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Numerical integration over 2D NURBS-shaped domains

with applications to NURBS-enhanced FEM

Ruben Sevilla, Sonia Fernández-Méndez

Laboratori de Càlcul Numèric (www-lacan.upc.edu), Departament de Matemàtica
Aplicada III, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Universitat

Politècnica de Catalunya, Jordi Girona 1, E-08034 Barcelona, Spain.

Abstract

This paper focuses on the numerical integration of polynomial functions along
non-uniform rational B-splines (NURBS) curves and over 2D NURBS-shaped
domains, i.e. domains with NURBS boundaries. The integration of the con-
stant function f = 1 is of special interest in computer aided design software
and the integration of very high-order polynomials is a key aspect in the re-
cently proposed NURBS-enhanced finite element method (NEFEM). Several
well-known numerical quadratures are compared for the integration of poly-
nomials along NURBS curves, and two transformations for the definition
of numerical quadratures in triangles with one edge defined by a trimmed
NURBS are proposed, analyzed and compared. When exact integration is
feasible, explicit formulas for the selection of the number of integration points
are deduced. Numerical examples show the influence of the number of inte-
gration points in NEFEM computations.

Keywords: numerical integration, NURBS, NURBS-Enhanced Finite
Element Method, Gauss-Legendre, composite rule

1. Introduction

Non-uniform rational B-splines (NURBS) [1] are widely used in computer
aided design (CAD). Some basic tools of CAD software are the computation
of the length of a NURBS curve, the subdivision of a NURBS curve in equally
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spaced pieces and the computation of the area of a domain with NURBS
boundaries, to name a few. These basic operations require the numerical
integration of the constant function f = 1 along NURBS curves and over
domains with NURBS boundaries.

On the other hand, CAD models are usually employed by the finite el-
ement (FE) community in the preprocess stage, in order to build a spatial
discretization of the computational domain. Once the discretization is gener-
ated, the exact boundary representation is replaced by a piecewise polynomial
approximation. However, in the last decade many authors have pointed out
the importance of the geometrical model in FE simulations, see for instance
[2, 3, 4, 5]. This fact has motivated novel numerical methodologies consid-
ering exact CAD descriptions of the computational domain. For instance,
NURBS-enhanced finite element method (NEFEM) considers an exact rep-
resentation of the geometry while maintaining the standard polynomial ap-
proximation of the solution. With the NEFEM approach standard FE inter-
polation and numerical integration is used in the large majority of the domain
(i.e., in the interior, for elements not intersecting the boundary) preserving
the computational efficiency of classical FE techniques. Specifically designed
piecewise polynomial interpolation and numerical integration is required for
those FEs along the NURBS boundary.

This paper is devoted to the study of the numerical integration of low- and
high-order polynomial functions along trimmed NURBS curves and the inte-
gration over curved triangular elements with one edge defined by a trimmed
NURBS. Particular emphasis is placed in the numerical integration of high-
order polynomials, with applications to NEFEM. Several numerical quadra-
tures are proposed and compared through numerical examples. The gen-
eralization to 3D domains is conceptually easy but it requires some extra
attention to geometrical aspects and it is presented in [6].

Sections 2 and 3 recall the basic concepts on NURBS and NEFEM in two
dimensions. Section 4 is devoted to the integration along NURBS curves.
Some well known 1D numerical quadratures are tested for the numerical in-
tegration of low and high order polynomials. The integration over triangular
elements with one edge defined by a trimmed NURBS is addressed in Sec-
tion 5. Two transformations for the definition of a numerical quadrature over
a curved triangle are considered. The first one is a transformation from a
straight-sided triangle in order to test the performance of triangle quadra-
tures. The second one is a transformation from a rectangle to the curved
triangle. When exact integration is feasible, explicit formulas for the selec-
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tion of the number of integration points are deduced. Finally, numerical
examples in Section 6 show the influence of the number of integration points
in NEFEM computation.

2. Basic concepts on NURBS curves

This section presents some basic notions of NURBS curves in order to
introduce the notation and the concepts employed in the following sections.
For a detailed presentation see for instance [1].

A qth-degree NURBS curve is a piecewise rational function defined in
parametric form as

C(λ) =

( ncp∑

i=0

νiBiCi,q(λ)

) / ( ncp∑

i=0

νi Ci,q(λ)

)
λ ∈ [λa, λb], (1)

where {Bi} are the coordinates of the control points (determining the con-
trol polygon), {νi} are their control weights, {Ci,q(λ)} are the B-spline basis
functions of degree q, and the interval [λa, λb] is called the parametric space.
The B-spline basis functions are defined recursively from the so-called knot
vector Λ = {λ0, . . . , λnk} = {λa, . . . , λa︸ ︷︷ ︸

q+1

, λq+1, . . . , λnk−q−1, λb, . . . , λb︸ ︷︷ ︸
q+1

} by

Ci,0(λ) =

{
1 λ ∈ [λi, λi+1)
0 λ /∈ [λi, λi+1)

(2)

Ci,k(λ) =
λ− λi

λi+k − λi

Ci,k−1(λ) +
λi+k+1 − λ

λi+k+1 − λi+1

Ci+1,k−1(λ) (3)

for k = 1 . . . q, where λi, for i = 0, . . . , nk, are the knots or breakpoints.
Note that the first and final knots must coincide with the endpoints of the
parametrization interval and their multiplicity is always q + 1. The multi-
plicity of the remaining knots, when it is larger than one, determines the de-
crease in the number of continuous derivatives. The number of control points,
ncp + 1, and knots, nk + 1, are related to the degree of the parametrization,
q, by the relation nk = ncp + q + 1, see [1] for more details.

