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Abstract This paper details the computational design
optimisation strategy employed to achieve an engineer-

ing solution to the problem of excessive supersonic lift

at the rear of the BLOODHOUND SSC (SuperSonic

Car) during its design. The optimisation problem is de-

scribed first, followed by details of the computational
fluid dynamics procedure employed to study the aero-

dynamic performance of the vehicle and the design opti-

misation strategy utilising Design of Experiments. The

‘optimised’ design resulting from this study is presented
in the final section and contrasted with the ‘unopti-

mised’ baseline geometry. The final vehicle geometry

presented in this paper is, at the time of writing, being

built and is due to be tested in 2013 in an attempt to

increase the World Land Speed Record from 763 mph
to 1,000 mph.
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1 Introduction

1.1 The World Land Speed Record

The World Land Speed Record was first set at a mod-

est 39 mph at Achères in France in 1898. The Record

has been broken around sixty times and the current

(supersonic) Record of 763.035 mph was set by Andy
Green in THRUST SSC (SuperSonic Car) at the Black

Rock Desert, Nevada in 1997. A significant feature of

the THRUST SSC project was the manner in which

computational fluid dynamics (CFD) was applied to

guide the aerodynamic design process [1–3].

The BLOODHOUND project was officially launched

in October 2008 with a primary engineering objective of

designing, building and running a car to achieve a new
World Land Speed Record of 1,000 mph. This engineer-

ing objective is coupled with an educational objective

to promote science, technology, engineering and math-

ematics to schoolchildren in the UK via the BLOOD-

HOUND education programme. Once again, CFD has
been chosen as the primary tool to guide the aerody-

namic design of the vehicle. Efficient post–processing of

CFD data has proved to be invaluable in allowing the

design cycle to progress as effectively as possible. Post-
processing of raw CFD outputs has allowed the team

of engineers involved to interrogate the aerodynamic

behaviour of each configuration of the vehicle as its de-

sign has evolved. This paper outlines the methodology

and results of combining CFD simulations with design
optimisation to solve a specific aerodynamic problem

relating to the design of BLOODHOUND SSC: defin-

ing the rear wheel, rear suspension and rear car body

geometry as shown in Figure 1.

The rules and regulations associated with the World

Land Speed Record are provided by the Federation In-
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ternationale de l’Automobile [4]. These include the en-

gineering restrictions placed upon the vehicle itself and

the details of the timing procedures for speed measure-

ment.

Fig. 1 Rear vehicle geometry of BLOODHOUND SSC

1.2 Background to Computational Aerodynamic

Optimisation

Over the past three decades, computational fluid dy-

namics (CFD) has revolutionised the way in which the

aerospace industry tackles problems of aerodynamic de-
sign. In particular, unstructured mesh methods [5–7]

now allow grids on complex three–dimensional geome-

tries to be generated in a matter of hours that might

once have taken several months using multiblock tech-

niques for quasi–structured meshes [8,9]. In light of
this, CFD has become an integral part of the typical

aerodynamic design cycle, as indicated in Figure 2 [10].

This flow chart indicates the emphasis now placed on

CFD within the inner and outer design loops. On the
BLOODHOUND project, for practicality, financial re-

strictions and time constraints, the Major Design Cycle

loop is essentially the actual vehicle runway and desert

testing. This is where validation of the CFD modelling

used in the inner loops will take place. It may well be
the case that vehicle testing will require significant re-

design and entering back into the inner design loops

(note that, at the time of writing the BLOODHOUND

is in the build phase with anticipated build completion
December 2012 followed by vehicle testing in 2013).

It is only relatively recently, i.e., the last 10 years,

that significant effort has been invested into research

Fig. 2 A typical multi–disciplinary aerospace design cycle

concerning coupling CFDmodelling with computational

optimisation [12] that has led to practical applications
of industrial interest. Aerodynamic optimisation prob-

lems are computationally expensive and often highly

ill–conditioned. The computational difficulty of solv-

ing aerodynamic optimisation problems requires sig-
nificant research investment in this field. Jameson in-

troduced the adjoint method to computational aerody-

namic design by applying control theory to fluid me-

chanics which has successfully been applied to the de-

sign of a concept race plane for the annual Reno air
races and the optimisation of the British–Aerospace

MDO datum wing [13]. The adjoint methodology is typ-

ically the preferred approach for design problems with

a high number of design variables. However, the im-
plementation of the adjoint method for the design of

complex configurations is still not fully matured. As

this study was for a time–critical aspect of the design

of the BLOODHOUND SSC, the authors agreed that

a more trusted and dependable optimisation approach
in which experience was available would be adopted.

This led the authors to select a Design of Experiments

(DoE) approach to the solution of the problem.

In general, the variety and complexity of aerody-

namic optimisation problems facing the aerospace in-

dustry at present requires the tools of multi–disciplinary

design optimisation. Designers must trade analysis fi-
delity with analysis time. The tools of design optimi-

sation can save time at several stages: design of ex-

periment tools can predict the most efficient points to

 This PDF was produced by PStill, licensing the software will remove this mark
 See http://www.pstill.com or for the MacOS X version http://www.stone.com!



