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Abstract

An improvement of the classical finite element method is proposed. It is
able to exactly represent the geometry by means of the usual CAD descrip-
tion of the boundary with Non-Uniform Rational B-Splines (NURBS). Here,
the two-dimensional case is presented. For elements not intersecting the
boundary, a standard finite element (FE) interpolation and numerical in-
tegration is used. But elements intersecting the NURBS boundary need a
specifically designed piecewise polynomial interpolation and numerical inte-
gration. A priori error estimates are also presented. Finally, some examples
demonstrate the applicability and benefits of the proposed methodology. NE-
FEM is at least one order of magnitude more precise than the corresponding
isoparametric FE in every numerical example shown. This is the case for
both continuous and discontinuous Galerkin formulations. Moreover, for a
desired precision NEFEM is also more computational efficient, as shown in
the numerical examples. The use of NEFEM is strongly recommended in the
presence of curved boundaries and/or when the boundary of the domain has
complex geometric details. The possibility of computing accurate solution
with coarse meshes and high order interpolations, makes NEFEM a more
efficient strategy than classical isoparametric FE.
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1. INTRODUCTION

The relevance of an accurate representation of the domain and its bound-
ary has been pointed out by several authors, see [1, 2, 3, 4, 5, 6] among others.
In some applications, such as compressible flow problems, if a Discontinuous
Galerkin (DG) formulation is adopted, see [7], an important loss of accuracy
is observed when a linear approximation of the boundary is used, see [1, 2].
Bassi and Rebay [1] show that, in the presence of curved boundaries, a mean-
ingful high-order accurate solution can only be obtained if the corresponding
high-order approximation of the geometry is employed (i.e. isoparametric
finite elements). In fact, it is necessary to take into account the boundary
curvature effect in order to have a consistent boundary discretization, see
[5]. In [6] the same problem is studied, and a new method is proposed for
computing the flux across a curved face. Using a parametrization of the
curved boundary the flux definition is modified but the resulting method is,
unfortunately, non-conservative. The importance of the geometrical model
in the numerical solution of compressible Euler equations is not exclusive
of DG methods. In [2, 8] the problem is identified in the context of Finite
Volume (FV) methods, and more recent advances in this area can be found
in [9, 10].

An accurate representation of the geometry is not a prerogative of fluid
mechanics. For instance, similar conclusions are derived in [3] for linear elas-
ticity problems: sizable errors are present in the numerical solution when the
order for the geometric approximation is lower than the order of functional
interpolation, even for geometries as simple as a sphere. Isoparametric finite
elements (FE) or superparametric FE are necessary in order to ensure an ac-
curate enough representation of the geometry. The relevance of an accurate
geometric model for some applications in solid mechanics is also illustrated in
[11], where the use of B-Splines is proposed for the geometric representation
of the interface in frictionless contact problems.

Obviously, Maxwell equations are also very sensitive to the quality of
the boundary representation. Reference [4] studies the error induced by the
approximation of curvilinear geometries with isoparametric elements. The
3D Maxwell equations are solved in a sphere with isoparametric FE and
with an exact mapping of the geometry. The exact mapping provides more
accurate results with errors differing by an order in magnitud. Thus, in some
applications, an isoparametric representation of the geometry is far from
providing an optimal numerical solution for a given FE discretization.
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Recently, [12] proposes a new methodology: the isogeometric analysis. Its
goal is to consider an exact representation of the geometry, with no depen-
dency on the spatial discretization. In the isogeometric analysis the solution
of the boundary value problem is also approximated with the same NURBS
(Non-Uniform Rational B-Splines, [13]) basis used for the description of the
geometry. This idea was first introduced in [14] in the context of thin shell
analysis, but using subdivision surfaces instead of NURBS.

The methodology proposed in this paper has a similar goal: an exact rep-
resentation of the geometry, but it is simpler because NURBS are restricted
to the boundary of the computational domain. Only the boundary of the
computational domain is directly related to a CAD. Thus, NURBS-Enhanced
Finite Element Method (NEFEM) considers the exact NURBS description
for the boundary of the computational domain while the solution is approxi-
mated with a standard piecewise polynomial interpolation. Moreover, in the
large majority of the domain (namely in the interior, that is for elements
not intersecting the boundary) a standard FE interpolation and numerical
integration is used, preserving the computational efficiency of classical FE
techniques.

The use of a piecewise polynomial approximation represents an important
advantage in front of the NURBS functional approximation used in the isoge-
ometric analysis. NEFEM ensures local reproducibility of polynomials and,
therefore, it preserves the classical FE convergence properties and allows a
seamless coupling with the standard FE of the domain interior.

Section 2 introduces the basic concepts on NURBS. In section 3 the fun-
damentals of NEFEM are presented. Special attention is paid to the inter-
polation and numerical integration in those elements affected by the NURBS
description of the boundary. To simplify the presentation and show its capa-
bilities NEFEM is presented for 2D domains. The generalization to 3D do-
mains is conceptually easy but requires some extra attention to geometrical
aspects and it will be the scope of a forthcoming publication. Some comments
on the implementation of NEFEM are given and a priori error estimates are
also presented in section 3. Numerical examples are discussed in section 4.
NEFEM can be implemented with a standard piecewise continuous (stan-
dard FE) or discontinuous (DG) formulation. Thus, a Poisson problem is
solved first in a continuous framework and several electromagnetic scattering
problems are solved using DG. Application to fluid mechanics can be found
in [15], where the advantages of NEFEM for the simulation of compressible
flow problems are shown for both linear and high-order approximations.
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2. BASIC CONCEPTS ON NURBS

A gth-degree NURBS curve [13] is a piecewise rational function defined
in parametric form as

C(\) = (; v; B, Ci,q(/\)) / (Z:; ” Ci,q(/\)) 0<A<L (1)

where {B;} are the coordinates of the nc, + 1 control points (forming the
control polygon), {v;} are the control weights, and the {C;,(\)} are the
normalized B-spline basis functions of degree ¢, which are defined recursively
as