It is worth remarking that
∑ncp

i=0 Ci,q(λ) = 1. Thus, Equation (1) reduces
to a (polynomial) B-spline curve when all the control weights are equal.

To summarize, a NURBS is just a piecewise rational function whose defi-
nition changes at breakpoints. Figure 1 shows a NURBS curve and its control
polygon.

3
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Figure 1: NURBS curve (solid line), control points (◦), control polygon (dashed line) and
image of the breakpoints (�)

In practice, CAD manipulators work with trimmed NURBS, which are
defined as the initial parametrization restricted to a subspace of the paramet-
ric space. Figure 2 shows the NURBS curve represented in Figure 1 trimmed
to the subinterval [0.05, 0.75].

Figure 2: Trimmed NURBS curve for λ ∈ [0.05, 0.75]

3. NEFEM fundamentals

Let Ω ⊂ R
2 be an open bounded domain whose boundary ∂Ω, or a

portion of it, is curved. A regular partition of the domain Ω =
⋃

eΩe in
subdomains, triangles in this work, is assumed, such that Ωi

⋂
Ωj = ∅, for

i 6= j. It is important to remark that, in the following, Ωe denotes the
element with an exact description of the curved boundary. For instance,
Figure 3 shows a domain with part of the boundary described by a NURBS
curve corresponding to an airfoil profile, and a triangulation of the domain
with curved FEs with an exact boundary representation, i.e. curved NEFEM
elements.

As usual in FE mesh generation codes, it is assumed that every curved
boundary edge belongs to a unique NURBS. That is, one element edge can

4
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Ω

Figure 3: Physical domain with part of the boundary defined by a NURBS curve (left)
and a valid triangulation for NEFEM (right)

not be defined by portions of two (or more) different NURBS curves. But
on the contrary, it is important to note that breakpoints, which characterize
the piecewise nature of NURBS, are independent of the mesh discretization.
Thus, the NURBS parametrization can change its definition inside one edge,
that is breakpoints may belong to element edges and do not need to coincide
with FE nodes.

Every interior element (i.e. elements not having an edge that coincides
with the NURBS boundary) can be defined and treated as standard FEs.
Therefore, in the vast majority of the domain, interpolation and numerical
integration are standard. For elements with at least one edge on the NURBS
boundary a specifically designed interpolation and numerical integration is
considered.

The polynomial approximation is defined with cartesian coordinates x,

u(x) ≃ uh(x) =
nen∑

i=1

uiNi(x), (4)

where ui are nodal values, Ni are polynomial shape functions of order p in
x, and nen is the number of element nodes. Therefore, the approximation
considered in NEFEM ensures reproducibility of polynomials in the physical
space for any order of approximation p. See [5] for information about efficient
computation of the polynomial base for any degree of interpolation and for
any nodal distribution in Ωe. The exact description of the boundary is used
to perform the numerical integration on the physical subdomain Ωe. Thus,
special numerical strategies are required for every element Ωe.
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4. Numerical integration along NURBS curves

This section is devoted to the numerical integration of polynomial func-
tions along NURBS curves. As pointed out in the introduction, the numerical
integration of the constant function f = 1 is of particular interest in CAD.
It allows to compute the length of a NURBS curve and, for instance, it is
useful to compute an approximate reparametrization of a NURBS curve and
to subdivide the curve in equal length pieces. The numerical integration of
high-order polynomials is of interest in the NEFEM context.

Given a NURBS curve parametrized by C, the integral of a function f
over the NURBS curve is written as

∫

C

f dℓ =

∫ λb

λa

f(C(λ))|JC(λ)| dλ, (5)

where |JC | denotes the norm of the differential of the NURBS parametriza-
tion. As usual, a 1D numerical quadrature is used for the numerical compu-
tation of the integral

∫

C

f dℓ ≃
ñ∑

i=1

f(C(λ̃j))|JC(λ̃j)| ω̃j,

where λ̃j and ω̃j are the coordinates and weights of the ñ integration points
in [λa, λb].

Recall that the parametrization of a trimmed NURBS, C, is a piece-
wise rational function whose definition changes at the breakpoints. Thus, an
independent numerical quadrature must be considered for each one of the
intervals between breakpoints in order to take into account the discontin-
uous nature of the parametrization. Therefore, integral of Equation (5) is
computed as

∫

C

f dℓ ≃
nk−q−1∑

i=q+1

( n∑

j=1

f(C(λi
j))|JC(λi

j)| ωi
j

)
,

where λi
j and ωi

j are the coordinates and weights of the n integration points
in [λi, λi+1].

NEFEM requires the computation of the integral of any polynomial func-
tion f over an edge of a curved element given by a trimmed NURBS, Γe =

6
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C([λe
1, λ

e
2]). These integrals are related to the weak imposition of boundary

conditions or to flux evaluation in a discontinuous Galerkin (DG) context,
see for instance [5].