Title Suppressed Due to Excessive Length 3

Fig. 3 Drawing illustrating the initial concept layout of
BLOODHOUND SSC

collect data with a CFD model; reduced–order statisti-

cal models of the CFD model results can be evaluated

much faster than the full CFD model, and a wide range

of optimisation algorithms can find optimal configura-
tions using those statistical models. The appropriate

use of these computational tools has a positive impact

on the man hours required to complete loops in the

design cycle shown in Figure 2, particularly the inner
loop. As an example of the impact of these methods in

industry, most of the external geometry on the Boeing

787 airplane was designed using aerodynamic optimisa-

tion tools [11].

Finally, it is also worth noting that multi–disciplinary
optimisation is now becoming a goal of the aerospace

industry [14]. This field is very much in its infancy. Only

simple coupled aerodynamic, structural and electomag-

netic problems have been tackled but, in principle, these
techniques have much potential for impacting the outer

design loop depicted in Figure 2 [10].

2 The Optimisation Problem

The initial concept for the 1,000 mph BLOODHOUND
vehicle is shown in Figure 3. With reference to Figure

2, this is the conceptual design providing the starting

point for the design process.

The design iterations taking the external shape of

the vehicle from the conceptual design through to a re-
alisable engineering solution is shown in Figure 4. Each

configuration (‘config’) is a product of the outer loop

of the design cycle in Figure 2. The external vehicle

shape iterations, feeding into the wider engineering de-
sign cycle, were driven primarily by CFD simulations

of the full vehicle. Typically, each full aerodynamic ve-

hicle design iteration, i.e., the inner loop in Figure 2 re-

Fig. 5 Lift and drag coefficients against Mach number for
‘pre–optimised’ config9

quired 2 months for meshing, and sufficient simulation

and post–processing to guide the designers on to the
subsequent configuration [15]. This is due to the large

number of steady state solutions required for each new

configuration over a range of Mach numbers at design

and off–design conditions (e.g. in yaw / crosswind). A

more thorough description of the CFD approach will be
provided in section 3.

The final aerodynamic challenge to be solved at the

‘config10’ stage was to minimise significant supersonic
lift at the rear of the vehicle whilst also reducing the

overall vehicle supersonic drag. The target supersonic

drag coefficient (D/q) to be achieved was 1.4 m2 al-

though, obviously, reduction below this value would

have been beneficial. Note that both lift and drag coef-
ficients referred to in this paper are simply total lift or

drag divided by dynamic pressure, q (in Pa), and, there-

fore, have units m2. The lift and drag coefficients as a

function of Mach (M) number of the ‘pre–optimised’
config9 vehicle geometry are shown in Figure 5. The

overall lift coefficient is also shown in terms of its dis-

tribution between the front wheels (L/q front) and the

rear wheels (L/q rear). It is clear that the majority of

the contribution the vehicle’s increase in lift at super-
sonic speed is driven by aerodynamic forces at the rear

of the vehicle. Also, the drag variation indicates that

the peak vehicle drag is significantly higher than the

1.4 m2 supersonic performance target.

The config9 rear geometry and M∞ = 1.3 flow field

are shown in Figure 6. These plots indicate that the

source of the rear supersonic lift is the strong shock

wave generated by the rear wheels and suspension struc-
ture and, in particular, the interaction of this shock

wave with the main vehicle body. The positions of the

upstream bow shock generated by each of the rear wheels

 This PDF was produced by PStill, licensing the software will remove this mark
 See http://www.pstill.com or for the MacOS X version http://www.stone.com!



4 B. Evans et al.

Fig. 4 BLOODHOUND design iterations from ‘config 0’ (2007) to ‘config10’ (2010)

is evident on either side of the vehicle in Figure 6. Aft

of the shock wave is a large region of subsonic, and high
pressure, flow. This flow then accelerates back to super-

sonic speed with a sonic condition at the ‘pinch point’

in the geometry between the car and rear wheel fairing.

This over–accelerated flow is then decelerated back to

the freestream speed by a terminal shock aft of the car
as the flow merges with the rest of the wake. The ef-

fects of this complex flowfield on the underside of the

car is evident in Figure 7 which shows the variation in

the config9 underside pressure coefficient distribution
between M∞ = 0.5 and M∞ = 1.3. The transition of

the rear portion of the vehicle underside from behav-

ing as a traditional ‘downforce generating’ diffuser to a

supersonic lifting device is evident.