1 if A e [\, Al
Ci,O()\) — 1 [ +1[
0 elsewhere,
A=A Aivkt1 — A
Cik(N) = ——5Cis1(N) + ———————Cis1p1(N),
) Nigr — A )+ Nirke1 — Nig1 0 1)
for k=1...q, where \;, for i =0,...,ng, are the knots or breakpoints, which

are assumed ordered 0 < \; < \;;1 < 1. They form the so-called knot vector

A={0,...,0, 11, Amyg1, 1, ..., 1},
q+1 q+1

which uniquely describes the B-spline basis functions. The multiplicity of a
knot, when it is larger than one, determines the decrease in the number of
continuous derivatives. Control points, ncp,+1, and knots, ng+1, are related
to the degree of the parametrization, ¢, by the relation ny = ne, +¢q + 1, see
[13] for more details. Figure 1 shows the B-spline basis functions for the knot
vector

A ={0,0,0,0.2,0.4,0.6,0.8,0.8,1,1,1}. (2)

Note that NURBS are piecewise (rational) functions and their definition
changes at knots.

An example of a NURBS curve is represented in Figure 2 with the cor-
responding control polygon. The image of the breakpoints or knots by the
NURBS are depicted in order to stress the discontinuous definition of the
parametrization. In practice CAD manipulators work with trimmed NURBS,
which are defined as the initial parametrization restricted to a subspace of
the parametric space. Figure 3 shows the NURBS curve of Figure 2 trimmed
to the subinterval [0.05,0.75].
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0 0.2 0.4 0.6 0.8 1

Figure 1: B-spline basis functions for the knot vector (2)

- _

Figure 2: NURBS curve (solid line), control points (denoted by o), control polygon (dashed
line) and breakpoints (denoted by o)
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Figure 3: Trimmed NURBS curve with A € [0.05,0.75] (solid line), control points (denoted
by o), control polygon (dashed line) and breakpoints (denoted by o )
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Figure 4: Physical domain with part of the boundary defined by a NURBS curve (left)
and a valid triangulation for the NEFEM (right)

3. NURBS-ENHANCED FINITE ELEMENT METHOD (NEFEM)

Consider a physical domain © C R? whose boundary 052, or a portion of it,
is defined by NURBS curves. Every NURBS is assumed to be parametrized
by

C: 0,1 — C([0,1]) C 99 C R*.

A regular partition of the domain 2 = U. Q. in triangles is assumed such
that every element (), has at most one side, I',, on the NURBS boundary.
Figure 4 shows a domain with part of the boundary described by a NURBS
curve corresponding to the NACA 0012 airfoil, and a valid triangulation for
NEFEM.

As usual in FE mesh generation codes, it is assumed that every curved
boundary side belongs to a unique NURBS, I', C C([0, 1]). That is, one ele-
ment edge can not be defined by portions of two (or more) different NURBS
curves. But on the contrary, it is important to note that breakpoints, which
characterize the piecewise nature of NURBS, are independent of the mesh
discretization. Thus, the NURBS parametrization can change its definition
inside one side, that is breakpoints may belong to element sides and do not
need to coincide with FE nodes. This is another major advantage with re-
spect to the isogeometric analysis [12].

Every interior element (i.e. elements not having an edge that coincides
with the NURBS boundary) can be defined and treated as standard FE or DG
elements. Therefore, in the vast majority of the domain, interpolation and
numerical integration are standard. This section is devoted to the definition
of the interpolation and the numerical integration at an element with one
side, I'., along the NURBS boundary. Say (). is an element with two straight
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interior edges and one side defined by a trimmed NURBS,
Ie= C([ 1 )\5]),

where A{ and A§ are the parametric coordinates (in the parametric space of
the NURBS) of the end points of T';; obviously they must verify 0 < A\ <
A§ < 1.

For each element €., a straight-sided triangle 7, is defined using its ver-
tices, see Figure 5. A linear mapping W : I — T, is used, which goes from
the reference triangle I to the triangle 7., see Figure 6. The inverse of this
linear transformation maps the triangle 7, into the reference triangle I and,
more important, also maps the actual element 2., which is in the physical
domain, into a curved element in local coordinates with two straight sides,
namely

I, =¥ 1Q,),

see Figure 7. I, is called the local curved element for the actual element ().

Note that the reference triangle I is the same for all elements 2.. How-
ever, the local curved element /., depends on the trimmed NURBS defining
the curved side I'. of €2, and therefore it is different for every element €2,
intersecting the NURBS boundary.

Remark 1. In order to simplify the presentation, it is assumed that the
interior vertex of T, is mapped to the vertex (—1,1) in I. The implementation
of this condition only requires a proper local numbering of the vertices of the
element.

3.1. FE polynomaial basis

In order to work with standard FE polynomial approximations, Lagrange
polynomials (that is, standard nodal interpolation) can be considered. In
fact, they can be defined on the curved triangle, I., in the reference domain
or equivalently, in the actual element in the physical domain, .. The use of
a linear transformation from local (reference) coordinates &€ = (£, 1) in I to
cartesian coordinates € = (z,y)” in €., ensures that a complete polynomial
interpolation of degree m in & leads to a polynomial interpolation with the
same degree in . Thus, consistency and accuracy of the approximation is
ensured even for elements (2, far from being a straight-sided element.