As discussed in previous section, NEFEM uses polynomials directly in
the physical space to approximate the solution. Therefore, the numerical
integration of high-order polynomials over NURBS curves is of interest in
this context. When a polynomial interpolation of degree p is considered, the
integration of the weak form involves the integration of polynomials of degree
less than or equal to 2p. For instance, the computation of a mass matrix term
requires the computation of integral

∫

Ωe

Ni(x)Nj(x) dx,

where Ni and Nj are polynomials of degree p.
Approximations with polynomials of degree up to p = 10 are of particu-

lar interest, see the applications presented in [5, 7], requiring the numerical
integration of polynomials up to degree 20.

The behavior of some well-known numerical quadratures for the com-
putation of integrals of polynomials up to degree 20 along NURBS curves
is studied through numerical examples in the next section. The selected
quadratures are:

• trapezoidal and Simpson composite rules,

• Romberg’s integration,

• Gauss-Legendre rules, and

• Gauss-Legendre composite rules with n = 4, 8 Gauss points in each
subinterval.

Romberg’s method is an improvement of the trapezoidal composite rule
by using Richardson extrapolation repeatedly, see [8]. For the definition of a
composite rule from a Gauss-Legendre quadrature with n Gauss points, the
integration interval is decomposed in m subintervals and the simple Gauss-
Legendre quadrature is used in each subinterval. The resulting quadrature
has mn integration points.
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4.1. Numerical tests for boundary integrals

Two different NURBS curves are considered for the numerical tests: a
quarter of a circle and a portion of an airfoil, see Figures 4 and 5. The
trimmed NURBS considered for the portion of the airfoil is in fact a (poly-
nomial) B-spline, and it corresponds to the front part of the airfoil, which is
the most critical region.

Figure 4: Trimmed NURBS curve describing a quarter of a circle (solid line), control

points (◦), control polygon (dashed line) and image of the breakpoints (� )

Figure 5: Trimmed NURBS curve describing the front part of an airfoil (solid line), control
points (◦), control polygon (dashed line) and image of the breakpoints (�)

Figure 6 shows the accuracy of different numerical quadratures for com-
puting the integral of the constant function f = 1 and the high-order poly-
nomial function f = xy19 along the trimmed NURBS describing a quarter
of a circle. The plots represent the relative error in the computation of the
integral in Equation (5) versus the total number of integration points using
different numerical quadratures. As usual, the relative error is measured as
|I− I⋆|/|I⋆|, where I is the approximated value of the integral using numerical
quadratures and I⋆ is the exact value of the integral.
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The use of high-order simple Gauss-Legendre quadratures is the most effi-
cient option. Machine precision is attained with the minimum number of in-
tegration points. Composite rules from the Gauss-Legendre quadratures are
also competitive. More popular composite rules, such as the trapezoidal and
Simpson composite rules are not suitable for the integration along NURBS
curves, due to the excessive computational cost. Even using Romber’s in-
tegration more than 100 integration points are required to attain machine
precision.
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Figure 6: Relative error for the integration of f(x, y) = 1 (left) and f(x, y) = xy19 (right)
along the trimmed NURBS describing a quarter of a circle

It is observed that the qualitative behavior of quadratures is very similar
for the integration of constants and high-order polynomials. This indicates
that the complexity of the integral in Equation (5) is given by the rational
definition of the NURBS and the irrational term |JC |, not by the degree of
the polynomial to be integrated.

Figure 7 shows the accuracy of different numerical quadratures for com-
puting the integral of the constant function f = 1 and the high-order poly-
nomial function f = x10y10 along the trimmed NURBS describing the front
part of the airfoil. This trimmed NURBS presents three breakpoints in its
parametrization interval, and therefore, the mentioned quadratures are con-
sidered for each one of the four patches. In all plots the abscissa is the number
of integration points used in each patch. Again, the most efficient option is
to use simple Gauss-Legendre quadratures, and composite Gauss-Legendre
quadratures with n = 8 provide very accurate results.

When a polynomial interpolation of degree p is considered in the NEFEM
context, it is interesting to know the minimum number of integration points
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Figure 7: Relative error for the integration of f(x, y) = 1 (left) and f(x, y) = x10y10

(right) along the trimmed NURBS describing the front part of the airfoil

needed to integrate all the polynomials of degree less than or equal to 2p
with a desired accuracy. Figure 8 shows the number of integration points
needed to integrate all the polynomials of a degree less than or equal to 2p
with an accuracy of 10−6 and 10−10 respectively, along the trimmed NURBS
describing a quarter of a circle. The results using simple and composite
Gauss-Legendre quadratures are displayed. For a NEFEM computation with
polynomials of degree p = 5, simple Gauss-Legendre quadratures provide
an accuracy of 10−6 in the boundary integrals using 10 integration points.
Gauss-Legendre composite quadratures with n = 4 require five subintervals,
i.e. 20 integration points, to obtain the same accuracy, and Gauss-Legendre
composite quadratures with n = 8 require two subintervals, i.e. 16 points.
For a NEFEM computation with polynomials of degree 10, an accuracy of
10−6 is attained with simple Gauss-Legendre quadratures with 15 integration
points, whereas composite Gauss-Legendre quadratures require 28 integra-
tion points and composite Gauss-Legendre quadratures with n = 8 require 24
integration points. If the desired accuracy is 10−10 the number of integration
points is only slightly increased for simple quadratures, whereas composite
quadrature suffer from a higher increase in computation cost. For instance,
for a NEFEM computation with polynomials of degree 10, simple Gauss-
Legendre quadrature require 19 points, composite quadratures with n = 4
require 16 subintervals, i.e. 64 points, and composite quadratures with n = 8
require four subintervals, i.e. 32 points. Same conclusions are obtained for
the integration along the trimmed NURBS describing the front part of the
airfoil.
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Figure 8: Number of integration points required to integrate all the polynomials of degree
of equal to 2p with an accuracy of 10−6 (left) and 10−10 (right) along the trimmed NURBS
describing a quarter of a circle