3 Computational Fluid Dynamics Approach

An overview of the Computational Fluid Dynamics (CFD)

process from geometry specification through to post–

processing and data analysis is given in Figure 8. The

CFD procedure detailed in this section is a development
of the scheme detailed in [7] specifically for the partic-

ularly demanding aerodynamics associated with a su-

personic vehicle, with rotating wheels travelling across

a moving ground plane. This complexity results in in-

herently non–linear flow features such as shockwave–
bounday layer interactions and jet–wake interactions

that are difficult to capture accurately and efficiently

utilising a stable CFD scheme. The novel application

also required some unique boundary condition applica-

tions such as supersonic moving surfaces (wheels /ground-
plane).

3.1 Governing Equations

For the complex, turbulent flow throughout the relevant

Mach number range for BLOODHOUND SSC (M∞ <
1.4) , the appropriate governing equations are the com-

pressible Navier–Stokes equations. Relative to a carte-

sian Ox1x2x3 coordinate system, the steady state com-

pressible Favre–averaged Navier–Stokes equations [16]
are expressed in the integral form as,

∫
Γ

Fj(U)njdΓ =

∫
Γ

Gj(U)njdΓ j = 1, 2, 3(1)
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(a) (b)

Fig. 6 The rear supersonic shock system at M∞, showing :(a) config9 rear geometry and Mach distribution on a plane at
z=0.9m; (b) velocity vector field on a horizontal plane at z=0.5m, where z is the height above the ground plane

Fig. 7 Underside pressure coefficient distribution at M∞ = 0.5 and M∞ = 1.3 for config9

where Γ denotes the closed surface bounding a three

dimensional domain Ω and the summation convention

has been adopted. The unknown vector U is defined by

U =


%

%u1

%u2

%u3

%ε

 (2)

and the inviscid and viscous flux vectors are given as

Fj =


%uj

%u1uj + pδ1j
%u2uj + pδ2j
%u3uj + pδ3j
uj (%ε+ p)

 Gj =


0

τ1j
τ2j
τ3j

ukτkj − qj

(3)
respectively. The unit outward normal vector to Γ is

n = (n1, n2, n3) and δkj denotes the Kronecker delta.
In these equations, % is the averaged fluid density, ui

is the component of the averaged fluid velocity in the

direction xi, p is the averaged fluid pressure and ε is the
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Fig. 8 Overview of the CFD process

averaged specific total energy of the fluid. The averaged

deviatoric stress tensor is defined by

τij = −2

3
µ
∂uk

∂xk
δij + µ

(
∂ui

∂xj
+

∂uj

∂xi

)
(4)

and the averaged heat flux is

qj = −k
∂T

∂xj
(5)

Here, µ denotes the sum of the laminar and turbulent

viscosities, k is the sum of the laminar and turbulent
thermal conductivities and T is the averaged absolute

temperature. The air is assumed to be calorically per-

fect and the averaged state equations

p = %RT ε = cvT +
1

2
ukuk (6)

are employed, where R is the gas constant, cv = cp −R

is the specific heat at constant volume, cp is the specific
heat at constant pressure and cp/cv = 1.4. The lami-

nar and turbulent Prandtl numbers are assumed to be

constant. The laminar viscosity varies with tempera-

ture according to Sutherland’s law [17]. For the simula-
tions to be shown here, the variation of the kinematic

turbulent viscosity is obtained from the one–equation

turbulence model of Spalart and Allmaras [18].

3.2 Domain Discretisation

For any practical aerodynamic simulation, a CAD sys-

tem is normally employed to provide the definition of

the boundary geometry. This is the ‘CAD Definition’

stage with reference to Figure 2. The geometry defi-

nition obtained in this way frequently requires treat-
ment in order to produce a watertight surface descrip-

tion that is suitable for the processes of surface and

volume mesh generation. This treatment process will

involve the merging of surfaces and intersection points
and the smoothing of underlying surface definitions. In

the work presented here, this process was accomplished

by using the CADfix [19] commercial software package.

Before the start of the discretisation process, the

desired element size distribution is defined by the user

in terms of a mesh control function [20,21]. The first
step in the discretisation process is the triangulation of

the computational boundaries and this is accomplished

using an advancing front approach [22]. The advanc-

ing layers method [5] is used next to generate stretched
tetrahedral elements adjacent to the boundary surface

components that represent solid walls. The height of

each layer, and the number of layers, is specified by the
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Fig. 9 Illustration of the portion of the element ΩI of the
dual mesh, associated with node I , that is contained inside a
tetrahedral element

user in an attempt to ensure that the expected bound-

ary layer profile can be adequately represented. Follow-
ing the use of the advancing layers method, the remain-

der of the computational domain is discretised using a

standard Delaunay isotropic tetrahedral mesh genera-

tion procedure [6]. As a final step, appropriate elements

of the tetrahedral mesh generated by the advancing lay-
ers method are merged to produce a consistent hybrid

mesh of tetrahedra, pyramids and prisms [23]. In this

study a typical mesh for the full car CFD model was

of the order 100 million hybrid elements with approx-
imately 25 layers in the boundary layer portion of the

mesh. For the parametric model, this was reduced to

approximately 15 million hybrid elements and 20 lay-

ers in the boundary layer mesh to achieve, what was

deemed to be, sufficient resolution.

