs the best set of
landmarks; otherwise, we increment k. This algorithm
is an offline process.

Summarizing the above subsections, our method
may be considered as optimizing the cost function:

argmin Y ((z;) — f((2:)))* + T K+ My (20)
€0

0€0,(D,w) icO

where I; o w'Tw, A\ = 1. f(¢(x;)) and ¢ (x;) are
the coordinates of the Nystrom and eigensolver em-
beddings, respectively, of landmark x;. The first term
requires the coordinates of Nystrom and eigensolver
embeddings to be the same at z;. The second term
defines the inner product of the spectral embed-
ding [41], with K defined in Eq. 15. The last term
Iy imposes smoothness constraints through TPS (non-
rigid transformation) [40]. Optimizing Eq. 20 gives
the best set of landmarks, O € O, and the associated
TPS parameters (D, w). However, we do not optimize
this function here because it requires enumerating all
possible subsets of O € O and solving Eq. 19 in
each step, which involves a dense matrix I' of size:

‘O‘ X ‘0 . Instead, we follow [5] to find landmarks by

K-means and [38] to handle sign-flip and eigenmode
switch, which are practical and fast.

5.5 Augmenting the Kernel Matrix

So far, we have assumed that all data lie on individ-
ual manifolds. If the features are unstable or there
are insufficient samples in the database, manifolds
may become disjoint. Here, we propose to directly

augment the kernel matrix with ”“shortcut edges”,
to link these disjoint manifolds together. In general,
if one method is not sufficient to differentiate two
models, it is common to add other similarity mea-
sure(s) for adjustment. For example, [23] proposes a
two-step pruning process. Our idea is similar in that
we use two or more similarity measures to build an
automated system. However, our approach is much
simpler and more efficient because it allows retrieval
in one step as shown in Section 5.1.

We recall that kernel matrix Ky is the Markov ma-
trix defining the probability of diffusion. With respect
to spectral graph theory, a probability greater than 0
means that there is an edge connecting the two nodes.
After the parameter optimization step in Section 5.6,
the kernel matrix becomes a sparse matrix and each
of the non-zero entries corresponds to the nearest
neighbor of local scale 0. We consider the following
augmented kernel:

Ky = zi:exp <—V:2> (21)

where W, are different distance matrices. The non-
zero entries of W, are the diffusion probabilities to
their neighbors. By adding them all together, we intro-
duce extra probabilities, in the form of shortcut edges,
to the original kernel, where such connections might
not exist. In general, this approach can be applied
to 2 or more similarity measures. Note that though
Kw may now have probabilities greater than 1, it is
normalized by Eq. 1.

The above idea is based on the following obser-
vation. Given a large database with a lot of similar
models, general retrieval methods are usually reliable
for the first few matches. Therefore, it is possible
to combine the first few good nearest neighbors to
form a new embedding distance. In other words,
we are introducing reliable short-cut edges (nearest
neighbors from another method) to bridge the disjoint
manifolds of the original data set or to improve
the embedding distances. Since we restrict this to
a few nearest neighbors only, the effect due to the
possible introduction of unreliable short-cut edges is
small. [41] also considers using a sparse set of ”short-
circuits” to align manifold. It improves the embed-
ding quality by manually defining some sparse set of
points. We, on the other hand, take advantage of the
dense set of correspondences to form short-cut edges
from two or more distance measures to improve the
resulting embedding and retrieval results.

5.6 Choosing Parameters for the Diffusion Map

There is not much discussion on choosing the appro-
priate parameter values, i.e., o (the gaussian width), ¢
(the diffusion step) and d (dimension), for the Dif-
fusion Map in the original work [4] and relevant
literature. Finding the values for these parameters are
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generally data-dependent. One of our assumptions of
using manifold learning to improve retrieval accuracy
is that the dissimilarity measure is able to separate
different classes of models. Here we take a heuristics
approach to determine these parameters values.

In DM, o determines the local scale of the neigh-
borhood. [21] proves that when ¢ — 0, the kernel
approaches the Laplace-Beltrami Operator. This pro-
duces smooth eigenvectors that are good for harmonic
extension. A very small o, however, results in high
multiplicity of 1 in the spectrum (list of eigenvalues).
From spectral graph theory, multiplicity of 1 counts
the number of disconnected components (manifolds
in our case). The disconnected components are stored
in the associated eigenvectors. On the one hand, this is
good because it exaggerates distances among different
manifolds. On the other hand, if the multiplicity of 1
is greater than d, we lose important eigenvectors and
so grouping information in the embedding space. This
imposes a constraint that the best o should give the
largest multiplicity of 1 that is less than dimension d.
For example, o is set to 0.006 in Fig. 7(a).