To conclude, numerical experiments reveal that Gauss-Legendre quadra-
tures are very competitive for the numerical integration of polynomials along
NURBS curves. Although the faster convergence is obtained for high-order
simple quadratures, the use of composite rules is very attractive, allowing to
control the error in a straightforward manner, see for instance [8]. In addi-
tion, it is important to note that the NURBS considered in this section do
not present drastic variations of the velocity |JC |. Thus, a simple quadrature
provides good results.

5. Numerical integration over NURBS-shaped domains

This section is devoted to the numerical integration of polynomial func-
tions over domains with NURBS boundaries. Again, it is worth recalling
that the integration of the constant function f = 1 is of special interest in
CAD because it provides the area of a NURBS-shaped domain and it is used,
for instance, to compute its center of mass.

Given a domain Ω with its boundary parametrized by at least one NURBS
curve, the integral of any polynomial function f over Ω can be written as

∫

Ω

f dx dy =

∫

Q

f(Ψ(ξ, η))|JΨ(ξ, η)| dξ dη, (6)

where Ψ : Q → Ω is a parametrization of the domain and |JΨ| is the deter-
minant of its Jacobian. In general it is not trivial to define such parametriza-
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x

y

ξ

η

Ωe

I

∂Ω

x1

x2

x3

0

0 1

1

φ

Figure 9: Transformation φ from the straight-sided triangle I to the subdomain Ωe

tions, specially when the boundary is given by several trimmed NURBS
curves. Instead, it is easier to subdivide the domain Ω in simpler subdo-
mains Ωe and to perform the numerical integration over each subdomain
separately. For integration purposes there are no requirements on the qual-
ity and the number of subdomains and a very coarse discretization can be
used. To reduce casuistics in the implementation, this work considers trian-
gular subdomains with no more than one edge on the boundary. Subdomains
with several edges on different NURBS boundaries are split in subdomains
with only one edge on a NURBS boundary. This is in fact the situation in a
NEFEM integration mesh.

Two strategies to perform the numerical integration on each triangu-
lar subdomain Ωe are proposed and compared next. The first one is based
on a transformation from the straight-sided triangle I given by the vertices
{(0, 0), (1, 0), (0, 1)}, where well-known efficient triangle quadratures can be
considered. The second one considers a transformation from a rectangle
where quadratures are easily defined as a tensor product of 1D quadratures.

The transformation from I to Ωe is defined by

φ : I −→ Ωe

(ξ, η) 7−→ φ(ξ, η) :=
1− ξ − η

1− ξ
C(ξ) +

ξη

1− ξ
x2 + ηx3,

(7)

where x1 = C(0) and x2 = C(1) are the vertices of Ωe on the curved bound-
ary, and x3 is the internal vertex, see Figure 9. Using this transformation
from I to Ωe, the contribution of Ωe to the integral in Equation (6) is com-
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Figure 10: Transformation ψ from the rectangle [λe

1
, λe

2
]× [0, 1] to the curved triangle Ωe

puted as

∫

Ωe

f dx dy =

∫

Ωe

f
(
φ(ξ, η)

)
|Jφ| dξ dη ≃

nIP∑

i=1

f
(
φ(ξi, ηi)

)
|Jφ(ξi, ηi)| τi (8)

where (ξi, ηi) and τi are, for instance, the symmetric quadrature points and
weights at the triangle I, see references [9, 10] for further information, and
|Jφ| is the determinant of the Jacobian of φ.

The transformation from the rectangle R = [λe
1, λ

e
2]× [0, 1] to the curved

element Ωe given by

ψ : R −→ Ωe

(λ, ϑ) 7−→ ψ(λ, ϑ) := (1− ϑ)C(λ) + ϑx3,
(9)

is also considered, see Figure 10. Using this transformation, the contribution
of Ωe to the integral in Equation (6) is computed as

∫

Ωe

f dx dy =

∫

I

f
(
ψ(λ, ϑ)

)
|Jψ| dλ dϑ ≃

nλ∑

i=1

nϑ∑

j=1

f
(
ψ(λi, ϑj)

)
|Jψ(λi, ϑj)| ωi̟j,

(10)
where (λi, ωi) and {ϑj , ̟j} are the 1D quadrature points and weights for the
intervals [λe

1, λ
e
2] and [0, 1] respectively, and |Jψ| is the determinant of the

Jacobian of the transformation ψ.