To make the computation of Lagrange polynomials more systematic, for
any degree and for any distribution of nodes, the implementation proposed

7
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Figure 5: Actual element €. (left) and triangle T, defined using its vertices (right) in the

physical domain

Figure 6: Mapping W defined as a linear transformation from the reference triangle I to

the straight-sided triangle T, in the physical domain

n
1
v
\I'_l
‘—
1
T 1€

Figure 7: The linear transformation also maps the local curved element I. to the actual

element €2, in the physical domain
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Figure 8: 5th-order nodal distributions in I.: for equally-spaced nodes in the straight-side
triangle (left) and adapted to the NURBS side (right)

in [16] is adopted. A polynomial basis {P;(§)}, with the required degree
and whose definition is independent of the nodal coordinates, is considered.
Then, given a nodal distribution in 1., with coordinates {€,}7=, the Lagrange
polynomial basis { L; (&) }7=, can be expressed in terms of the polynomial basis

{Pi(&)}izy as

j=1
where ng, is the number of element nodes and the multidimensional Vander-
monde matrix is defined as V;; := P;(§;), for i,j = 1,... ney.

Remark 2. Note that equation (3) holds for any polynomial basis { P;,(€)}, .
Here an orthogonal polynomial basis { P;(§)} derived from the Jacobi poly-
nomials is considered, to ensure moderate condition number for the Van-
dermonde matriz V', see [16] and references therein. Moreover, orthogo-
nal polynomial basis allows analytical evaluation of some inner products in

straight-sided elements [17].

From an implementation point of view, it is worth noting that all el-
ement matrices can be first computed for any polynomial basis, and then
transformed with the Vandermonde matrix. That is, let M? be an ele-
ment matrix computed in terms of the polynomial basis {F;(&€)}7=, then
M, = V" I'MP?V~!is the corresponding element matrix for the Lagrange
nodal basis {L;(&)}7=.

Different options can be considered for the definition of a nodal distribu-
tion in I.. If low-order elements are used, which is the standard approach
in FE, equally-spaced nodal distributions on the straight-side triangle can
be implemented directly, see Figure 8. When high-order elements are used

for high-fidelity computations, as it is standard in DG methods, it is more
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Figure 9: 5th-order nodal distributions in I.: Fekete nodes in the straight-side triangle
(left) and adapted to the NURBS side (right)

convenient to use special distributions of nodes in order to reduce the condi-
tion number of the resulting element matrices, see [18, 19] for details. Fekete
points [20] are a good example of such distributions, see Figure 9.

The definition of a nodal distribution on the straight-side triangle, see left
distributions in Figures 8 and 9, induces a marginal extra efficiency, because
there is both a unique definition of nodal coordinates and only one compu-
tation of the Vandermonde matrix (independently of the curved element).
Another alternative is to adapt the nodal distribution to the exact geometry,
see right distributions in Figures 8 and 9. This option is more reasonable
when nodal values are prescribed along the boundary. On the other hand,
nodal distributions adapted to the boundary do not represent any relevant
advantage if boundary conditions are imposed in weak form, as usual in DG
formulations. Note however, the evolution of the condition number shown in
Figure 10 for the element mass matrix as a function of the interpolation de-
gree. As expected, Fekete points clearly decrease the condition number but
adapted distributions of nodes also have a major influence on the condition
number.

3.2. Numerical integration

The weak form that must be solved requires both integrations along el-
ement edges and in the elements interiors. All integrals in elements not
having an edge along the NURBS boundary are computed using standard
procedures. The elements {2, with one side, I'., on the NURBS boundary
require special attention. Two cases must be considered: line integrals (usu-
ally related to the implementation of natural boundary conditions or to flux
evaluation along I'. in a DG context) or surface integrals (standard integrals
in the element 2.). As discussed in the previous section, since NEFEM uses
polynomials to approximate the solution, the difficulties in numerical inte-

10
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10

—<&— Equally-spaced straight-side
9H —e—Equally-spaced adapted

- 8 - Fekete straight-side

8 - % - Fekete adapted

Ioglo(mass matrix condition number)

Figure 10: Condition number of the mass matrix as a function of the interpolation degree
(p), using equally-spaced nodal distributions and Fekete points

gration are only restricted to the definition of a proper numerical quadrature
in the curved element I, = ¥ '(€),) or its corresponding curved face. This,
as will be observed below, reduces the complexity in the accurate evaluation
of integrals, which are not as costly as in standard mesh-free methods [21],
or in isogeometric analysis [12].

3.2.1. Line integrals

A line integral to be computed along a curved boundary side given by a
trimmed NURBS, I'. = C([)\{, A\§]), can be written as

X5

[ rae= [ se) 1remax
e AT

where f is a generic function (usually polynomial), and ||J¢c|| denotes the

norm of the differential of the NURBS parametrization C' (which, in general,

is not a polynomial). As usual, a 1D numerical quadrature is used for the
numerical computation of the integral, namely

Nip

| Sl Z FCO) 1 Te(X)| wi, (4)

where )\; and w; are the coordinates and weights of the n;, integration points
in [Af, Ag].

11
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L ——Simple GL
—=—Composite GL, n=2H -2t
—e—Composite GL, n=4
—+—Composite GL, n=8 —4r
= Trapezoidal
o Simpson

% Romberg

log 10(error)
|
@
*
log, ,(error)
|
@

*—

5 10 15 20 25 30 0 5 10 15 20 25 30

# integration points # integration points
11,9
(a) zy (b) =7y

Figure 11: Relative error for the integration of polynomials xy and z''y® along the front
part of the NACA 0012 airfoil.

(=) He———

- B

Figure 12: Trimmed NURBS curve describing the front part of the NACA 0012 airfoil
(solid line), control points (o), control polygon (dashed line) and image of the breakpoints

(0)

Recall that the parametrization of a trimmed NURBS, C, is a piece-
wise rational function whose definition changes at breakpoints. Thus, an
independent numerical quadrature must be considered at every interval be-
tween breakpoints (patch) to account for the discontinuous nature of the
parametrization. In [22] a detailed comparison and discussion on differ-
ent alternatives to evaluate (4) is presented. = Numerical experiments re-
veal that Gauss-Legendre quadratures are a competitive choice in front of
other quadrature rules such as trapezoidal and Simpson composite rules or
Romberg’s integration. For instance, Figure 11 shows the evolution of the rel-
ative error for the integration of polynomials zy and x''y? along the trimmed
NURBS corresponding to the front part of the NACA 0012 airfoil, see Figure
12. For Gauss-Legendre composite rules, n denotes the number of integration
points in every subinterval. Note that a composite quadrature with two inter-
vals and n = 8 Gauss-Legendre integration points in each interval achieves
almost machine precision. Thus, although the faster convergence is obvi-
ously obtained for high-order simple quadratures (in each patch), the use of
composite rules is very attractive, because it allows the definition of adaptive

12
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quadratures to control the integration error and ensure reliable computations
for any NURBS and any order of polynomial interpolation.