The median dual [24,5] is employed within that por-
tion of the mesh consisting of isotropic tetrahedral ele-

ments. This dual is constructed by connecting edge mid-

points, element centroids and face centroids in the do-

main mesh, in such a way that only one node is present
in each dual mesh element. With this strategy, each

node I of the domain mesh is associated with a volume

ΩI of the dual mesh. The boundary surface of the vol-

ume ΩI is denoted by ∂ΩI . Each edge of the domain

mesh is associated with a segment of the dual mesh in-
terface between the nodes connected to the edge. This

segment is a surface constructed from triangular facets,

where each facet is connected to the midpoint of the

edge, a neighboring element centroid and the centroid
of an element face connected to the edge, as illustrated

in Figure 9. The midpoint of the edge between node I

and J is denoted by xIJ
m , the centroid of the face with

Fig. 10 The volume ΩI of the dual mesh surrounding an
interior node I

vertices I, J and K is denoted by xIJK
s and the ele-

ment centroid is designated by xc. The bold lines on

the dual mesh in this figure illustrate the boundaries

between the edges with which the dual mesh segment
is associated. With this dual mesh definition, the vol-

ume ΩI can be viewed as being constructed in terms of

a set of tetrahedra, as illustrated for a typical interior

node I in Figure 10. The surface of the dual mesh cell

surrounding node I is defined in terms of the closed set
of planar triangular facets ΓK

I , where each facet only

touches a single edge of the domain mesh. The set of

facets touching the edge between nodes I and J is de-

noted by ΓIJ .

In general, the median dual approach cannot be

used for the hybrid elements generated by the procedure

described above, as the elements produced by merg-
ing tetrahedra in this way may be warped so severely

that a vertex can lie outside the corresponding median

dual cell. This may occur in regions of high geometry

curvature or at the interface between the hybrid and

isotropic meshes. To overcome this problem, the infor-
mation contained in the original tetrahedral mesh is

used to ensure that the topology of the control volume

cells is valid [25].

3.3 Equation Discretisation

In the cell vertex finite volume method, equation (1) is

applied to each cell of the dual mesh in turn. To enable
the numerical integration of the inviscid fluxes, a set of

coefficients is calculated for each edge by using the sur-

face segments of the dual mesh cell that are associated
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with the edge. For an internal edge connecting nodes I

and J , these coefficients are written as

Cj
IJ =

∑
K∈ΓIJ

AΓK
I
nj

ΓK
I

(7)

for j = 1, 2, 3, where AΓK
I

is the area of the facet ΓK
I

and nj

ΓK
I

is the component, in direction xj , of the unit

outward normal vector to the facet from the viewpoint

of node I, as illustrated in Figure 10. Additional coef-

ficients need to be introduced to enable integrals over

the computational boundary to be approximated [23].
The integral of the inviscid fluxes over the surface

of the dual mesh cell associated with an edge is ap-

proximated by assuming the flux to be constant over

the surface and equal to its computed value at the mid-

point of the edge. The surface integral of the inviscid
flux over the complete dual mesh surface for a typical

internal node I is then approximated as∫
ΓI

FjnjdΓ ≈
∑
J∈ΛI

Cj
IJ

2

(
Fj

I + Fj
J

)
(8)

where ΛI denotes the set of nodes connected to node I

by an edge in the domain mesh.

The integral in equation (1) containing the viscous
fluxes is approximated in a similar manner as∫
ΓI

GjnjdΓ ≈
∑
J∈ΛI

Cj
IJ

2

(
Gj

I +Gj
J

)
(9)

However, gradients of the flow variables need to be de-

termined before this formula can be employed. The

evaluation of the gradient of a function may be per-

formed in several ways within the finite volume frame-
work. For edge based implementations, a common ap-

proach is to calculate the nodal values of the derivatives

of the flow variables by using a finite volume method

and then to use these values directly in equation (9).

While this is convenient computationally, the result is
a five point discretisation stencil, as compared to the

traditional three point stencil of many finite element

and finite difference schemes. The five point stencil ef-

fectively doubles the mesh spacing for the evaluation
of the viscous terms and may allow checkerboarding of

the solution and a consequent destabilization [26].

A different edge based approach can be developed

which results in a more compact stencil [27]. The vis-

cous terms contribute mainly in the boundary layers,
which are characterized by high gradients normal to

solid surfaces and, except for localized regions such as

around shocks, relatively small gradients tangential to

the surface. The introduction of the quasi regular meshes,
with grid lines parallel and normal to the wall, en-

sures that the high gradients are captured by the com-

pact stencil and that the five point stencil terms are

marginalized. It follows that, with the form of meshes

that are employed in the boundary layer regions, this

treatment of the viscous terms reduces to the familiar

three point scheme used for structured meshes.