Remark 1. Given a polynomial f of degree k to be integrated in Ωe, the
corresponding function to be integrated in the rectangle [λe

1, λ
e
2]× [0, 1], after

the transformation shown in Figure 10, is f̃(λ, ϑ) = f(ψ(λ, ϑ))|Jψ(λ, ϑ)|, see
Equation (10). Transformation ψ is linear in parameter ϑ and, therefore,
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f(ψ(λ, ϑ)) is a polynomial of degree k in ϑ, and |Jψ(λ, ϑ)| is linear in ϑ.

Thus, f̃(λ, ϑ) is a polynomial of degree k + 1 in parameter ϑ and, in conse-
quence, the Gauss-Legendre quadrature of order k (k + 1 for even k) is an
optimal choice for the 1D quadrature {ϑj , ̟j}.

Note that, if C is a B-spline, i.e. a piecewise polynomial parametrization,
then ψ is also a piecewise polynomial function. Therefore, the function f̃ is
a piecewise polynomial that can be exactly integrated using Gauss-Legendre
quadratures. For instance, if the boundary is described using a B-spline of
degree q, interior integrals can be exactly computed with Gauss-Legendre
quadratures with p+ 1 and q(k + 1) integration points in each direction.

Transformation in Equation (9) allows decoupling the complexity of the
NURBS direction λ and the interior direction ϑ, for which exact integration
is feasible and cheap. Therefore, the evaluation of integral in Equation (6)
has similar level of difficulty as the numerical integration over a trimmed
NURBS curve. This is not the case when using transformation in Equation
(7) because the two directions are coupled and the complexity is similar to
the integration over a NURBS surface.

5.1. NEFEM interior integrals

The numerical integration of the discretized weak form in the NEFEM
context involves the computation of integrals of polynomial functions over
an element with an edge on the NURBS boundary.

In NEFEM, the subdomains or elements Ωe are not designed for integra-
tion purposes but for approximating the solution of the weak formulation.
Therefore, some elements may have more than one edge on the NURBS
boundary. In order to define the numerical quadrature these elements are
split on subelements with no more than one edge defined by a NURBS bound-
ary. Then, a different numerical quadrature is used for the computation of the
integral on each subelement. It is worth remarking that subdivision is only
applied to perform the numerical integration, no new degrees of freedom are
introduced in such elements. In addition, some element may contain break-
points inside its curved edges. For elements containing changes on NURBS
definition on the curved edge composite quadratures to account for the dis-
continuity in the definition of the parametrization has to be considered. For
illustration purposes the triangle with a curved edge represented in Figure 11
is considered. The curved edge is described with a piecewise parametrization
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Figure 11: Triangle with a curved edge containing changes of NURBS definition (marked
with �)
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Figure 12: Numerical integration using the transformation from I to Ωe: subdivision of I
to design a numerical quadrature taking into account changes of NURBS parametrization
C(ξ) at points marked with �

C, whose definition changes in two points on the curved edge, marked with
�.

If the transformation in Equation (7) is used, the reference triangle should
be partitioned as represented in Figure 12, where the discontinuous lines show
the changes of definition of the transformation in Equation (7). Note that
these lines originate at the breakpoints of the NURBS parametrization in
the ξ axis, and are extended inside the reference element I. A composite
numerical quadrature on I should be defined by using different numerical
quadratures in each region. In the example represented in Figure 12 the
composite quadrature on I consists on two quadratures on the rectangular
regions and one triangle quadrature.

When the transformation in Equation (9) is considered, changes of NURBS
definition are easily accommodated. The rectangle R is subdivided using the

15

Preprint of 
R. Sevilla and S. Fernández-Méndez 
Numerical integration over 2D NURBS-shaped domains with applications to NURBS-enhanced FEM 
Finite Elements in Analysis and Design, 47 (10); 1209-1220, 2011



0

1

e

1
λ λ

e

2
λ

ψ

R

ϑ

x

y

∂Ω

x1

x2

x3

Ωe

Figure 13: Numerical integration using the transformation from R to Ωe: subdivision of
the rectangle R = [λe

1
, λe

2
] × [0, 1] to design a numerical quadrature taking into account

changes of NURBS parametrization C(λ) at points marked with �

breakpoints, as represented in Figure 13, and a numerical quadrature in R is
defined only in terms of 1D quadratures. In fact, the discontinuous nature of
the NURBS parametrization affects only to the λ parameter, for which a 1D
composite quadrature has to be considered. The same composite quadrature
used for the line integrals can used for the λ parameter. In the other parame-
ter, ϑ, exact integration is feasible with a simple Gauss-Legendre quadrature,
as discussed in Remark 1.

Remark 2. When the transformation ψ from the rectangle is considered,
the integrals involved in the elemental matrices, for a NEFEM solution with
interpolation of degree p, can be exactly computed for one of the parameters,
ϑ, using a Gauss-Legendre quadrature with p + 1 integration points. The
numerical integration for the other direction, given by the NURBS parameter
λ, presents the same difficulty as the integration over a NURBS curve, which
has been commented in Section 4. Moreover, if the geometry is described with
a q-th degree B-spline, the elemental matrices can be exactly computed with
Gauss-Legendre quadratures with p+1 integration points for the ϑ parameter,
and q(p+ 1) integration points in each patch for the NURBS parameter λ.