Parameter ¢ is the dyadic power to diffuse local
distances to infer far distances. It holds the key to
dimension reduction as shown in Fig. 7(b). From
the signal processing point of view, summation of
spectrum represents the total energy. It is desirable
to have all the energy concentrated at the first few
d dimensions so that all the important information
is well-represented. Since noise is usually located
at high frequencies, it may be desirable to truncate
high frequency components. Due to these reasons,
we compute ¢t by defining ¢ = )\dzt/)\12t = 0.1 to
truncate noise [4], where )\, is the d' eigenvalue of
the spectrum. Fig. 7(b) shows the effect of ¢ on the
spectrum with ¢ = 0.006. ¢ ~ 12 achieves £ = 0.1.

0.99

=+-0 = 0.005,
o =0.006
=%-0 =0.007
o =0.008
=g =0.009
~<0=0.01
=-0=0.011]

}\0.98

0.97|

0.96

04950

15

1
dimension =d

° dimension =d
(@) A vs. d at varying o (b) A" vs. d at varying ¢ and o =
0.006
Fig. 7. Relationships among o (local scale), d (dimen-

sion), and ¢ (dyadic power for diffusion).

From the above discussion, ¢ and t are both de-
pendent on d. From Fig. 8(a) and 8(b), we observe
that if the dimension is too small or too large, the
retrieval accuracy will be affected, and there is usually
one best dimension d such that the method attains the
best retrieval accuracy (i.e., TPR: d = 12 and MRG:
d = 14). We believe that such dimension is related
to the intrinsic dimension of the data. Therefore, we

10
1
6;
0.9]
c k= S
(%} - 3 (%} - 3
] -=-0rigTPR h ] - OrigMRG
& 0.8)-6-d =03 & 0.7]--d =03
~=d =08 ' ~=d =08
+-d =12 \ el Pd=14
0.7-4-d =16 l|a-d =17
d =20 b o8 d =20
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Recall Recall
(a) TPR (b) MRG

Fig. 8. Determining the dimensions of Diffusion Map
for the TPR and MRG methods.

take a simple approach by trying different possible
dimensions d and compute the average precision and
recall for the dataset. We then take the dimension d
with the minimum cost:

arg min 1—pr(
min 30 |1 pr(i)

i€[1...50]

(22)

where pr(i) is the i'" precision value on the average
PR curve. Although this search may still be slow for
very large datasets, it is an offline process. We believe
that trading off speed for accuracy here is important
for reliable retrieval. We have applied and evaluated
these settings empirically in the next section.

6 EXPERIMENTAL RESULTS

We have incorporated two distance measures, MRG
[1] and TPR [2] into our retrieval framework. To eval-
uate the performance, we have created a database con-
sisting of 1,020 articulating geometry models. They
are divided into 13 groups. Some are very distinct
(e.g., Frog), while others are very similar to each
other (e.g., Dog and Wolf, Lion and Cat) as shown in
Fig. 9(a). These models are generated from animation
sequences so that every model is different from the
others. We refer to this dataset as the Poser dataset.
We have also downloaded a publicly available McGill
dataset [42] for testing, as shown in Fig. 9(b). Since
TPR [2] has a basic assumption that the input models
should have more than 1 limb. We have manually
removed two model groups, snake and spectacle,
from the original McGill dataset in order to carry out
the following experiments.

6.1 Precision and Recall Comparison

Fig. 10(a) and 10(b) show the Precision and Recall
(PR) curves of the two distance measures (TPR, MRG),
and the performances of applying multi-dimensional
scaling (MDS) and diffusion map (DM) to these dis-
tance measures on the Poser and McGill databases.
These curves show the best PR values obtained by
varying the number of dimensions between 3 to 20
(Eg. 22), and the corresponding number of dimensions
is displayed next to the method names. The dimension
of MDS is set to the maximum of all since the higher
the dimension, the better it can preserve the original
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Girl

Horse

Lion Penguin Raptor Wolf
(a) Poser Database (1020 models in total)

A AR YHK { L

octopus pliers crab teddy hand ant human spider
(b) McGill Database (205 models in total)

Fig. 9. Datasets used for evaluation.

distances. Fig. 10(c) and 10(d) show the corresponding
PR performances on smaller databases, created by
removing even indices from the two databases.

We have several observations from Fig. 10:

1) With the Poser database, DM can improve the
performance of TPR and MRG, while MDS can-
not. Although MDS and TPR can separate these
model groups well in Fig. 1, they are affected
by the high-dimensionality and misalignment of
features. With MDS, all (far and close) pairwise
distances are preserved in the embedding space,
which is not useful to analyze data lying on
manifold. Therefore, our method can handle
these data better.