3.4 Stabilisation

This discretisation procedure results in a stencil for the

convective terms that is central difference in character,

which means that the addition of stabilizing dissipa-

tion is necessary before the solution of practical flows
may be attempted. This is achieved by replacing the

physical inviscid flux function on the right hand side of

equation (8) by a consistent numerical flux. Here, the

HLLC numerical flux function [28] is adopted, which
is a modification of the original HLL scheme [29]. The

function is constructed by assuming that the solution

to the Riemann problem, between states UI and UJ , is

represented by a contact wave and two acoustic waves

separating four constant states. The acoustic waves may
be either shocks or expansion fans. The method em-

ploys an exact resolution of the Riemann problem, while

averaging the wave speeds in an appropriate manner.

The implementation employed involves an approxima-
tion to the acoustic waves that improves the transition

from subsonic to supersonic speeds [28]. This results

in a scheme that is appropriate for the range of Mach

number encountered by the BLOODHOUND vehicle.

3.5 Boundary Conditions

To complete the specification of the problem, bound-

ary conditions must be defined over the entire bound-

ary of the computational domain. With regards to the

simulations necessary to provide data for the optimisa-
tion problem detailed in this paper, this includes farfield

boundaries, viscous walls, jet engine / rocket exhausts

and symmetry planes. Note that the jet / rocket ex-

haust boundary condition was only used in full vehicle
simulations, and was replaced by a solid ‘sting’ in the

parametric geometry model. This will be discussed fur-

ther in section 4.

3.5.1 Inflow and Outflow Boundaries

At basic inflow and outflow boundaries, a characteris-

tic treatment [30] is employed to determine the number,

and type, of conditions that require specification at any

given point. At inflow for the Spalart–Allmaras turbu-
lence model, the turbulent viscosity is arbitrarily set

to a value equal to ten percent of the laminar viscosity

value. This assumption is in line with CFD studies using
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similar schemes in the literature [7–9,15] The turbulent

viscosity value at outflow is obtained by the extrapo-

lation of values from the interior of the computational

domain.

3.5.2 Viscous Walls

For viscous flow, the no slip condition

u = uw (10)

is strongly applied, where uw is a specified wall velocity.

When simulating a vehicle with rotating wheels, the

vector uw, at a point with position vector r on the

wheel relative to a user–specified position on the axis

of rotation, is computed as

uw = ω × d (11)

where, as illustrated in Figure 11(a),

d = r− (ω.r)

|ω| ω (12)

is the position vector of the point relative to the centre

of the wheel and ω is the user–specified wheel rotation

vector. All the simulations are performed with the vehi-
cle at rest and this requires that the ground moves with

the speed of the vehicle but in the opposite direction.

The combined effect of the rotating wheel and rolling

ground velocity boundary condition field is illustrated,

for a single wheel, in Figure 11(b).

3.5.3 Jet engine / Rocket exhaust

Supersonic inflow conditions, provided by the engine

and rocket manufacturers, are applied at the engine and
rocket exhausts. The turbulent viscosity of the Spalart–

Allmaras turbulence model is prescribed and is, again,

set at a value equal to ten percent of the laminar vis-

cosity value.

3.5.4 Symmetry Plane

At symmetry planes, the flux of the unknown vector U

normal to the surface is assumed to be zero at all points
on the plane. That is

Fjnj = 0 (13)

where nj is a vector normal to the surface. This im-
plies that the fluid velocity everywhere on a symmetry

plane is tangential to it:

ujnj = 0 (14)

3.6 Computational Performance

To ensure a reasonable turnaround time for each sim-

ulation, the computational performance of the solution

algorithm is improved by the use of parallel processing.
The parallel implementation involves the subdivision

of the original domain into a number of sub–domains,

such that each sub–domain comprises a distinct set of

mesh edges, along with the corresponding nodes that
form the ends of each edge. This has the effect that

nodes at the interface between two sub–domains are

duplicated. The solver is executed, in parallel, utilis-

ing one process per sub–domain. At the start of a time

step, the interface nodes obtain contributions from the
interface edges. These partially updated contributions

are transmitted to the corresponding interface nodes in

the neighbouring sub–domains. A loop over the inte-

rior edges is followed by the receiving of the interface
node contributions and the subsequent updating of all

interior nodal values. This procedure is implemented in

such a way as to allow computation and communication

to be performed concurrently, where permitted by the

parallel computer’s hardware.

In order to optimise performance, and achieve scal-

ability on a large number of processors, the chosen do-
main decomposition strategy must produce sub–domains

of a balanced size and with a minimum number of cut

edges. This ensures that each processor has to perform

an equal amount of work and that the amount of com-

munication between processors is minimised. This has
been achieved by utilising the METIS family of par-

titioning algorithms [31]. In order to further improve

computational performance, each sub–domain node list

is renumbered, to maximise the use of cache memory.
Computations were performed on a 64 processor (384

core) PC cluster running Intel Xeon E7450 processors

with Mellanox DDR Infiniband for communication. Typ-

ical single Mach number steady state simulations on the
parametric geometry model running on 60 cores would

take approximately 12 hours to converge to 3 significant

figure accuracy in the force coefficients.