Remark 3. It is worth noting that in practical applications it is not nec-
essary to compute numerical integrals with machine precision. Numerical
experiments simulating the scattering of a planar electromagnetic wave [22]
reveal that, in practice, if the NURBS is parametrized such that velocity has
smooth variations, only one extra integration point, compared to standard
1soparametric FE, is required. That is, for a giwven discretization with poly-
nomials of order p, a numerical quadrature with p + 2 Gauss-Legendre inte-
gration points in each patch provides the mazximum accuracy.

3.2.2. Element integrals

NEFEM also requires to compute integrals in an element 2. with one
side I', on the NURBS boundary, see Figure 7. That is,

/ fdedy=|Jg| [ fdedn (5)
Qe Ie

where |Jg/| is the determinant of the Jacobian of the linear transformation W.
Thus, a numerical quadrature for every local curved element I, is needed. In
[22] different alternatives are presented and discussed. The best alternative,
see Figure 13, is to define a transformation from the rectangle [A{, A§] x [0, 1]
to the curved element I., namely,

@ [N % [0,1] — I,

mo— (B} fomi-g-a O

where ¢ = (¢1,¢2)" := W' o C is the parametrization of the trimmed
NURBS corresponding to the curved side in I.. Note that this transformation
requires that nodes are numbered following the non restrictive assumption
presented in Remark 1. Note also, that such a parametrization is linear in ¢
and, as discussed in Remark 4, this implies important practical advantages.
Thus, using the transformations shown in Figure 13, integral (5) is computed
as

Njp Mjp

/ﬂfdxdy:\J‘ﬂ/lfdédn:\J\y|ZZf(ﬁz'j)Mp()\ij)‘wiwj (7)

i=1 j=1

13
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¢
1 |
Y v ,
C([/D
0 > 1 L=Cl|\)3
X, XA T 1¢ v

B([x25)

Figure 13: Transformation from [\, \§] x [0, 1] to I. and €.

where n;p and m;;, are the number of integration points in A and ¢ directions,
respectively, &, = (A, (), {Ai,wi} and {(j,@;} are the 1D quadrature
points and weights for [A{, A5] and [0, 1] respectively, and |J,| is the deter-
minant of the Jacobian of the transformation (. Note that to integrate a
polynomial f of degree k in €., given the transformations shown in Figure
13, the (non polynomial) function

must be integrated in [A{, A§] x [0,1]. Recall that ¢, see (6), is linear in
¢ and, therefore, f (cp(A,C)) is a polynomial of degree k in (. Moreover,
|Jo(A, Q)] is linear in ¢. Thus, fv()\, () is a polynomial of degree k + 1 in ¢
and consequently a Gauss-Legendre quadrature of order &k (or k + 1 for even
k) is optimal for the 1D quadrature along (.

Remark 4. When the transformation from the rectangle @ is considered,
the integrals involved in the elemental matrices, for a NEFEM solution with
interpolation of degree p, can be exactly computed for one of the parameters,
¢, using a Gauss-Legendre quadrature with p + 1 integration points. The
other dimension, X\, can be integrated using the same quadrature considered
in section 3.2.1 for line integrals over NURBS.

Note that the rational definition of application ¢ is only due to the ra-
tional definition of the boundary. Thus, in the particular case of a geometry
given by a g-th degree B-spline, i.e. a piecewise polynomial parametriza-
tion, the elemental matrices can be exactly computed with Gauss-Legendre
quadratures with p+ 1 integration points for the ¢ parameter, and ¢(p+1) in-
tegration points for the NURBS parameter A. For instance, the NACA 0012

14
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Figure 14: Two numerical quadratures in a curved element for the same accuracy

geometry is usually described by a B-Spline of degree ¢ = 3, and therefore
element integrals can be exactly computed with Gauss-Legendre quadratures
with p+ 1 and 3(p + 1) integration points in each direction.

Remark 5. When the parametrization of the NURBS is smooth (i.e. for
small variations of the so-called velocity of the parametrization), p + 1 inte-
gration points (in each patch) for parameter A\ are only required to achieve
mazimum accuracy in the quantity of interest. Thus, for NEFEM edges not
including breakpoints, the number of integration points is the same as for
standard isoparametric FE. This is illustrated in the numerical experiments
simulating the scattering of a planar electromagnetic wave in [22] and the
examples in section 4.1.

Another obvious option instead of using ¢ to transform a rectangle into
1., is to define another transformation from I to a curved triangle I, and then
use quadratures specifically designed for triangles. This is also discussed in
[22]. For standard FE these triangle quadratures require less integration
points than other quadrature rules to achieve the same accuracy, but this is
not the case here. The use of a transformation depending on the NURBS
parametrization (from I to a curved triangle) leads to expensive triangle
quadratures. The integration strategy proposed in this section is much more
competitive due to the good behavior of parameter ( commented in Remark
4.

The efficiency of the proposed quadrature is illustrated in Figure 14. It
shows the integration points required to integrate x over a curved triangle
with an error of 0.5%, using the transformation from a rectangle proposed in
this section (with 30 integration points) and a symmetric triangle quadrature
23] adapted to the curved element (with 54 integration points), see [22] for
details.
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3.3. Some comments on the implementation of the NEFEM

The enhancement of a standard FE code with the NEFEM methodology
requires little effort. Note that the main difference of a NEFEM code with
a standard FE code is at the level of the computation of elemental matrices
and vectors for curved elements and edges. In fact, fortunately, the usual
routines for the computation of elemental matrices and vectors for straight-
sided elements can be directly used, without any modification, just using a
modified definition of the reference element. That is, the integration points
and the shape functions evaluated at these points, which are usually an input
of these routines, have to be particularized for every local curved element I,
or side I',. Thus, most of the routines usual in a standard FE code (routines
for assembly, computation of elemental matrices and vectors, etc) can be
directly used.