5.2. Numerical tests for interior integrals

The behavior of the transformations in Equations (7) and (9) is studied
for the computation of interior integrals in a NEFEM context. When using
the transformation in Equation (7) from I to Ωe, standard symmetric triangle
quadratures are considered, see for instance [10]. When the transformation in
Equation (9) from R to Ωe is used, simple and composite 1D Gauss-Legendre
quadratures are considered in each direction, as commented in Remark 2.
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Figure 14: Relative error for the integration of f = 1 (left) and f = x10y10 (right) over
the element Ω1

Two triangular elements are considered for the numerical tests. The
first one, namely Ω1, has vertices {(1, 0), (0, 1), (0, 0)} and one face described
by the circle NURBS trimmed to the interval [0.5, 0.75], see the NURBS
data in Appendix A. The second triangular element, namely Ω2 has vertices
{(−0.4721, 0.0277), (−0.5, 0), (−0.53, 0.05)} and one face described by the
airfoil curve trimmed to the interval [0.9786, 1.0194], see the B-spline data in
Appendix A.

Figure 14 shows the relative error for the integration of the constant
function f = 1 and the high-order polynomial f = x10y10 over the interior
of the first element Ω1. Figure 15 shows the relative error for the integration
of the low-order polynomial f = xy and the high-order polynomial f = x19y
over the interior of the second element Ω2.

Numerical tests show the efficiency of the numerical quadratures defined
using the transformation in Equation (9) with Gauss-Legendre quadratures,
especially high-order simple quadratures. It is observed that triangle quadra-
tures combined with the transformation in Equation (7) are efficient for the
integration of very high-order polynomials, see right plots in Figures 14 and
15. Despite this advantage, the use of this strategy for the integration of
low-order polynomials is far of being the most efficient option, see left plots
in Figures 14 and 15.

In a NEFEM context it is necessary to integrate all polynomial functions
of degree less than or equal to 2p with a desired accuracy. Figure 16 shows
the total number of integration points needed to integrate with a desired
accuracy all polynomials of degree less than or equal to 2p over the element
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Figure 15: Relative error for the integration of f = xy (left) and f = x19y (right) over the
element Ω2

Ω1. A detailed view of the plot for p ≤ 4 is depicted in Figure 17.
It can be observed that for moderate accuracy, let say an error of 10−6,

simple Gauss-Legendre quadratures perform better for low-order approxima-
tions, more precisely for p ≤ 3, whereas triangle quadratures are the most
efficient option if high-order approximations are considered, see left plots in
Figures 16 and 17. It is worth remarking that for p > 7 the highest order
symmetric quadrature rule considered here, which has order 30, is not able
to provide the desired accuracy. When higher accuracy is required, let say an
error of 10−10, simple Gauss Legendre quadratures are the most efficient for
low- and high-order polynomials. Again, using the highest order available tri-
angle quadrature the desired accuracy can not be achieved for a polynomial
order of approximation p > 4, see right plots in Figures 16 and 17.

Figure 18 represents the total number of integration points needed to in-
tegrate with a desired accuracy all polynomials of degree less than or equal
to 2p over the element Ω2. A detailed view of the plot for p ≤ 4 is depicted in
Figure 19. Simple Gauss-Legendre quadratures perform better for low-order
approximations, more precisely for p ≤ 3, whereas triangle quadratures are
the most efficient option for high-order approximations. It is worth empha-
sizing that the boundary of this curved elements is given by a (polynomial)
B-spline.

To conclude, when the boundary is given by a B-spline curve the transfor-
mation from a triangle performs better for very high-order approximations,
p ≥ 4, whereas the use of simple Gauss-Legendre quadratures performs bet-
ter for low-order approximations. However, for the general case of NURBS
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Figure 16: Number of integration points required to integrate all the polynomials of degree
of equal to 2p with an accuracy of 10−6 (left) and 10−10 (right) over the element Ω1
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Figure 17: Number of integration points required to integrate all the polynomials of degree
of equal to 2p (p ≤ 4) with an accuracy of 10−6 (left) and 10−10 (right) over the element
Ω1.
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Figure 18: Number of integration points required to integrate all the polynomials of degree
of equal to 2p with an accuracy of 10−6 (left) and 10−10 (right) over the element Ω2
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Figure 19: Number of integration points required to integrate all the polynomials of degree
of equal to 2p (p ≤ 4) with an accuracy of 10−6 (left) and 10−10 (right) over the element
Ω2
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Figure 20: Number of integration points in the λ direction required to integrate all the
polynomials of degree of equal to 2p with an accuracy of 10−6 (left) and 10−10 (right) over
the element Ω1

boundaries simple Gauss-Legendre quadratures perform better for low- and
high-order approximations if high fidelity is required in the numerical inte-
gration, whereas if a higher error is tolerated and high-order approximations
are considered triangle quadratures are more efficient.

It is worth remarking that the mapping from a rectangle presented in
this work can be easily generalized to 3D, defining a mapping from a tri-
angular prism to a tetrahedral in the physical space. Decoupling NURBS
surface directions with respect to the interior direction is feasible and effi-
cient quadratures can be designed. The generalization of the mapping based
on a triangle is obviously a mapping from a reference tetrahedral to a curved
tetrahedral in the physical space, but the design of 3D quadratures when
the curved face contains changes of NURBS parametrization turns out to be
complex and expensive, see a detailed discussion in [11].