4 Construction of the Parametric Geometry

Model

Having studied the complexity of the flow field and ge-

ometry driving the aerodynamics at the rear of the vehi-

cle, it was determined that the most efficient and cost–

effective approach to solve the aerodynamic problem
would be to parameterise the geometry and incorporate

a design of experiments (DoE) optimisation methodol-

ogy to guide the design. The first step in the process was
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(a) (b)

Fig. 11 Simulation of a rotating wheel, showing :(a) interpretation of the boundary condition implementation; (b) the velocity
vector field on the rotating wheel and on the rolling ground.

Fig. 12 Comparison of the config9 full car geometry and
parametric model equivalent

to simplify the geometry in order for it to be parame-
terised. It was decided to significantly simplify the front

half of the vehicle by blocking the air intake and remov-

ing the front wheels and winglets, reduce the model

from a full car to a half car by the use of a symmetry
plane in the CFD model, simplify the rear wheel and

suspension geometry and replace the jet and rocket ex-

hausts with a pair of solid ‘stings’. A comparison of the

full config9 geometry with the simplified, parameterised

equivalent is shown in Figure 12.

4.1 Validation of the Parameterised Model

Before the DoE process could begin, it was necessary

to confirm that the simplified, parameterised model was

Table 1 Comparison of the config9 full car geometry and
parametric model lift and drag results

representing the flow physics in the region of the rear
wheels and suspension in a sufficiently acceptable man-

ner. Since the optmisation was to be focussed on the

supersonic (M∞ = 1.3) behaviour of the geometry, a

pair of test cases, involving the full car CFD model and

a parameterised model, at M∞ = 1.3 were compared.
The lift and drag results from this pair of simulations

is summarised in Table 1. Note that since the para-

metric geometry model is ‘half–vehicle’ the force coef-

ficients have been multiplied by 2 in order to compare
them with the full vehicle equivalents. It is evident that

the parameterised model does not accurately reproduce

the results generated by the full car CFD analysis, es-

pecially at the front of the car where key features of

the geometry are not modelled. However, on compar-
ing the flow visualisations for the two simulations it

was deemed that the parameterised model simulation

was capturing the key features of the flow physics, i.e.,

shock positions and strengths, expansions, separations
etc, sufficiently well so that improvements to the para-

metric model using optimisation would translate back

to the full geometry at the end of the process.
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4.2 ‘Screening’ the Variables for the DoE Study

The parameterised vehicle model consisted of 17 vari-

able parameters including specifications for the wheel

positions, the suspension strut positions and shaping
of the rear car body and base. These are summarised

in Figure 13. An initial study was run in order to un-

derstand which were the most powerful parameters in

determining the aerodynamic behaviour of the vehicle.

Each of the 17 parameters was run as a CFD model at
M∞ = 1.3 at their minimum and maximum positions

in the design space about some baseline configuration.

These minima and maxima in the design space param-

eters were dictated by practical engineering constraints
on how far the geometry could be manipulated. In the

majority of cases these were manufacturing or packag-

ing constraints. In the remainder of cases the bounds

were a function of stressing limits and predicted aero–

elastic behaviour of the structure.

This initial study took approximately 1 week of CFD

analysis time. At the end of the initial study, the rear
wheel track was determined to be the most important

parameter controlling both lift and drag by a consid-

erable margin, with the minimum track width being

optimal in the reduction of both lift and drag. This

minimum rear track was dictated by limitations result-
ing from the requirement to achieve a safe roll stability

margin for the vehicle. It was, therefore, decided to fix

the rear wheel track at the mimimum value acceptable

from a vehicle dynamic stability perspective (1.76m)
and focus on the next 5 most powerful parameters in

the DoE study. Concentrating on these 5 parameters

minimised unnecessary computational expense in the

optimisation process. These 5 ‘screened’ parameters are

highlighted in bold in Figure 13 along with the code let-
ters used to reference them throughout the DoE study

in brackets.

5 The DoE Process

The design optimisation procedure utilised in this study
consists of:

1. Designing an experiment

2. Collecting data at the design points

3. Fitting a statistical model to the data

4. Running an optimisation using the model to find

the optimal solution

Each of these items will be discussed in the following

subsections:-

5.1 Design of Experiments

Design of Experiments (DoE) is the process for selecting

the best design points within a specified design space.

The DoE methodology can help choose the most effec-

tive design points at which to gather data in order to

get the most information in the shortest possible time.
DoE selects the design points to collect the most sta-

tistically useful data, and just enough of it to fit the

models. When collecting the necessary data at each de-

sign point is time–consuming, as is the case when the
design point data relies on a CFD simulation, as de-

scribed in section 3, the most efficient design can save a

great deal of time and money. A good choice of design

points was critically important to the BLOODHOUND

project because running a CFD simulation to achieve
data for a single design point in this study typically

took in the region of 12 hours of wallclock time. Lift

and drag data was collected from the CFD model at

the design points chosen by the DoE, then a statistical
model was fitted to the design point data. The statis-

tical model was then used to find optimal solutions.