In fact, the most crucial point in the implementation may be the inclusion
of the NURBS boundary information. The information for the evaluation of
all NURBS describing the boundary has to be stored. Moreover, for every
curved side T', = C([A], \§]) the information of the corresponding trimmed
NURBS is also necessary, that is, the extremes of the interval A{ and A§
and a pointer to the information of the NURBS C. Nowadays this is not an
information usually provided by standard mesh generators but, it is worth
noting that routines for the evaluation of NURBS can be easily obtained or
implemented [13].

On the other hand, in the context of DG formulations, NEFEM is a nat-
ural option for the implementation of high-order approximations in domains
with curved boundaries. In DG codes it is usual to store only the vertices
of a triangle mesh, and their connectivities, usually obtained with a linear
triangle mesh generator. For high-order computations with straight-sided
elements, if needed, all nodal coordinates are determined from the vertices
coordinates. Under these circumstances NEFEM allows a straightforward
implementation of curved boundaries, with no need of a high-order mesh
generator, because the nodal coordinates at elements with one side on the
NURBS boundary can be easily determined from the vertices of the triangles
and the NURBS information.

3.4. A priori error estimates

Since NEFEM considers the usual FE polynomial interpolation, see sec-
tion 3.1, a priori error estimates are exactly the same as those for standard
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FE. For instance, the result for the solution of second order elliptic problems
is recalled in the following theorem.

Theorem 1. Let T, a non-degenerate triangulation (i.e. there is a positive
constant B such that o./h. > B, for all Q. € Ty, where h, and . are the
diameters of Qe and of the circle inscribed in )., respectively). Assuming
that all boundary conditions along curved boundaries are imposed in weak
form, the following a priori estimate holds

Hu — uhH[;Q(Q) S th+1|u|7{p+l(g), (9)

where v € HPTH(Q) and uy, are the exact and the NEFEM solution respec-
tively, K is a constant, h is the mesh size, and p is the polynomial degree of
interpolation.

Moreover, for p-refinement convergence the following estimate also holds,

v —up||p@) < Cexp(—kN"), (10)

where ||-|| g is the energy norm, C' and k are positive constants, N is the
number of degrees of freedom, and r 2 1/2 for 2D problems.

The same arguments used in the proof of standard FE error estimates
are valid for the proof of Theorem 1. In fact, the derivation of a priori
error estimates for NEFEM is identical to FE a priori estimates in polygonal
domains, which can be found in [24, 25, 26] for h-refinement and in [27] for
p-refinement.

It is worth noting that contrary to NEFEM, the proof of a priori error
estimates for isoparametric FE in the presence of curved boundaries requires
special attention. First, the use of isoparametric FE induces geometric er-
rors because the computational domain is, in fact, a piecewise polynomial
approximation of the physical geometry. Thus, to obtain optimal a priori
error estimates, the maximum distance between the computational and the
exact boundary should be bounded by vh”, where v is a constant, A is the
mesh size and p is the polynomial degree. Moreover, bounds of the jaco-
bian of the isoparametric transformation and its first p derivatives are also
necessary, see [28]. Thus, an isoparametric curved element must verify two
contradictory requirements. On one hand, the computational polynomial
boundary has to be close enough to the curved boundary. And on the other
hand, the discrepancy between the curved element and the straight element
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given by its vertices must vanish fast enough, see [29]. In practice, this re-
quirements imply that specific nodal distributions on curved elements are
mandatory in order to obtain the optimal rate of convergence. For instace,
with cubic elements, small variations of the interior node cause suboptimal
convergence.

With NEFEM (as well as for FE in a domain with polygonal boundary)
the spatial discretization does not introduce geometric errors. Moreover,
NEFEM uses a linear mapping to relate local and cartesian coordinates, see
section 3. In fact, the linear transformation used by NEFEM is exactly the
same mapping used by standard FE on a domain with polygonal boundaries.
Consequently, all a priori error estimates demonstrated in FE for domains
with polygonal boundaries can be reproduced exactly for NEFEM, even in
the presence of elements far from having straight edges.

Theorem 1 assumes that essential boundary conditions are imposed in
weak form, for instance with numerical fluxes in a DG context, or with
Nitsche’s method [30, 31] in a continuous formulation. If Dirichlet boundary
conditions are imposed in strong form, an additional condition is required
to keep optimal convergence rates: Fekette nodal distributions adapted to
every curved element have to be considered, see right distribution in Figure
9. This is formally stated in the next result.

Theorem 2. Under the assumptions of Theorem 1, the error bounds (9) and
(10) hold for a NEFEM solution with a strong implementation of Dirichlet
boundary conditions, if Fekette nodal distributions adapted for every curved
element along the Dirichlet boundary are considered.

The requirement of Fekete nodal distributions is necessary for an accurate
interpolation of Dirichlet boundary conditions on curved boundaries. Due to
the use of polynomial nodal basis in cartesian coordinates, the errors in the
approximation of the prescribed value along the boundary may deteriorate
the convergence of the solution. This is the case for NEFEM as well as
for other approaches considering cartesian polynomial approximations. For
instance, in [32] optimal convergence rates are proven when nodes on the
boundary correspond to Lobatto points (i.e Fekette points in 1D).

4. NUMERICAL EXAMPLES

The application of the proposed methodology is illustrated using sev-
eral numerical examples. The first example is an elliptic problem and it is
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Figure 15: Coarse meshes for h-refinement test. Nested remeshing is used for refinement.

solved using a continuous Galerkin formulation. More complex problems,
concerning the numerical solution of transient Maxwell’s equations, are also
considered in order to illustrate the efficiency of NEFEM in a DG framework.