Finally, in order to compare the results of interior and boundary integrals,
Figure 20 presents the number of integration points in the λ direction needed
to integrate with a desired accuracy all polynomials of degree less than or
equal to 2p, when using the transformation in Equation (9). As commented
earlier in this section, the complexity of the numerical integration using the
transformation from a rectangle is comparable to the difficulty of the 1D
numerical integration along a NURBS curve, and therefore, the convergence
plots in Figure 20 show a qualitative behavior similar to the ones presented
in Section 4.
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6. Influence of numerical integration in NEFEM computations

This section presents some numerical examples showing the influence of
the number of integration points in the accuracy of NEFEM computations. A
Helmholtz problem is solved using a standard continuous Galerkin formula-
tion and more complex electromagnetic scattering applications are considered
using a DG formulation.

6.1. Helmholtz problem

The following Helmholtz problem is considered

{
−∆u+ u = s in Ω
∇u · n = gn on ∂Ω,

where the domain Ω is a circle of unit radius and n is the outward unit
normal vector on ∂Ω. The source s and gn are such that the analytical
solution of the problem is u(x, y) = x cos(y) + y sin(x). A very coarse mesh
with only four curved elements is considered, see the mesh and the isolines
of the numerical solution for a NEFEM approximation with p = 10 in the
left plot of Figure 21. Boundary integrals appearing due to the imposition of
Neumann boundary conditions are computed using simple Gauss-Legendre
quadratures. The numerical integration in the element interiors is computed
using the transformation in Equation (9).

Right plot in Figure 21 shows the solution error in energy norm as a
function of the number of integration points in the NURBS parameter λ for
different degrees of approximation p. Obviously, as the degree of the poly-
nomial approximation is increased more integration points are necessary to
reach maximum NEFEM accuracy in the computation. In all the experi-
ments, the minimum number of integration points to achieve the maximum
accuracy is 2p − 1. It is worth noting that the simplicity of the analyti-
cal solution and the exact boundary representation considered with NEFEM
makes the numerical integration very important in this example. In fact,
NEFEM needs more integration points than standard FEs to reach its maxi-
mum accuracy but as shown in the comparisons presented in [11], the results
are much more accurate, two orders of magnitude more accurate than using
standard isoparametric FEs.
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Figure 21: Relative error for the integration over a triangular element with an edge defined
by the trimmed NURBS describing the front part of the airfoil

6.2. Electromagnetic scattering

This section presents two examples involving the numerical solution of the
transient Maxwell’s equations applied to the computation of the scattering
of a plane wave by perfect electric conductors (PECs) surrounded by free
space, see [12, 13].

Numerical integration is used in order to integrate the terms appearing in
the weak formulation and also for the evaluation of the quantity of interest,
the so-called radar cross section (RCS), that is computed as

χ(φ) =
k

4

∣∣∣∣∣

∫

C

(
(nC

2 sinφ+nC
1 cosφ)Ef

3+(nC
1 H

f
2−nC

2 H
f
1 )
)
ejw(x cosφ+y sinφ)dC

∣∣∣∣∣

2

,

where El and Hl are the l-th component of the electric and magnetic fields,
respectively, k is the wave number of the incident field, C is the scatterer
boundary, nC = (nC

1 , n
C
2 ) is the outward unit normal to C, j =

√
−1, w is

the angular frequency of the incident wave and the superscript f indicates
the complex amplitudes of the fields evaluated in the frequency domain, see
[13] for further details.

The first example considers an incident plane wave traveling in the x+

direction and scattered by a PEC circular cylinder, which is exactly described
with a quadratic NURBS curve. A coarse mesh with only four elements for
the discretization of the NURBS boundary is considered, see left plot in
Figure 22. The transverse scattered field H3 for a NEFEM solution with
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Figure 22: Scattering by a PEC circular cylinder: computational mesh (left) and transverse
scattered field for a NEFEM solution with p = 10 (right)
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Figure 23: Scattering by a PEC circular cylinder: RCS (left) and RCS error as a function
of the number of integration points in the λ parameter (right)

p = 10 is represented in the right plot of Figure 22, and the RCS for a
NEFEM computation with p = 10 is represented in the left plot of Figure
23, showing an excellent agreement with the analytical solution.

The L2([−π, π]) norm of the relative error in the RCS is shown in the
right plot of Figure 23 for increasing number of Gauss-Legendre integration
points in the λ direction. A proper integration along the NURBS bound-
ary is crucial to obtain the NEFEM maximum accuracy. Nevertheless, it
is not necessary to compute boundary integrals with machine precision: a
Gauss-Legendre quadrature with p + 2 integration points provides NEFEM
maximum accuracy for this computational mesh. The transformation from
a rectangle of Equation (9) is considered for the definition of the numerical
quadrature at every element with one edge given by a trimmed NURBS.
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Figure 24: Scattering by a PEC airfoil: computational mesh (left) and transverse scattered
field for a NEFEM solution with p = 10 (right)

It is worth remarking that the maximum accuracy for NEFEM compu-
tation can be obtained using just p + 2 integration points for the NURBS
parameter in Equation (10), i.e. one point more than for a standard isopara-
metric FE computation. As expected, if a lower number of integration points
is considered, the ill-conditioning of the elemental mass matrices combined
with the inaccurate evaluation of the RCS leads to clearly unacceptable re-
sults.