DoE tools were used to choose a set of experimental

points that allowed estimation of the model with the

maximum confidence while minimising computational
expense (i.e., number of design points).

5.2 Choosing a Design

Prior knowledge about the expected shape of the re-

sponse, based on aerodynamic first–principles, was used

to help choose the best design. Engineering knowledge
of theoretical relationships between lift, drag and the

5 selected design parameters was used to predict the

model shape to best fit the data. It was predicted that

a quadratic model could be used to give an appropriate

balance between accuracy and computational expense
of approximation models for the relationships between

lift and drag coefficients with respect to the five design

parameters.

Both space–filling and optimal designs were consid-
ered and then rejected. Space–filling designs are use-

ful if the response surface shape is likely to be com-

plex or if there is little or no information about the

underlying effects of design parameters on responses.

There was no reason to believe that the response sur-
face would be complex, therefore space–filling designs

were rejected. Optimal designs are good for systems

with well–understood constraints, as they concentrate

points near the edges of the design space. Optimal de-
signs were rejected because there was no need to explore

boundaries. At the time of the study, the BLOOD-

HOUND project required fast, practical answers due
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Fig. 13 Summary of the paramameters in the optimisation study

to time constraints on the overall design process. Given

this demand, the best choice was a simple classical DoE.

Classical designs are very well researched and are suit-

able for simple design spaces, such as the hypercube or

sphere. Prior engineering knowledge predicted that the
response could be fitted well by a quadratic model. The

Central Composite Design (CCD) was chosen because

it is a classical design commonly used for quadratics.

The design points within the 5–dimensional space to
be studied included a factorial design (the corners of a

hypercube) together with a centre point and star points

in the middle of each face of the cube. This is depicted,

in the 3–dimensional case, in Figure 14.

The Central Composite Design specified 43 sam-

pling points, each requiring a single CFD run at M∞ =
1.3 in order to compute lift and drag coefficients. These

43 CFD runs took approximately 1 month to complete

including meshing, solver time and post–processing.

5.3 Fitting Statistical Models to the CFD Data

The data from the CFD runs was used to fit a selection

of response surface models and choose the best. As prior

knowledge predicted a quadratic model, a quadratic
model was fitted first. The stepwise quadratic process

was also attempted. Stepwise is a process which elim-

inates the least useful model terms, one by one, in an

attempt to achieve the simplest model that fits the
data accurately [32]. The more complex Radial Basis

Function (RBF) model was also used to investigate any

possible complexity in the response surfaces. The RBF

Fig. 14 Sampling points in a Central Composite Design
space

model looked like a plane, and as a result of this obser-

vation a linear model was fitted. The stepwise process

did not succeed in simplifying the quadratic model all

the way to a linear model because it only ‘sees’ one term

at a time. All the alternative models were compared us-
ing graphical tools and statistical measurements. Mea-

suring the root mean square error (RMSE) between the

models and the data indicated that the simplest (lin-

ear) model produced a satisfactory fit with a RMSE of
0.027m2. A summary of the number of parameters in

each model and the RMSE in fitting the CFD lift data

is shown in Table 2.
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Table 2 Comparison of the statistical models used to fit the
CFD data

The simplicity of the linear model is demonstrated
in the resulting lift formula shown in equation 15.

L/q = f(C,DA,R, S)
= 0.55634 + 0.021225C + 0.024637DA

−0.0070771R+ 0.02416S

(15)

Comparing models is a tradeoff process of accuracy
versus model complexity. Less parameters are preferred

to give more confidence that the noise in the CFD data

is not being replicated in the model. In this case the

simplest statistical model (the linear model) was judged
the best because it provided the best tradeoff in describ-

ing the response accurately enough with the minimum

model complexity. The residuals and ‘predicted versus

observed’ plots are shown for the linear model in Fig-

ure 15 and a comparison of the linear and quadratic
surfaces is shown in 16.

The y–axis on the top plot in Figure 15 shows the

residuals, i.e., the difference between the value of rear

L/q predicted by the linear model and the value for rear
L/q predicted by the CFD simulation. The x–axis is the

observation number (a variable that indexes through

the CFD simulation predictions).

The lower plot shows the value of rear L/q predicted

by the linear model on the y–axis, plotted against the
value of the rear L/q predicted by the CFD simulations.

The black line represents the y = x line. Data points

that are on this line have the property that the pre-

diction made by the linear model exactly matches the
prediction from the CFD simulation. The small black

bars around the data points are the 95% confidence in-

tervals for the linear model.