4.1. Poisson problem

The following model problem is solved in two dimensions

—Au = f in Q
u = ug on I'y (11)
Vu-n = g, on I,

where (2 is the domain (see two NEFEM meshes in Figure 15), T,ul,, =00
and m is the outward unit normal vector on 0€2. The source is given by
f(z,y) = zcos(y) +ysin(z), such that the analytical solution of the problem
is known and smooth,

u(x,y) = zcos(y) + ysin(z).

A Dirichlet boundary condition, corresponding to the analytical solution, is
imposed in the polygonal part of the boundary I'y, and a Neumann boundary
condition, also corresponding to the analytical normal flux, is imposed in
the curved part of the boundary I',. The curved part of the boundary,
corresponding to half of a circle, is exactly described with NEFEM using one
quadratic trimmed NURBS.

In order to check the theoretical convergence rates of Theorem 1, h-
refinement is first explored. Figure 15 shows the first computational meshes,
nested remeshing is used for refinement. The £2(Q) error is plotted in Figure
16 for polynomials of degree up to p = 5. Table 1 also reports the rate of
convergence in the £2(2) norm, the £>(Q) norm and the energy norm. As
stated in Theorem 1, NEFEM provides optimal convergence rates.
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Figure 16: NEFEM h-convergence in the £2(€) norm for Poisson example

L£? L>* Energy
2.21 1.63 1.21
3.06 2.98 2.12
4.02 4.00 3.04
5.02 4.95  4.08
516.02 594  5.02

e W N S

Table 1: NEFEM h-refinement rates of convergence for Poisson example

In this section, numerical integration is performed with p + 1 integration
points for X parameter, see Remarks 3 and 5. Thus, the number of integration
points for the computation in a NEFEM element is the same as for a standard
isoparametric FE.

Figure 17 shows a similar analysis but related to the Neumann bound-
ary: h-convergence in the £2?(T',) norm is compared for isoparametric FE
and NEFEM with a polynomial interpolation up to degree p = 3. Optimal
convergence rates, i.e p + 1, are obtained with isoparametric FE. The inte-
rior node for isoparametric curved FE with p = 3 is located following the
algorithm in [28]. An algorithm to compute nodal coordinates for higher
order isoparametric FE, not considered here, can be found in [29]. Further
numerical experiments not reported here, confirm the importance of a proper
location of interior nodes for isoparametric FE computations: clearly subop-
timal rates of convergence are obtained for p > 3 if nodal coordinates are
not located following [28, 29]. This is not the case for NEFEM, where opti-
mal convergence rates are ensured for any interpolation degree and for any
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Figure 17: h-convergence in the £2(I',,) norm for the Poisson example

distribution of interior nodes in curved elements, see section 3.4.

Is it probably more important to note that this numerical experiment
shows that NEFEM exhibits higher accuracy and rate of convergence for the
£2(T,) norm. For instance, similar accuracy and convergence is obtained
for quadratic isoparametric FE and for NEFEM with linear interpolation,
with a saving in the number of nodes between 25% and 35%. Analogously,
the error with cubic isoparametric FE is almost identical to the error with
NEFEM using quadratic interpolation, with a saving in the number of nodes
of about 50%. Moreover, for the same mesh and order of interpolation,
NEFEM is between two and three orders of magnitude more precise than
the corresponding isoparametric FE solution. Thus, this numerical example
illustrates the efficiency of NEFEM, in front of isoparametric FE, for the
computation of quantities of interest at (or near) curved boundaries. Similar
conclusions are derived from the scattering simulations shown in section 4.2.

No significative differences between NEFEM and isoparametric FE accu-
racy are observed when the error is measured on the whole domain in £2(£2)
norm. As expected for an elliptic problem, the influence of the geometry
of the boundary (or of boundary conditions) is inappreciable in the interior
of the domain. This is not the case for instance for wave problems, where
pollution errors may deteriorate the solution in the whole domain.

Next, a p-convergence study is performed using the computational meshes
represented in Figure 15. As usual in the context of p and hp versions of the
FEM, see [27, 33], the error in the energy norm is represented in Figure 18 as
a function of the square root of the number of degrees of freedom. NEFEM,
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Figure 18: NEFEM p-convergence in the energy norm for Poisson example

as expected from Theorem 1, presents exponential convergence.

It is important to remark that same conclusions are derived from all
numerical tests in this section if Dirichlet boundary conditions are imposed
along the curved boundary, with both a weak imposition, see Theorem 1, or
with a strong imposition using Fekette points, see Theorem 2 and Figure 9.

Finally, it is worth noting that in a FE adaptive process, see [34], the
computational mesh must be locally refined to properly account both for
the solution and the geometry. Whereas in a NEFEM context the adaptive
process is controlled only by the complexity of the solution, independently
of the geometrical complexity of the domain, and therefore reducing the
necessary number of degrees of freedom to achieve a desired accuracy.

4.2. FElectromagnetic scattering simulations

In this section a DG formulation is considered for the simulation of 2D
scattering of a single plane electromagnetic wave by a Perfect Electric Con-
ductor (PEC) obstacle, assumed to be surrounded by free space. For a linear
isotropic material of relative permittivity € and relative permeability p, 2D
Maxwell’s equations (which are decoupled in the Transverse Electric, TE,
and Transverse Magnetic, TM, modes) can be written in dimensionless con-
servative form as

ou oOF. (U
N KU)

E axk =0 mn Q, (12)
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where Einstein notation is assumed. The vector of conserved quantities U
and the fluxes F'}, are

eFy 0 —Hjy
U= €E2 s F1 = H3 s F2 = 0 s
wH3 E, —E
for TE mode, and
€E1 0 —Hg
U= €E2 s F1 = H3 s F2 = 0 s
wH3 E, —E

for TM mode, where E = (Ey, By, E3)T and H = (H,, Hy, H3)" are the
scattered electric and magnetic field intensity vectors. It is assumed that
there are no electric sources in the material.