2) With the McGill database, MDS again fails to
improve the distance measures. We observe that
DM fails to improve with TPR too. The main
reason is that TPR relies on capturing surface de-

.....
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Fig. 10. Retrieval performance using our parameter
settings. MRG and TPR are applied on the Poser
and McGill datasets. They are compared to retrieval
performance after applying MDS and Diffusion Map.

tails (e.g., curvature and thickness) for retrieval,
but most of these models have similar/smooth
rod-like structures and so the original TPR also
performs poorly. DM gives much better perfor-
mance when combined with MRG.

3) With both Poser and McGill databases, com-
bining both MRG and TPR methods seems to
give a much better retrieval results. The reason
is that though one distance measure may not
always reflect the true distances between models
(e.g., due to noise, unreliable features), other
distance measures can still improve the embed-
ding distances by introducing reliable short-cut
edges and drag related models together. In other
words, the combined kernel can better capture
the intrinsic structure of the data.

With reduced databases shown in Fig. 10(c) and
10(d), we originally expected that more data should
lie on disconnected manifolds, degrading retrieval
performances. Although there is a drop in perfor-
mance, the drop is slight. Our conclusion is that since
the features involved in articulated geometry model
retrieval are usually high-dimensional, these data are
better analyzed by manifold learning techniques.

6.2 Nystrom Alignment and Retrieval Error

Fig. 11 and 12 (both in logarithmic scale) compare
our framework with Nystrom extension on the McGill
and the Poser databases. We first randomly sample
33% of the data as out-of-samples (testing data) and
build a database using the remaining 66% of the
data (training data). The two figures are produced by
finding 20 sets of landmarks, computing the PR curves
on the best 5 sets, and then computing the projection
and retrieval errors. The retrieval error is defined as:
|lorig_pr — pr||, where orig_pr(i) and pr(i) are the i‘"
precision values of the average PR curves. orig_pr is
the retrieval performance when there is no separa-
tion of training and testing data and the embedding
is computed based on the eigensolver embedding
(ground truth). pr is the retrieval performance using
Nystrom extension or our framework when training
and testing data are separated. We use the retrieval
error as a measure because the traditional retrieval
framework uses Nystrom extension for both database
creation and out-of-sample extension. Our framework
uses eigensolver embedding for database creation but
Nystrom extension and alignment for out-of-sample
extension. To evaluate whether the retrieval perfor-
mance is preserved, we measure the retrieval errors.

Fig. 11(a), 11(b), 12(a) and 12(b) show the projection
errors due to samples in the databases (training data
of both landmarks and non-landmarks). Fig. 11(c),
11(d), 12(c) and 12(d) show the retrieval errors using
samples in the databases. Fig. 11(e), 11(f), 12(e) and
12(f) show the retrieval errors using those out-of-
samples (testing data). Nystrom refers to the Nystrom
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Fig. 11. Comparing the projection and retrieval errors
when using Nystrém, Density-Weighted Nystrom and
our approach on the McGill dataset.

extension method (Eq. 5). Weighted Nystrom refers
to the Density-Weighted Nystrom method with our
proposed distribution adjustment (Section 5.1). Both
of them are integrated into the traditional framework
(Fig. 4 left). Our Framework refers to our retrieval
framework (Section 5). Fig. 11 and 12 also show the
maximum, minimum and average values.

In summary, Density-Weighted Nystrom with our
distribution adjustment performs better than Nystrém
extension. This shows that our proposed adjustment
allows Density-Weighted Nystrom to be used to ap-
proximate the Diffusion Map. Our retrieval frame-
work performs even better in almost all situations on
the McGill database. Our observation is that Nystrém
techniques usually work on large datasets. For exam-
ple, [5] applies the Density-Weighted technique on
6000 images and compares the first 3 eigenvectors.
Here, we only have 205 models in the McGill database
and our retrieval is operating at dimension 5 (MRG)
and 14 (TPR). We believe that this causes the approxi-
mations to be sensitive to the distribution of data and
the choices of landmarks. This also explains the obser-
vation that our method generally performs better in
the Poser database, as the Poser database is larger and
its models are shown to lie on manifold. This suggests
that our framework performs better in approximating
diffusion embedding in these situations.
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Fig. 12. Comparing the projection and retrieval errors
when using Nystrém, Density-Weighted Nystrom and
our approach on the Poser dataset.