5.4 Using Optimisation with the Statistical Models

The initial optimisation study focussed entirely on lift

minimisation, the objective function being simply the
rear L/q. The optimal solution was sought using the

best models describing the relationship between the 5

DoE parameters and the outputs, lift and drag. Due to

Fig. 16 Comparison of quadratic (left) and linear (right)
response surfaces

Fig. 17 Rear lift variation against the 5 optimisation param-
eters for linear (top) and quadratic (bottom) models

the simple nature of the linear model (see equation 15),
the optimal setting for the 5 parameters was straightfor-

ward to identify. Note that other than the limits on the

range of the DoE parameters, visible in Figure 17, there

were no other constraints. The gradient–based optimi-

sation algorithm ‘fmincon’ in MATLAB [33] was also
used as a check using the quadratic stepwise model.

Plots of lift against each of the five parameters along

with indications of the optimal position in the design

space (orange bars) using both linear and quadratic
stepwise models is shown in Figure 17. Note that the

letter codes for the variables are detailed in Figure 13.

There is clearly very little difference between the op-

timal solutions predicted by the linear and quadratic

stepwise models. Because of this, the linear model was
adopted for the remainder of the optimisation investi-

gations.

Figure 18 summarises the variations in lift and drag
coefficients with the 5 DoE parameters. Clearly the lin-

ear model provides a better data fit for the lift data

than for the drag data. But it is also clear that, with
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Fig. 15 Residuals and ‘predicted versus observed’ plots for the linear model

Table 3 Comparison of the config9 full car geometry, config9
parametric model and optimised parametric model lift and
drag results

the exception of the boat–tail angle parameter (R), the

mimimum drag parameter positions also coincide with
mimimum lift parameter positions making it straight-

forward to select the best parameter values to minimise

both lift and drag.

The plots in Figure 19 highlight the relative signif-

icances of the parameters and terms in the model in

controlling both lift and drag (the top 30 are shown in
each case). It is evident that delta angle of attack, base

shape and base area are the most important parame-

ters controlling lift, while base area and a combination

of delta angle of attack, boat–tail angle and base shape
are the most important parameters controlling drag.

A summary of the improvements in lift and drag co-
efficients between the baseline config9 parametric model

and the optimised parametric model are shown in Table

3.

6 Post–optimisation Performance

Having used the statistical model to determine the op-

timal position within the 5–dimensional design space,

given that the rear wheel track had been fixed at its
minimum acceptable level, these parametric geomety

changes were then translated back to a full car CFD

model to compare with the pre–optimised config9 CFD

results. Running simulations across the Mach range from
M∞ = 0.5 through to M∞ = 1.3 resulted in the lift and

drag variations detailed in Figure 20. Comparing this

with the pre–optimised equivalent in Figure 5 it can be

seen that the peak supersonic lift coefficient has been

reduced from 1.7m2 to 0.4m2, and the peak drag co-
efficient reduced from 2.1m2 to 1.4m2 at M∞ = 1.1.

Assuming a dynamic pressure, q = 83, 900Pa at M∞ =

1.1, this translates to a lift force and drag force reduc-

tion of 109kN and a 59kN, respectively.

Figure 21 shows the final full car geometry andM∞ =

1.3 pressure coefficient distribution on the upper and

lower surfaces of the vehicle. It is clear, upon compar-
ing this supersonic underside pressure distribution with

Figure 7, that the optimised geometry has significantly

reduced the high pressures resulting from the rear wheel

shock system. The rear wheel track reduction has also

been an in important factor in minimizing the peak
drag.

An overview of the improvement in the vehicle aero-

dynamic performance as a result of the optimisation
across the Mach range from M∞ = 0.5 to M∞ = 1.3

is provided in Figure 22. It is evident that an optimi-

sation focussed only on aerodynamic performance at
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(a) (b)

Fig. 18 Summary of DoE results showing :(a) Rear L/q variation with DoE parameters; (b) D/q variation with DoE param-
eters

(a) (b)

Fig. 19 Plots of DoE parameter interactions for :(a) Rear L/q ; (b) D/q

Fig. 21 ‘Post-optimisation’ config10 upper and lower M∞ = 1.3 pressure coefficient distribution
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(a) (b)

(c) (d)

Fig. 22 Comparisons of pre-optimised and post-optimised lift and drag across the Mach range :(a) Front L/q ; (b) Rear L/q;
(c) Total L/q; (d) D/q

Fig. 20 Lift and drag coefficients against Mach number for
‘post-optimisation’ config10

M∞ = 1.3 has provided benefits in terms of both lift

and drag across the whole Mach range of interest.

7 Final Remarks

This paper has detailed the computational design op-

timisation strategy employed to achieve an engineer-
ing solution to the problem of excessive supersonic lift

at the rear of the BLOODHOUND SSC (SuperSonic

Car) during its design. The method utilised involved

coupling data from CFD simulations with a paramet-

ric design optimisation utilising Design of Experiments.
The final vehicle geometry predicted as optimal in this

paper is, at the time of writing, being built and is due

to be tested in 2013 in an attempt to increase the World

Land Speed Record to 1,000 mph.
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