In the DG implementation, numerical fluxes at the interior edges are
defined from the Rankine-Hugoniot jump conditions [35], which can also
be interpreted as a flur splitting technique, see [36]. Artificial absorbing
boundaries are implemented with a first-order Silver-Miiller condition, see
for instance [37], and in all the examples computations are stopped before
scattered waves reach the artificial boundary. Otherwise, more accurate ar-
tificial absorbing boundaries should be considered, see for instance [38]. At a
PEC boundary, the tangential component of the total electric field (scattered
plus incident) and the normal component of the total magnetic field vanish,
that is

nx E+nxE =0, n-H+n-H =0,

where the superscript [ refers to the incident wave. Using Rankine-Hugoniot
jump conditions, PEC boundary conditions lead to the following numerical
flux

—ng HEEC
AZEC(U) = anglEC , where  HY = Hy +\/e/p(a+a’).
—«
for TE mode, and
~ PEC ny B3
n (U) - —n1EI§EC s where EgEC = E3 + 4 /,u/g (ﬂ —i—ﬁl) )
—f
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Figure 19: Scattering of a planar wave by a PEC cylinder: problem setup and computa-
tional mesh

for TM mode, where o := ni1Ey — noy = n x E and f = —n Hy +
noH; = —m x H. All computations are performed using a fourth-order
explicit Runge-Kutta time-marching scheme.

4.2.1. Circle:

The first example considers an incident plane wave travelling in the ™ di-
rection and scattered by a circle, which is exactly described with a quadratic
NURBS curve, see Figure 19. The diameter of the circle is two wave lengths.
A coarse mesh with only four elements for the discretization of the NURBS
boundary is considered and high-order approximations are used to properly
capture the solution. To avoid ill-conditioning for high-order computations,
all numerical solutions in this section are obtained with Fekette node distri-
butions on both straight-sided and curved elements.

Figure 20 shows the transverse field Hs and the Radar Cross Section
(RCS) for TE mode, after four cycles, with a NEFEM approximation of de-
gree 7. The NEFEM solution and the analytical solution [39] are overlapped,;
more precisely the £L2([—, 7]) error in the RCS is 1.6 102, whereas the error
for isoparametric FE is 6.1 1072, Figure 21 shows a more detailed compari-
son: the RCS error distribution for isoparametric FE and for NEFEM using
high-order approximation, namely p = 5,6. In both cases, NEFEM clearly
improves the solution. The same analysis is performed for TM mode. Fig-
ure 22 shows the FEj distribution and the RCS for p = 7 on the coarse
mesh depicted in Figure 19. Again, numerical and analytical solutions are
overlapped. Moreover, the comparison with isoparametric FE in Figure 23
demonstrates, once more, the better performance of NEFEM.

To compare accuracy, the error evolution for increasing p is depicted in
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Figure 20: Hj distribution and TE RCS after four cycles using NEFEM and p =7
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Figure 21: Comparison of TE RCS error distribution for FE and NEFEM with p = 5,6
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Figure 23: Comparison of TM RCS error distribution for FE and NEFEM with p = 5,6
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Figure 24: p-refinement convergence with the mesh in Figure 19. Markers are located for
p=1,2,3,...
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Figure 24. For the same discretization (i.e. same degree of interpolation)
NEFEM results are more accurate than the isoparametric FE ones. For in-
stance, NEFEM with degree p = 5, provides a RCS with an error of about
2%, whereas isoparametric FE require p = 7 to achieve a comparable accu-
racy (2.4 times more degrees of freedom than NEFEM).

As commented in section 3.4, the lower accuracy of isoparametric FE
for high-order computations is due to two main facts: the piecewise polyno-
mial approximation of the boundary, and the isoparametric transformation
used to map the polynomial base in the reference element; which, for high-
order approximation leads to a base in cartesian coordinates far from being
polynomial. To quantify the effect of both sources of error, cartesian FE ap-
proximation is also considered and its accuracy depicted in Figure 24. That
is, the usual reference element is used for integration purposes, but the poly-
nomial base for the approximation of the solution is defined with cartesian
coordinates directly in the physical domain. This means that an approxi-
mate (piecewise polynomial) description of the boundary is maintained, but
the isoparametric transformation for the approximation is avoided. Thus,
cartesian FFE exactly reproduce polynomials in the physical domain. Similar
results would be obtained using isoparametric FE with especially designed
interior node coordinates instead of Fekette nodes, see [28, 29] and Sections
3.4 and 4.1.

Thus, the difference between the cartesian FE and NEFEM results in
Figure 24 corresponds to the error due to the piecewise polynomial approxi-
mation of the boundary in a standard FE computation; which is completely
eliminated in a NEFEM solution. More precisely, with NEFEM the out-
ward normal vector is computed exactly in terms of the NURBS boundary
parametrization, improving the flux computation at the PEC boundary.

Finally, it is important to note that NEFEM is a more efficient strategy
than cartesian FE. The increase in the computational cost, due to the specific
numerical treatment of curved elements along the boundary, is similar in
NEFEM and cartesian FE, but from an accuracy point of view NEFEM
provides much better results. For instance, the curves in Figure 24 show that
to attain an accuracy comparable to a NEFEM computation with degree p =
5 (with an error of 2.2% in the RCS), cartesian FE require a discretization
with degree p = 6 (with an error of 3.2%). That is, NEFEM provides similar
accuracy to cartesian FE with a 63% reduction in the number of degrees of
freedom.
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4.2.2. NACA airfoil:

The second example consists on the scattering of a planar wave by the
NACA 0012 airfoil. The NACA 0012 is a symmetric airfoil with analytical
expression [40], that can not be exactly described with a NURBS curve.
As usual in the context of airfoil shape optimization, an approximation of
the upper part of the airfoil using a B-Spline with eight control points is
considered here, see for instance [22] for the B-spline data.