The last example considers an incident plane wave traveling in the y+

direction and scattered by a PEC airfoil, which is described with a cubic B-
spline curve. Again, a very coarse mesh with only four elements on the upper
part of the airfoil is considered, see left plot in Figure 24. The transverse
scattered field H3 for a NEFEM solution with p = 10 is represented in the
right plot of Figure 24, and the RCS for a NEFEM computation with p = 10
is represented in the left plot of Figure 25, showing an excellent agreement
with a reference solution computed in a much finer mesh.

The L2([−π, π]) norm of the relative error in the RCS is shown in the right
plot of Figure 25 for increasing number of Gauss-Legendre integration points
in the λ direction. A proper integration along the NURBS boundary is again
crucial. In this example, the maximum accuracy for NEFEM computations
is obtained using just p + 1 integration points for the NURBS parameter in
(10), i.e. the same number of points than using standard isoparametric FEs.

It is worth remarking that for electromagnetic scattering applications
NEFEM attains its maximum accuracy just using one integration point more
than standard FEs for the circle example and exactly the same for the airfoil
example. In addition, it is worth reemphasizing that the comparison study
presented in [11] shows that NEFEM provides much more accurate results,
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Figure 25: Scattering by a PEC airfoil: RCS (left) and RCS error as a function of the
number of integration points in the λ parameter (right)

at least one order of magnitude more accurate than standard isoparametric
FEs.

7. Concluding remarks

The numerical integration in domains with a NURBS boundary repre-
sentation is addressed in this paper, with particular emphasis on the appli-
cation to NEFEM. Numerical strategies for the integration of polynomials
along trimmed NURBS curves (boundary integrals) and over elements with
one edge defined by a trimmed NURBS (interior integrals) are proposed and
compared through numerical examples.

Several well-known numerical quadratures are tested for the integration
along trimmed NURBS curves. The numerical quadratures are considered for
each one of the intervals between breakpoints, in order to take into account
the discontinuous nature of the NURBS parametrization. In all numerical
examples, high-order Gauss-Legendre quadratures provide the required preci-
sion with the lowest computational cost. Nevertheless, composite rules from
Gauss-Legendre quadratures are also very competitive, and allow the defini-
tion of adaptive strategies to ensure the required precision for any trimmed
NURBS and any polynomial.

Two transformations are compared for the definition of numerical quadra-
tures in an element with one edge defined by a trimmed NURBS. The first
transformation defined from a rectangle allows to decouple the complexity of
the NURBS parameter with respect to the interior direction The numerical
integration of NEFEM elemental matrices for a 2D curved element can be
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exactly computed for one of the parameters with p + 1 integration points
for a p-th degree polynomial interpolation. The complexity of the numerical
integration for the other direction, given by the NURBS parameter, is com-
parable to the difficulty of the 1D integration of a polynomial over a NURBS
curve, and therefore, the previously tested 1D quadratures can be used. The
second transformation, defined from a triangle where efficient quadratures
are considered, performs better in the particular case of a (polynomial) B-
spline boundary or when high-order approximations are considered but no
high accuracy in the numerical integration is mandatory. When high fidelity
in the numerical integration is required, the transformation from the rectan-
gle turns out to be very efficient.

The numerical solution of the Helmholtz equation and the transient Maxwell’s
equations, for the computation of the RCS of a wave scattered by a PEC ob-
ject, reveals that a proper integration along the NURBS boundary is crucial
to obtain the NEFEM maximum accuracy. However, it is worth noting that
the maximum NEFEM accuracy can be reached with a reasonable amount of
integration points, in some applications just the same number of integrations
points used by standard isoparametric FEs.
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Appendix A. Control data for NURBS objects

Circle NURBS

There are many options to define a NURBS describing a circle. A com-
monly used options is to define a quadratic NURBS with four rational seg-
ments. The knot vector is

Λ = {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1}

and the control points and weights are detailed in Table A.1.
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i Bi νi
1 (-1, 0) 1

2 (-1, -1)
√

2
2

3 (0, -1) 1

4 (1, -1)
√

2
2

5 (1, 0) 1

6 (1, 1)
√

2
2

7 (0, 1) 1

8 (-1, 1)
√

2
2

9 (-1, 0) 1

Table A.1: Control points and weights for the unit circle

i Bi

1 (0.5000, 0.0000)
2 (0.2971, 0.0299)
3 (-0.0029, 0.0605)
4 (-0.3172, 0.0622)
5 (-0.4368, 0.0399)
6 (-0.4737, 0.0298)
7 (-0.4962, 0.0131)
8 (-0.5000, 0.0000)

Table A.2: Control points for upper part of the airfoil

Airfoil B-spline

Some airfoils have analytical expressions but in the context of airfoil shape
optimization, it is usual to work with an approximation using B-splines. The
airfoil considered in this work is an approximation of the NACA0012 airfoil,
see [14], defined using the knot vector

Λ = {0, 0, 0, 0, 0.6153, 0.9037, 0.9409, 0.9786, 1.0194, 1.0194, 1.0194, 1.0194}.

and eight control points, see Table A.2. Recall that B-splines are a particular
case of NURBS where all control weights are equal, and therefore only the
control points have to be specified.
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