6.3 Time Comparison

Table 1(a) compares the online retrieval time per
query on the Poser database. The TPR and MRG
columns show the sequential search times using the
two methods. TPR is metric, and VP-tree (a distance-
based indexing technique) can be used. The VP-tree
column shows the retrieval time of using VP-tree.
However, due to the high dimensionality, the method
soon approaches brute-force when k ~ 50. The actual
retrieval time is even higher than brute-force, due to
the overhead of tree searching when k > 50. Since
MRG is non-metric, indexing techniques cannot be
used. The retrieval time for a query is long as it
involves sequential scanning of the whole database.
Our retrieval framework can incorporate both
methods, whether metric or non-metric, with the as-
sumption that the feature space lies on manifolds.
If we take half of the database as landmarks, it is
roughly 1.4 (for TPR) or 1.8 (for MRG) times faster
than the corresponding sequential search, depending
on the accuracy needed, as shown in the TPR+Ours
and MRG+Ours columns. The speedup is mainly due
to the reduced number of distance computations be-
tween the query and landmarks. As a spatial index-
ing technique, e.g., kd-tree, is extremely fast (when
d < 20), the time spent on k-nn search is so small that
it can be neglected compared to the time spent on
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evaluating the similarity measure. When our retrieval
framework is applied on the two methods (MRG and
TPR), the computational costs are roughly constant as
the required number of nearest neighbors increases. In
addition, our method does not suffer from the curse
of dimensionality because of the reduced dimension,
and consistently requires less time than the indexing
approach even when £ is small. The VP-tree index-
ing and distance computation is implemented with
C++, while our proposed framework is implemented
in Matlab. All experiments were performed on an
Intel(R) 2.67GHz i7 Quad Core PC.

Table 1(b) shows the preparation time for the Poser
database in our experiment. In the Parameter Search
phase, Embed refers to the time to embed pairwise
distances into diffusion embedding of dimension 3-20.
It includes the time to select the parameters o and ¢.
We also sparsified the kernel by setting value < 1le~®
to zero, because this does not affect empirically the
resulting embedding and retrieval performance. Re-
trieve refers to the time to find dimension d for the best
retrieval performance. In the Landmark Search phase,
Landmark refers to the time taken by the K-means clus-
tering process, generation of landmarks, eigenmode
switching, sign-flip, thin plate spline alignment and
eigen-precomputation. Projection refers to the time to
compute projection errors in Fig. 12a and 12b. All
these are offline processing times and are shown here
for completeness. These steps are required in our
framework in order to gain online retrieval speedup.

TABLE 1
Time Comparison.
k-NN TPR VP-tree  TPR+Ours MRG  MRG+Ours
1 0.477 0.705 1.726
5 0.832 0.705 1.726
10 0.903 0.705 1.726
50 1.034 1.052 0.705 3.189 1.727
100 1.157 0.706 1.727
500 1.195 0.709 1.730
1020 1.193 0.713 1.734
(a) Online Retrieval Time (in seconds)
Parameter Search Landmark Search

Method  £rped Retrieve  Landmark  Projection

TPR 1327.3  321.88 173.87 5453.81

MRG 2055.9 585.44 179.63 3826.57

(b) Offline Preparation Time (in seconds)

7 CONCLUSION AND FUTURE WORK

In this paper, we have pointed out that existing
graph or bag-based matching methods cannot handle
articulated geometry models with similar skeleton, as
they are projected on nearby manifolds. Increasing
the number of geometric features may increase the
distances among these manifolds but the intra-cluster
variance is usually larger than inter-cluster distances.
Retrievals using these methods may fail especially
when the database contains many similar-skeleton
models. Our idea here is to apply manifold learning

techniques to exaggerate inter-cluster distances. To
handle large databases, we have also adapted the
Density-Weighted Nystrém extension for the compu-
tation of the Diffusion Map and used correspondence
analysis to define a retrieval framework to reduce
Nystrom extension errors. We have shown with a
number of experiments that the proposed framework
improves retrieval accuracy and speed.

Our method assumes that the model features lie
on separate manifolds and thus separable in the
high dimensional space. When the model features do
not lie on separate manifolds, the proposed heuristic
method for computing the DM parameters may no
longer separate these manifolds well. We solve this by
introducing shortcut edges using different similarity
measures. In the future, we would like to explore
other manifold learning techniques, and to develop
more representative features to address this issue.
Our method also assumes that a true embedding is
available, and we take the eigensolver embedding as
the true embedding. As the data size reaches the limit
of the hardware requirement (e.g., memory), it may
be difficult to obtain a full eigensolver embedding.
One possibility is to use Density-Weighted Nystrom
extension on as many landmarks as possible and take
this as the true embedding. Given a sufficient num-
ber of landmarks, our Density-Weighted Nystrom
method approaches the eigensolver embedding, and
our framework can be applied for faster online query.

Though our current focus is 3D articulated mod-
els, we believe that the framework is applicable to
a wider class of applications (e.g., non-articulated
models and time-series, including video and motion
captured data), which involve high-dimensional fea-
tures. As we have shown that features of articulated
geometry models lie on manifolds, one interesting
question is whether these features can be used to build
a statistical model. We are planning to compare the
implicit optimization with our study here.
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