Figure 25 shows a detail of the computational mesh and the solution
of TE mode with degree p = 8§, for an airfoil with a chord length of 2
wave lengths. The angle of incidence is 0 rad. NEFEM Fj3 distribution and
the RCS are in good agreement with a reference numerical solution, see for
instance [38], with an £2([—7,7]) error of 1072 in the RCS. Figure 25 also
shows the distribution of the error in the RCS for NEFEM and isoparametric
FE, with Fekette nodal distributions. Again, NEFEM provides much more
accurate results than isoparametric FE.

Next, NEFEM performance for a computation with higher frequency is
tested: the NACA 0012 airfoil with a chord length of 10 wave lengths and an-
gle of incidence of 7/2 rad is considered, see for instance [41]. A detail of the
computational mesh, and the NEFEM solution obtained with an approxima-
tion of degree p = 13 is shown in Figure 26. The FEj field and the RCS are in
good agreement with a reference solution, demonstrating the applicability of
NEFEM methodology for the computation with high-degree approximation
in coarse meshes (only 8 elements for the description of the airfoil boundary).
The error distribution is also plotted in Figure 26. In this example the errors
in the isoparametric FE solution are clearly unacceptable, whereas NEFEM
demonstrates its good performance for high-order computations.

4.2.3. Complex scatterers:

Previous examples show the advantages of the NEFEM formulation in
front of classical FE for the numerical solution of some test cases. To illus-
trate all the capabilities of NEFEM, more complex scatterers are considered
next. The first example is the scattering induced by an irreqular circle with
diameter of four wave lengths. The geometry of the obstacle is described
exactly using one NURBS and a coarse mesh with only eight elements for
the representation of the boundary is considered, see Figure 27.

As noted earlier, see section 3, it is important to remark that the only
restriction for a NEFEM triangle is that the curved edge belongs to one
NURBS. The computational mesh is chosen to emphasize the possibilities of
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Figure 25: NACA 0012 airfoil with chord length of two wave lengths and angle of incidence
of 0 rad (p = 8): detail of the computational mesh, Hjz distribution, RCS and error
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Figure 26: NACA 0012 airfoil with chord length of ten wave lengths angle of incidence
of m/2 rad (p = 13): detail of the computational mesh, Hs distribution, RCS and error
distribution.
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Figure 27: Irregular circle: detail of the computational mesh and NEFEM solution for
p=09.

T
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Figure 28: Irregular circle: details of NEFEM solution near some irregularities.

!

NEFEM. It is not necessary to locate nodes at boundary corners (boundary
points with C° continuity), nor to refine the mesh near the boundary to
capture the geometry (it is exactly represented in NEFEM independently of
the spatial discretization!).

Figure 27 also shows the transverse field Hs with p = 9 after four cycles.
Even for elements with corners in its NURBS edge the quality of the solution
is not deteriorated. Details showing the transverse field near the irregularities
are represented in Figure 28.

The last example consists on the scattering of an electromagnetic wave
by a real aircraft profile of ten wave lengths. The geometry of the 2D section
of this aircraft has several critical zones, in particular, a small irregularity
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Figure 29: Aircraft profile: details of NEFEM computational mesh.

on the upper part and the rear part. Figure 29 shows the computational
mesh used for NEFEM simulation, with only 44 elements on the curved
boundary. Some details of the mesh are also represented, showing that it is
not necessary to refine the mesh to capture exactly the geometry. Figure 30
shows the transverse field Hj3 after ten cycles and some details near the most
critical zones of the aircraft.

It is worth noting that using classical isoparametric FE it is not possible
to compute accurate solutions for these problems with the computational
meshes used by NEFEM, see Figures 27 and 29. To properly capture the ge-
ometry of the domain with isoparametric FE it is necessary to discretize ac-
counting for corners nodes (boundary points with only C° continuity). Thus,
the minimum element size is controlled by the size of these irregularities,
increasing the number of degrees of freedom in comparison with NEFEM.
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Figure 31: FE mesh around the aircraft profile and detailed view near critical zones

For instance, Figure 31 represents a computational mesh adapted to use
isoparametric FE. Detailed views near critical zones of the aircraft show that
h-refinement is mandatory to properly capture the slope discontinuities in
the aircraft profile. The minimum mesh size for the FE mesh in Figure 31
is 3 1073 whereas the minimum mesh size for NEFEM mesh in Figure 29 is
0.2. Obviously, this drastic difference between minimum mesh sizes induces
important differences in the time-step size when explicit time integrators are
used and, therefore, shows another advantage of NEFEM.

5. Concluding remarks

An improvement of standard FE is proposed in this work. The exact
CAD description of the geometrical model is considered, but only for the
boundary of the computational domain. At elements intersecting the NURBS
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boundary specific interpolation and numerical integration are proposed and,
at elements not intersecting the boundary classical FE are used, preserving
the efficiency of the finite element method. A priori error estimates are given
and comments on the implementation of NEFEM are detailed. It is worth
noting that a little effort is needed to enhance a usual FE code with the
NEFEM concept.

Numerical examples demonstrate the advantages of NEFEM in front of
classical isoparametric and cartesian FE. A Poisson example shows the appli-
cability of the proposed method in a continuous Galerkin framework. More-
over, it allows to corroborate the a priori error estimates. Some electromag-
netic scattering applications are used to show the benefits of the proposed
method combined with a DG formulation. Even if the geometry of the bound-
ary of the domain is simple, like a circle, NEFEM is, at least, one order of
magnitude more precise than isoparametric FE. When the geometric model
is complex, like and aircraft profile, NEFEM is able to compute accurate
solutions using coarse meshes. The exact representation of the boundary
allows to mesh the domain independently of the geometric complexity of the
boundary whereas classical isoparametric FE need h-refinement to properly
capture the geometry.
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